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Abstract— In a mixture of two high-dimensional Gaussian
classes, the class can be identified with active testing, i.e. by a
(sequential) adaptive selection of features from a redundant
dictionary. Using the mutual entropy criterion, we provide
an analytic characterization of this procedure in two sit-
uations. When the classes have the same covariance but
different centers, the optimal features can be computed off-
line with an algorithm similar to the Orthonormal Matching
Pursuit. When the classes are centered, the adaptive fea-
tures are eigen-vectors of an operator determined by the
covariances of the two classes, but we prove that the opti-
mal schedule of observations of these eigen-vectors actually
depends on the observed signal. The active testing pro-
cess then takes the form of an (incomplete) binary decision
tree. In the case of two stationary Gaussian noises, a low-
frequency one and a high-frequency one, we provide numer-
ical experiments showing that adaptivity does improve the
accuracy of the estimation of the class with few tests. We
also get a somewhat surprinsing result : the frequency com-
ponents that are likely to be the least energetic bring the
most information.

Keywords—sequential testing, adaptive feature selection,
greedy algorithm, decision tree, mutual entropy, mutual in-
formation, infomax, Gaussian identification, classification,

discriminant analysis.

I. INTRODUCTION

The continuous increase in resolution and popularity
of digital data acquisition devices (digital cameras, scan-
ners, digital sound recorders ... ) is giving birth to large
databases of high-dimensional signals and images. Mean-
while, fast pattern recognition techniques are becoming
crucial in critical systems monitoring (engines, planes, nu-
clear powerplants), biometrical identification (speaker, fin-
gerprint or eye identification), office applications (optical
character recognition, voice recognition), and many other
fields including military applications, astronomy, satellite
imaging, medical imaging, handwriting recognition, mu-
sical score recognition, etc. While higher-resolution data
potentially means better rates of recognition, it also im-
plies a larger computational cost which does not suit the
increasing need for real-time processing.

Feature selection aims at reducing the computational
burden of the identification of high-dimensional signals = €
RN (typically, a speech sample or an image), by extracting
a small number M of informative features { fm(z)}M_,. In
a Bayesian setting, the observed data x is supposed to be a
realization of a multi-dimensional random variable X, and
the unknown class y (e.g. the name of the speaker in a
speaker identification problem) is a realization of a joint
random variable Y.

Linear Discriminant Analysis (LDA) [McL92] selects M
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linear features by maximizing some measure of the “infor-
mation” that the M random variables {fn,(X)}M_, give
about Y in the mean. In such a passive scheme, the fea-
tures are selected once for all, during a learning procedure,
before observing the data x that is to be classified. Several
variants of LDA have been defined, using various infor-
mation theoretic measures of information [CT91] (mutual
entropy, Hellinger divergence, Kullback-Leibler divergence,

Recently, the interaction of Feature Selection with Com-
putational Harmonic Analysis proved quite succesfull, as
computationally efficient techniques for passive feature se-
lection [Wic91], [SC94], [Sai98], [LL99] were made possible
by the restriction to linear features such as Fourier coef-
ficients, wavelet coefficients [Dau88], [Mal89], wavepack-
ets coefficients [CW92]. In the very last years, much ef-
fort was put in the development of feature extraction us-
ing “nonlinear” methods such as adaptive decompositions
in redundant dictionaries that can be much larger than
a basis [MZ93], [CD99] [JCMW98], [GDR*96], [MC97].
Among the reasons for this efforts was the clear superiority
of adaptive methods over linear ones [DeV98] for approxi-
mation/regression. Moreover the push towards the use of
redundant dictionaries was motivated by the belief that it
would enable an even better fit to the signals of interest.
To put it shortly, the combination of redundancy and adap-
tivity allows for sparser representations of the signals than
linear techniques.

However, identification requires the selection of informa-
tive features, which is quite different from the good approz-
imation power of the features selected by adaptive decom-
positions. The statistical framework of Sequential Decision
Theory [Wal49] is more suited to the design of adaptive fea-
ture selection than the theory of nonlinear approximation,
with which it shares some principles.

In sequential tests [Wal45], [Fu68], one observes features
fm(2) sequentially and takes a decision on the class y of
x as soon as a stopping criterion is reached. As a result,
the number M (z) of observations { fm(x)}%gl) depends on
the observed data z. Similarly, active testing [BFOS84] can
reduce M (z) by selecting the m + 1-th feature f,,+1 once
fm(z) has been observed, thus taking into account some
specific characteristics of z. A good example of such an
active identification strategy is the Game of Twenty Ques-
tions. In general, no closed form expression is available for
the adaptive sequence of features, which is structured as
a decision tree which may have infinitely many branches
starting from each node.

Because of the lack of stochastic model for signals or im-
ages, the construction of the tree and the selection of fea-
tures is usually done with data-driven techniques such as



CART [BFOS84]. Despite their success in character recog-
nition [AG97], [AGW9I7] and speech recognition [AM99],
these inductive techniques cannot build deep trees or al-
low many branches per node without losing their statis-
tical significance. However, for some parametric models
Po(z,y),0 € R?, an analytic characterization of the adap-
tive feature selection can be derived [GJ96], [Li99], making
it possible to build on-line a deeper and/or more branched
out tree.

In this paper we provide such an analytic characteri-
zation in the case of a mixture of two multi-dimensional
Gaussian classes. In the case of two stationary Gaus-
sian noises, a low-frequency one (low-pass filtered Gaussian
white noise) and a high-frequency one (high-pass filtered),
we get the somewhat surprinsing result (compared to what
we would expect if we were performing approzimation of
the signal) that one should observe the frequencies where
the least amount of energy is likely to be present in the
signal.

The paper is organized as follows. In section II we de-
fine passive and adaptive (sequential) feature selection with
the mutual entropy criterion, using extensively the anal-
ogy with linear and nonlinear approximation. We state
in section III our main theorems, giving an analytic char-
acterization of active testing for a mixture of two multi-
dimensional Gaussian random variables. We discuss in sec-
tion IV numerical experiments with a low-frequency and a
high-frequency stationary Gaussian noises : we compare
the passive and the active testing algorithms, and we point
out the somewhat surprising fact that the optimal features
for the identification grab “as little” energy of the analyzed
signal as they can at each step. The proofs are collected in
the appendix.

II. SEQUENTIAL FEATURE SELECTION

Feature Selection is designed to extract “significant fea-
tures” from a high-dimensional signal x, so as to identify
its class y (a symbol in a finite alphabet). In an ideal
world, each signal can be assigned a class without any un-
certainty : the space RV can be split into disjoint sets,
each one exactly matched to one class. But in the real
world (e.g. in a speech recognition process) there is some
uncertainty on the class of a signal, corresponding to some
overlap in the “partition”. We model this uncertainty us-
ing a Bayesian setting : before observing any feature of
z, the class has some prior distribution; the desired effect
of the observation of features is a more “peaky” posterior
distribution. ~

In this setting, the best estimator Y (X) of the unknown
class is the Bayesian estimator [Kay93], which minimizes
the probability of misclassification ’P(}Af #7Y). In the case
of uniform prior, the Bayesian estimator coincides with
the Maximum Likelihood one. However, the high dimen-
sion of the signal x generally makes it difficult to actually
build this classifier, and one uses a smaller set of M fea-
tures { f,,(X)}M_, to build an estimator Y ({f,,,(X)}M_,).
Good features should lead to a “peaky” posterior distri-
bution of the class. Information theory provides a nice

framework to select such features.

The mutual entropy [CT91] between two (possibly multi-
dimensional) random variables Z and Y is defined as
the symmetric functional Z(Z;Y) = H(Y) — H(Y|Z) =
H(Z) — H(Z]Y) where H(.) is the entropy and H(.|.)
the conditional entropy. Fano’s inequality shows that if
PY(Z) # Y) is small for some estimator Y (Z), then
H(Y|Z) must be small, hence Z(Z;Y) must be large, i.e.
close to H(Y'). Hence M “good” features should lead to a
large mutual entropy Z ({fm(X)}A_,;Y). In practice one
has to choose them from a limited set of easily computable
features.

In signal and image processing [Mal98], it is common to
consider linear features, that is to say linear functionals
fo 1@ = folx) = (z,9) = 2711\{:—01 z[n]g[n] where g is a
vector in RV . Some examples of widely used linear features
are

Ezample 1: coordinates in the Dirac basis : z[n].

1,n=ng

gl =ofn—ml = { gm0 (1)

Ezxample 2: Fourier coefficients : Z[k],

gln] = \/% exp <2men> : (2)

Example 3: wavelet coefficients : (x,¢;1).

gln] = ¥jln]. (3)
See [Dau88], [Dau92], [Mal89], [Mal98] for references on

wavelets.

A dictionary D of linear features is any subset D of the
unit sphere in RY that spans RY. It can be as small
as an orthonormal basis and as redundant as the whole
unit sphere. Examples include the Dirac-Fourier dictio-
nary [MZ93], the wavepackets dictionary [CW92], the Ga-
bor dictionary [Tor91], [QC94], [MZ93], as well as data-
driven dictionaries [MC97].

Maximizing the mutual entropy

{g5,... maxeDI({fgm (XM Y)

15---9M

=g

in order to select M “good” features is a difficult optimiza-
tion problem. It is easier to proceed in a sequential, greedy
way, in the spirit of the Projection Pursuit/Matching Pur-
suit algorithm [FT74], [FS81], [Hub85], [MZ93]. A first fea-
ture g1 = argmaxgep Z(fy(X);Y) is selected. Then, using
the chain rules for mutual entropy [CT91], the following
ones are iteratively defined as

Fomer(X), £ (X))
= argmaxyep  [Z(£,(0): Y [{£, (O}Y)
+7({£0 (XY )]

= arg max,cp I(fg(X);Y‘{fl(X) ,";;1). (4)

gm = argmaxgyep I(fg1 (X),...

An analogue of this sequential optimization problem is
the sequential minimization of the expected error of ap-



proximation E{ | X — PVmX||2} of the signal = by its or-

thonormal projection onto the subspace V,,, = span{g;,1 <
I <m}. The “optimal features” for approximation are the
elements of the Karhunen-Loeve basis. However the theory
of nonlinear approximation [DeV98] shows that the sequen-
tial approximation scheme associated with the Karhunen-
Loeve basis is actually far from being “optimal”, especially
when the distribution is not Gaussian, because it does not
adapt to the vector z which is being approximated. On
the contrary, in an orthonormal basis B = {g,}2\_;, nonlin-
ear approximation can do better by approximating z with
the m vectors that correspond to its m largest coefficients

{2 gn)| 2 - 2 (2, gn,n)-

Similarly, the sequential choice (4) of features is passive :
it does not depend on the observations {f,, ()};";" that
were already collected about z. Another possibility is to
choose g, (z) adaptively, using what is known so far about
T

gm(x) = argmax

g€D

I(fg(X);Y‘{fglm(X) = fou(x)(2)

m—1
=1 .

(5)

Such an adaptive choice of g, brings at least as much in-
formation at each step as the passive one does, and leads
to a natural tree structure [BFOS84], where there may be
infinitely many branches starting from each node. Com-
bining it with sequential testing techniques [Wal49], [Fu68],
one can expect to reach a reliable decision on the class with
a smaller number of observations M (z).

Unfortunately, the conditional mutual entropy in (4) or
(5) cannot generally be estimated with statistical signif-
icance from a reasonable amount of learning data. As
a heuristics, some passive sequential strategies [Phi98],
[JGL99], [LL99] use linear projections instead of condi-
tioning, i.e. I( <:r — Pymflx,g> ;Y) becomes the criterion
to be maximized. However, there are cases where active
testing can actually be implemented : with a paramet-
ric model Pp(z,y) for which an analytic computation of
the conditional entropy is possible. Using such a model
with a dictionary of nonlinear features, Geman and Jedy-
nak [GJ96] were able to actively track roads in satellite
images by building on-line, during the recognition process,
the only branch of interest of a deep, heavily branched out
tree. The structure of their model was such that they did
not even need to store the tree.

In [Li99], with a model of mixture of Gaussian random
variables and linear features consisting in the coordinates of
x in a given basis, an analytic computation of the Hellinger
divergence [GL00] was given. It resulted in an explicit al-
gorithm for the adaptive selection of coordinates with this
criterion. In the next section we state similar results using
the mutual entropy —which is more complex to manipu-
late than the Hellinger divergence— and choosing linear
features in a redundant dictionary.

III. ADAPTIVE FEATURES FOR (GAUSSIAN CLASSES

We consider a mixture of two Gaussian classes N (fo, Xo)
and N (i1, X1), with mixture parameter py € [0,1]. That is
to say : the conditional distribution of the signal X under
the hypothesis Y =y (y = 0,1) is the multivariate normal
distribution N (f,, ¥,) with mean fi, and covariance X,;
the a priori distribution of the two classes is given by py =
P(Y =0). We assume that X, has full rank.

Let D be some dictionary of vectors in R, and {z +
(z,9),9 € D} the associated dictionary of linear features.
Our purpose in this section is to characterize the sequences
of functions {z — g, ()} _, satisfying (5) for all z and
1 < m < N. Such sequences are called adaptive feature
sequences (AFS).

We first get the following characterization.

Theorem 1: Assume X1 = ¥ and fi; # fip, and let D be
any dictionary. A sequence {z > g, (z)})_; is an AFS if,
and only if, for 1 <m < N

(6)

where (., .)y, := (., X.) defines a weighted inner product on
RY, ||.|ls; is the associated weighted Euclidian norm and
R, is the orthonormal projector (with respect to this inner
product) parallel to V,,, :=span{g;,1 <1 < m}.

The proof is in the appendix.

Remark 1: When some vector g; € D is colinear to the
matched filter Sy * (i1 — fio), g1 is the first and only feature
to be used : after observing (z,g1), no other feature will
give any information on the class.

Remark 2: When D is an orthonormal basis with respect

to (.,.)y;, this AFS with the mutual entropy criterion could
equivalently be obtained with the Hellinger divergence cri-
terion [Li99] (page 44-45).
A consequence of Theorem 1 is that, when Yo = X1, AFS s
essentially unique and actually independent of the observed
data z. It can indeed be computed off-line. In such a case
adaptivity is simply useless. The similarity of the compu-
tation of the AFS with an Orthonormal Matching Pursuit
[PRK93] (see the appendix) may explain the good behav-
ior of passive feature selection strategies [Phi98], [JGL99],
[LL99] that use linear projections instead of conditional
mutual entropy estimation. This identification problem is
indeed very close to an approximation problem.

The following theorem shows that AFS have a totally
different structure when ¥; # g and ji; = fo.-

Theorem 2: Assume that 31 # Yo and fi; = jip. Let
D be the whole unit sphere of RV and {uz}4_; a basis of
unit eigen-vectors of £5'%;. There exists an (adaptive)
permutation {z — kp,(z)}N_, of {1,2,..., N} such that
{z = gm(z)}N_, is an AFS if, and only if, for all z and
1<m<N

gm = argmax |(S7"(jix — fio), Rm—19/ |1Rm-19lls, )y,

span{gi(z),1 <1 <m} = span{uy,(z), 1 <I <m}. (7)

The proof is in the appendix.
Remark 3: Notice that 25121 is not necessarily a sym-
metric matrix. However it can be diagonalized, because it



is similar to the symmetric matrix 261/221 251/2. A basis
of unit eigen-vectors {uy }&_; can thus be computed off-line
(without observing the signal  which has to be classified)
but is generally not orthonormal. Hence such a basis is
generally distinct from the Least Statistically Dependant
(Orthonormal) Basis of Saito [Sai98].

Remark 4: The components {(X,u;),1 < k < N} are
not necessarily independent random variables, whether un-
der the mixture distribution or under one of the conditional
(Gaussian) distribution. This shows the difference between
the AFS approach and Independent Component Analysis
[Com94].

The feature family is indeed the same as the one Lin-
ear Discriminant Analysis (LDA) produces for this prob-
lem [Fuk72]. However the potential difference with LDA is
that the schedule {k,, (z)}N_, of the observations (z,uy) in
an AFS may actually depend on the observed data x, and
may have to be decided on-line. We will need the following
definition.

Definition 1: For any p € [0,1], n and 0 < A < oo, let
Z(n,A\,p) = Z(Z;Y) where Z is a mixture of two one-
dimensional Gaussian classes N'(n,1) and N(0,\) with
mixture parameter p and Y is the class variable.

Let us give some precision on the optimal schedule of the
observations when g # ¥ and jiy = ;.

Lemma 1: Let {\;}2_, be the eigen-values of ;'Y as-
sociated to the unit eigen-vectors {uy}Y_,, and let

(A (@), Am(2)) = (min, max) {\e, k ¢ {ki(2)}2,}  (8)

be the extremal remaining eigen-values after m steps, 0 <
m < N — 1. The optimal schedule {k,(x)}_, is charac-
terized by

max

Ak, (z) = ar
k'm( ) g)\E{Am—l(z)’Xmil(z

(0 Apna@) @)

with

Pm—1(2) = P(Y = 0‘{ (X, gy () = (2 gy ) Zl)

(10)

the a posteriori distribution of Y after m — 1 observations.
The proof is in the appendix.

This lemma shows that the first index k; is actually con-
stant, because )\, and )\ are independent of x, as well as
the a priori distribution pg of Y. Hence, after the first
observation (X, ug,) = (x,u, ), the values A, and \; are
still independent of z. However the a posteriori distribu-
tion p;(x) now depends on z. The choice of the second
index ks(z) may thus actually depend on z. Hence the
AFS has “potentially” the structure of a binary decision
tree T (2, '%1)

o Its root is labeled with the first feature wg,, which is
independent of the sample = to be classified.

e A node of depth m — 1 has at most two children nodes.
However if, say, Z(0,),, ;,p) > Z(0,A\p_1,p) for every
value of p, there is only one child.

This tree is of depth N — 1, and we prove in the appendix

that the number of its branches is at most C’%fl_l)/ﬂ ~

2N /v/2rN. Even if this is much smaller than a fully-
expanded binary tree of depth N — 1, the storage of such a
tree could certainly be a practical burden when N is large.
However Lemma 1 eliminates this problem by providing a
natural on-line construction of the branch of interest for
any given signal z.

To be sure that the algorithm is adaptive, there remains
to show that k,,(z) can actually depend on z. The follow-
ing lemma shows that it is not always the case.

Lemma 2: o if A,_y(z) > 1, then Ag (4) = Am—1(2).

o if Ap—1(z) < 1, then A (o) = Ay (2).
The proof is in the appendix.

As an example, if A; > 1, then A, (z) > 1 for all m,
and the AFS —except maybe its first term which may be
Ak, < 1— is associated with the decreasing rearrangement
of the eigen-values. Nevertheless, in the general case, kp, ()
does depend on x. Let us prove it, using the following
lemmas.

Lemma 3: For t > 0, let a(t) = t — logt and b(t) =
t+logt=a(t™). Let 0 <A< 1<
o for p close to 1,

_ 1— _
2(0,X,p) = Z(0,A,p) ~ —= (a(}) — a())
« for p close to 0,

2(0.X,p) = Z(0,A,p) ~ £ (b(X) = b(1) -

Lemma 4: For any X > 1, there exists unique

(12)

0<al)<1/A< BN <1

such that a(\) > a()) & A > a()\) and b(A) > b()) &
A > BV).
The proof of Lemma 3 is somewhat technical and can be
found in the appendix. That of Lemma 4 is straightforward
and is let to the reader.

Suppose that after m — 1 steps (m —1 > 1), A

Lm—1

in the open neighborhood (a(Xm_l(x)),ﬁ(Xm_l(x))) of

1/Am_1(z). Lemma 3 and Lemma 4 combined show that :
o if p,,—1(z) is close enough to 0,

(z) is

(0, X1 (@), o1 () ) < (0, Ay (), s (2)):

o if pp—1(z) is close enough to 1,

Z(0. X1 (@), P 1(2)) > Z(0, 4 1(@), 1 @)

Both of these two “extreme” situations are actually pos-
sible, because the a posteriori distribution p,,_1(z) does
depend on z. This proves the result we were claiming :
the adaptive schedule of observation of the features does
depend on z.

IV. NUMERICAL EXPERIMENTS

Numerical results of active testing using the Hellinger
divergence [Li99] suggest that the posterior distribution
pm(z) converges faster towards py(z) with active testing



than with a fixed schedule. In the following, we provide
similar numerical evidence for our active testing algorithm
with the mutual entropy criterion.

From now on, we make the simplifying assumption that
Yo and ¥; commute, hence the eigen-vectors {Uk}kN:1 of
3 'y, are the common eigen-vectors of ¥y and X .

A. Semi-empirical adaptive algorithm.

After centering the signal 2 by removing the mean jip =
ji1, the active testing algorithm shall go as follows :
1- initialize Ay, Ao, and po;

2- set m = 1;

3- compute and compare Z(0,A,, ;(z),pm—1(z))
Z(0, A1 (%), pm—1(x)) to select k,, ();

4- set A\, (), A (2);

5- observe (x,uy,, (,)) and compute p, (z) using Bayes rule
(remember that we assume ¥ and ¥; commute, i.e. they
are diagonal in the same basis)

and

e )

1-— pm(m) 1-— pm—l(x) 00,k,, (z) € U%‘km(m)
= o (13)
Pm () Pm—1(z) O1,km(z) _ | (=m0 |
e 70, km (v)

6- increment m and go back to step 2.

The decision rule (step 3) could be implemented by tab-
ulating Z(0, Ak, s/S),1 < k < N,s =0,1,...S where 1/S
is some small step. The tabulation would then be part of a
learning step, which includes estimating ¥y and ¥; and di-
agonalizing X5 1%, once for all, prior to any identification.
However, because of the results expressed in Lemma 3 and
Lemma 4 we conjecture that the decision set

actually has a simple characterization.
Conjecture 1: For any 0 < A <1< A
DA, ) = [0,1] N [p(A, X), 00), (15)
where p()A, \) is close to the expression
PN = —— (16)
P = T amam
b(A)—b(A)

Remark 5: Thanks to the continuity of p — Z(0, A, p)
and to Lemma 3 and Lemma 4, (15) is equivalent to the ex-
istence of at most one value p € (0, 1) such that Z(0, \,p) =
Z(0,A,p). The expression (16) gives D(A,A) = 0 for
a()) > a(\) and D(A,\) = [0,1] for b(A) < b(X), which
is compatible with the results of Lemma 3 and Lemma 4.

In the numerical experiments, the exact active testing
algorithm is replaced with a “semi-empirical” one using
a decision rule which comes directly from our conjecture.
The rule is summarized in table I.

B. Passive algorithm.

By definition, a passive testing algorithm does not take
into account any information obtained on z after a given

Pm—1(2) = A1 (%), Am—1()) <0 >0
FAm1 (@) = fFAm-1(2)) A1 (@)
fQoi (@) < Fm-1(2)) B

and B Ap—1(@) | Am—1(2)
I Am_1(2)) > 9(Am-1(2)))

9 A1 (1) < g(Am-1(z))

TABLE 1
SEMI-EMPIRICAL DECISION RULE FOR ACTIVE TESTING.

number of steps. We use the following passive testing al-
gorithm : use the features {uj}d_, with a fixed sched-
ule {k2}N_, such that {max(A\ ,1/Az )}Y_, is non-
increasing. Note that {k2 }N_, is, of course, independent
of . It is quite easy to see that this schedule of tests corre-
sponds to following a special branch of the binary decision
tree T(Z,'%;) : the one which is followed by all signals
x for which p,,(z) ~ 1/2 for every m. Hence the passive
schedule {k2,}N_, is good when not much information is
available on the class y, and it is reasonable to think that
this passive testing algorithm has fair efficiency for getting

information about the unknown class y.

C. Numerical results.

In signal processing, many finite-length signals (such as
the voiced parts of speech signals, e.g. vowels) are mod-
eled as a realization of a cyclo-stationary Gaussian noise.
The covariance operator of such a random process is diag-
onalized in the discrete Fourier basis (2), and an estimate
of the eigen-values {\;}~_, is obtained through the esti-
mation of the power spectrum of each class. After a Fast
Fourier Transform [BP85], [FJ98] of the signal z, one can
proceed to the on-line active identification by adaptively
picking frequencies k where to measure the power spec-
trum |Z[k]|”.

Let us consider two noises : a high-frequency one (Y = 0)

—1
2 c -, 1 S k S N/2
"OJC_{ ¢, N/2+1<k<N (17)
and a low-frequency one (Y =1)
2 C, 1 S k S N/2
”L’c—{ ¢, N241<k<N (18)

where ¢ > 1. For low frequencies 1 < k < N/2, A\ =
¢ > 1, while for high frequencies N/2 +1 < k < N,
A = ¢ 2 < 1. Lemma 3 and Lemma 4 show that when the
high-frequency noise is more likely (p =~ 1), the most in-
formative measures are on the low-frequency components
|Z[k]]”,1 < k < N/2 while, when the low-frequency hy-
pothesis is more likely (p = 0), the high frequency com-
ponents give more information. Hence the active testing



strategy is very different from an approximation strategy :
on the one hand, for approximation (either linear or non-
linear), one would try to select frequencies where the com-
ponents are as large as possible; on the other hand, active
testing selects the frequencies in the opposite order, looking
for the least energetic components first.

There is an intuitive explanation for this behavior : when
the low-frequency noise is likely, if we make a measure at a
high frequency, the variance of the measure is likely to be
small. Hence, if ever we do observe a large high-frequency
component |Z[k]|> > 1, k > N/2 + 1, it will give us quite
a strong indication that our assumption (low-frequency,
Y =1) is false. On the contrary, a measurement at a low
frequency is not likely to make us revise our estimation of
the class.

With the two Gaussian classes (17) and (18), in di-
mension N = 16, using ¢ = 2.5, L = 10000 samples
(xj,y;) of the mixture model were drawn with an equal
a priori probability pg = 1/2. The active and the pas-
sive testing algorithm where run on each sample. The
MATLAB code for the active and the passive testing al-
gorithms and these numerical experiments is available at
http://www.math.sc.edu/~remi/Preprints/activetesting/

Figure 1 shows some typical active schedules {k,,(z;)}.
Let us consider, for example, the upper figure, which cor-
responds to active schedules when gy; = 0. The first mea-
surement is fixed, k;(x) = 1. In the most typical sched-
ule {k! (y = 0)}N_,, which is plotted with circles, the
true class Y = 0 immediately gets a high enough likeli-
hood, hence the following tests are done at the low frequen-
cies, until there is no longer any low frequency available.
The last measurements are thus made at high frequencies.
An example of a less frequent schedule is displayed with
crosses : after three tests on the signal z;, the likelihood
of the true class has become too small. Hence the active
testing switches to measurements at high frequencies, that
seem more adapted. However, after five more tests, the
“mistake” is corrected and the algorithm switches back to
measurements at low frequencies. When the pool of low
frequencies is empty, the last measurements are done at
high frequencies.

The lower figure displays an opposite behavior when y; =
1. The first measurement, which is not adaptive, is on a
low frequency. The most typical schedule {k! (y = 1)}V _,
(circles) immediately switches to measurements at high fre-
quencies. However, this first test is less reliable than a
measure at a high frequency, hence it happens from time
to time (crosses) that its result is misleading. In such a
case, the algorithm goes on measuring low frequencies, un-
til it realizes its mistake.

In this example, for every k, max(\g,1/\;) = ¢?, hence
the passive schedule might be any permutation of {1..N}.
However, not all of them are equivalent for the fast esti-
mation of py(z) with p,(z), m <« N. Actually, if the
true class of z; is y; = 0, the schedule {k! (y = 0)}N_,
should be good, but if y; = 1 it will have a poor perfor-
mance in terms of how fast p,,(x;) goes to py(z;). The
schedule {k! (y = 1)})/_, will have the opposite behav-

Typical active schedules when Y= 0
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Fig. 1. Location km, () of the test as a function of m, with the active
testing algorithm. (Top) when the underlying class is y; = 0;
(Bottom) : when y; = 1. The dotted line separate low frequencies
from high frequencies. On each figure, the most typical active
schedule {k%, (y;)}¥_, is plotted with circles. In both cases, the

=1
first measurement 1S ki(z) = 1; then if y; = 0 (resp. y; = 1), all
low frequencies (resp. high frequencies) are measured; eventually,
the remaining frequencies are measured. Examples of less typical
schedules are displayed with crosses. They correspond to the fact
that some measurements may be misleading.

ior. In order to have a balanced performance that does not

depend on the value of y;, it is better to use a permuta-

tion that alternates measurements at low frequencies and
at high-frequencies. We used

N

{k% m=1 "7

{1,N,2,N —1,3,... ,N/2,N/2+1}. (19)

Figure 2 compares the speed at which the average value
of |pm(z) — pn(z)| converges to zero with the passive
schedule {k2,}N_  (plain line) and with the active test-
ing algorithm (dashed line). After a first test k; = 1 which
is common to both algorithms, the active testing algorithm
provides in few steps quite a better estimate of py () than
the passive one. At the end, both algorithms give the same

exact value py(z) = P(Y = 0|X = z).

V. CONCLUSION

In this paper we have made a detailed study of active
testing for an identification problem involving two Gaus-
sian classes.

In the case of two Gaussian classes entirely characterized
by their mean (i.e. with ¥y = ¥;), we showed that active
testing is indeed passive and corresponds to an approxima-
tion strategy similar to the Orthogonal Matching Pursuit.
Our result is similar to that of Li [Li99] (see p. 44). There
remains to study whether the “active” testing is still pas-
sive when ¥; = pXo, p # 1 (see [Li99], Theorem 4.12, p.
60).

In the case of classes entirely characterized by their co-
variance structure, we obtained somewhat surprising re-
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Fig. 2. Average value of |pm(z) — pn(z)| with the passive testing
algorithm (plain line) and the active testing algorithm (dashed
line).

sults. First, the active testing is actually dependent on
the analyzed data, taking the form of a binary decision
tree. Moreover, the optimal schedule of observations can
be seen as selecting the smallest components first, which
is the opposite of the adaptive selection of components for
approximation.

We provided numerical evidence that, with a small num-
ber of tests, the likelihood of each class can be estimated
more accurately with an adaptive schedule of tests than
with a fixed one. A suitable modification of the Sequen-
tial Probability Ratio Test [Wal45], [Wal49], [Fu68] is still
needed to take full advantage of this desirable property.

We are currently trying to extend Theorem 2 to the se-
lection of linear features {g,(z)}N_, in a limited dictio-
nary which does not contain the desired unit eigen-vectors.
Such an extension will not only provide fast identification
techniques, using some fast transform algorithm given by
Computational Harmonic Analysis (e.g. wavepackets). It
will also deal with the fact that, in practical applications,
the true covariances Xy and ¥; and the eigen-vectors {uy}
are only estimated, hence innacurate. Such an extension
will show how robust is active testing in a real pattern
recognition process, when one has to take into account the
effect of the learning stage.
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APPENDIX

For any unit vector g, the posterior distribution of (X, g)
(after conditioning with {(X, ¢;)}/,) is a mixture of two
one-dimensional Gaussian classes N (tim y[g], 07, ,19]), ¥
0,1, with mixture parameter p,,(X) (the a posteriori prob-
ability of Y = 0). In order to simplify the notations, we
will usually not write the dependence of p,[g], 05 [9] and p
on X and/or m. Using the invariance of mutual entropy
[CT91] with respect to translations and dilations of X, it
is easy to show that its maximization is equivalent to that

of
(| i)

(20)

(see definition 1). We study the variations of A — Z(0, A, p)
and n — Z(n,1,p), then give the expression of y,[g] and
o2[g] as a function of g and {g;}~,. Eventually we proceed
to the proofs of our theorems.

I. VARIATIONS OF THE MUTUAL ENTROPY

Lemma 5: The function A — Z(0, A, p) is decreasing on
(0, 1] and increasing on [1, c0).

Lemma 6: The even function n — Z(n, 1, p) is increasing
with |n|.

Notations 1: Let ¢(t) = 1/ 97e~% be the Gaussian
pdf. The entropy [CT91] of Z ~ N(n,)) is 3log2me.
So as to simplify future computations, let » = A\~'/2. The
pdf of the mixture is h(y) = pdp(y —n) + (L —p)vo(vy). Let
us denote ¥ (x) = xlog .

The mutual entropy can be written

- [win

Proof of Lemma 5
We compute 2Z(0,v 2, p)

¥k

_ / BBt - 0)?)1 + log h(w)ldy

Z(n,v=2,p) = ]dy——log2ﬂe+(1— p)logv

(21)

h()]dy + (lyp)

”(u)

/¢ 1—u)(1+10gh( ))d

© {1 %h('(i) u}
=

- /¢ \Lpie(s) + h((;) P’y (“)du}

- o { e ¢()Vz¢(%>;(<;)—p>v¢<“>du}.

In (a) we used the change of variable u = vy and in (b)
we integrated by parts. As ¢(u) is a pdf of unit variance




[ u?¢(u)du = 1, the computation of 27(0,v~2, p) goes on

_a ;P) /u2¢(u)h (%) _pﬁd’}(l%()ﬂ)— (1 —p)vg(u)

— (l_p)/u2¢)(u)p(1_%_)¢(%)du

I
/N
N
|
|
N—
|
—~
(S
=
<
[V}
<
s
<
—
<
<
A
<
U
<

This shows that the sign of %I(O, v—2,p)isthat of v—1/v,
hence the result. .

Proof of Lemma 6

We compute 8%1(7;, 1,p)

- —/a%h(y)zb' [h(y)] dy
_ +/p¢'(y — 1) [1 + log h(y)] dy

@ —p/d)(y - ) hl(y)dy

h(y)
_ +p/¢(y _ Pyl —h?;/;r (1= Pyew) ,,
®) S (y=mh(y) + (1 —p)né(y)
= p/¢>(y ) h) dy
< np1-p) / 7(1)(1/)28)_ gy
~ y

In (a) we integrated by parts, in (b) we introduced h(y) at
the numerator, and in (c¢) we used the cancellation of the
integral of the odd function y¢(y). Hence the result. O.

II. CONDITIONAL EXPECTATION AND VARIANCE

Now we want an expression of the arguments of the func-
tional Z in (20) as a function of g and {g;}}7;.

Lemma 7: The conditional expectation of (X, g) is the
following random variable

pmolel = E{(X,0)|Y =y {(X 90} |

= </jy:g> + <X - ﬁy:Pm7Eyg> (22)

and its conditional variance is

Tmyldl =

= d= P,

2
B{ (X, 9) = fimlo]) [V = v, (X, )}, }
(23)
where V,, = span{g;,1 <1 <m} and P,, x, is the orthog-

onal projector onto V,, with respect to the inner product
(.,.)Zy = (.,X,.), i.e. the projector onto V,, parallel to

V™ = (S V)t = 5,104

du

Proof

By definition, pim y[g] is the orthogonal projection of
(X,g) onto the space of random variables that are mea-
surable with respect to Y and {(X, ¢;)};*,. We can check
that the right hand side in (22) is a linear function of the
conditioning variables, which implies measurability. More-
over, it is Gaussian and decorrelated from the conditioning
variables (X, g;), hence it is independent from them. Hence
the first result.

Let W, = X — jiy. Using (22) we can write

E{ ( (Wy,9) — <Wvam7Eyg> )2‘

Y =y (X g} }-

Conditionally on Y = y, W), is a centered Gaussian random
variable, and it is decorrelated with, thus [Pap84] indepen-
dent of, {(W,,g)}>,. As a result

2
ohlal = E{ (W, (Id=Pus,))’ [V =y}
= ((Id = Pux,)9,Sy(Id - P 5,)9)
which gives the result. O.

o lgl =

III. PROOF OF THEOREM 1

As ¥ = ¥y = X, the projector P, 5, = Pns, = Pn
is independent of y. Equation (23) can be written as
o219l = (Rmg,XRmg) with Ry, = Id — Pp,. As a result
0?/o3 =1 for all g, and Lemma 6 shows that gp11(z) =
arg maXgep |m[g]| where nmlg] := |(u1lg] — polgl)/oo[g]l-
This choice does not depend on p,,(z), and by induc-
tion one easily gets its independence from z. The family
{gm}N_, can be determined off-line using only ji;, fip and
3. Let us see how this works.

Let us define on RY a new Euclidian structure with the
weighted inner product (.,.)s; = (.,X.) and its associated
weighted norm ||.||y;. Equation (22) gives pu[g] — polg] =
(it — fio, Rong) = (S (fi — fin), Fon)s- As a result

Rmg

S Yty — fio)y o) |
< (7 ““”||ng||z>z

With respect to this Euclidian structure the Gram-Schmidt
orthonormalization of {g,,}N_, is precisely the family
Um = Rm—19m/ | Rm—19m|s;, hence
m+1
| Pria S 74 = o)y = Y |57 = o), ur)y |
=1

Jm+1 = argmax (24)

geD

(25)

The greedy choice (24) thus maximizes the increase in the
grabbed energy

1 o R,.g >
Y — ), —=2
K Ui = o) gl /s
= || P 7" (i — ﬁo)HZE — || P (i - ﬁ0)||126)

The selected atoms {g,, }Y_, are thus obtained by a vari-
ant of the Orthogonal Matching Pursuit [MZ93] [Dav94]
[PRK93] on the signal ¥~1(ji; — jip). O.

2




IV. PROOF OF THEOREM 2

Let {uy,}2_, be a basis of unit eigen-vectors for X, '%; :
Yo' Sur = Apug, and {gm(z)}¥_, a AFS. Let us de-
note Vy,, = Vp(z) := span{g(z),1 < I < m}, and
Vo = Vo(z) := {0}. We shall prove by induction that there
exists {k, (z)}N_, such that for 0 <m < N

Vi () = span{uy, (z),1 <1 < m}. (27)

The relation is clearly true for m = 0 because both sides
are {0}. Let us show that if (27) holds for m — 1, then it
is also true for m.

The induction hypothesis implies that X5'$ V1 =
V-1, i.€.

YoVm—1 =21 Vm-1- (28)

Hence the two projectors P, _1»,, y = 0,1 onto Vp,,_1 par-
allel to (£, V,;,—1)* are equal. Using (22) we get pt;m—1.1[9]—
Um—1p0[lg] = 0. From now on, let us denote Pp,_; :=
Pm*LEI = I'm-1,% and Rm 1 = =1Id - Pm 1. From ( 0 ,
Lemma 5 and (23), we know that “the” best atom g, ()
corresponds to an extremum of o3, ;[g]/02, 1 lg] =
<Rmflg; EI-Rmflg> / <Rmflg> EOj:emflg>' USing Lagrange
multipliers, such an extremum is obtained when, for some
A,

Ry, 1 X1Rmo19 = AR},

E()Rm_lg. (29)

Linear algebra shows that condition (29) is equivalent to
(Z1 = AZ0)Ry-19 € (ImRy, 1)t = Ty V1,5 = 0,1, that
is to say (£5'%1 — Md)Ry,—19 € Vin—1 = KerR,,, 1.

From (28), we know that the projector R,,_1 commutes
with £,'%;, because its range ¥, 'V;-_| and kernel V,,, 1
are stable under 25121. Thus (29) < Rm_l(EO_lZl —
Md)g € KerR,, 1 < Ry 1(5,'S — Md)g = 0 &
(25121 — Md)R,;,—19 = 0 & R,,_19 is either zero or an
eigen vector of ¥y 'Yy, But Ry—19 = g — Pp—1g cannot
be zero, for it would mean g € ImP,,, 1 = V,,_1, and such
a g cannot bring any additional information on the class.
Hence (27) is true at step m.

a.

V. PROOF OF LEMMAS 1 AND 2

We keep the previous notations. We know that kp,(z) ¢
{k(z)}™7" and (29) shows that for k ¢ {ki(z)}"]",
Ur2n7171[uk]/‘772n71,0[uk] = Ak, hence

Z(0, Ak, pm—1()) (30)

max

km(z) = arg .
kg{k ()},

We can thus derive (9) from Lemma 5. Lemma 2 is another
immediate consequence of Lemma 5. .

VI. PROOF OF LEMMA 3

We start by a technical lemma.
Lemma 8: The mutual entropy can be developed as

1-p

Z(0,v™2,p) =
(0,v7%,p) 5

{—1+ % +logu2} +o(1—p) (31)

Proof

We use the notations of section A. Let us denote r(y) =
L ”M which enables us to write [¢[h] = [ hlogh as

fhlogp¢+fhlog 1+7]

[ o

logp —

log 2w

y?
- E]dy + / hlog[l + 7]

—/h@)f

log 2
o8 =1 5 dy+/hlog[1+r](32)

because [ h = 1. Using the variances (1 and 1/v?) of the
pdf ¢(y) and v¢(vy), we can compute

/h Yy —p/¢ Yy® + (1 - )/V¢(Vy)y2=p+(1y_2p)-

(33)
Collecting (21), (32) and (33), we get the estimate
_ log2r  p 1—p log2mwe
T 2 = -1 P _
(0,v%,p) ogp+ — 5+ 55 5
+(1—p)logrv — /hlog[l +r]
1-— 1
- P { L+ 5 +logv? }
2
—logp— /hlog[l + 7] (34)

Let us now estimate the remaining integral term. The
Dominated Convergence Theorem shows that

lim
p—>

vé(vy)log[l + r(y)ldy =0
hence
/hlog[l +r] = p/¢1og[1 + 7]+ o(1 - p).

AsVr>0,0<log(l+r) <r, we get

0S/¢10g[1+r]§/¢r:%

which leads to
/hlog[l +r]=(1-p)+o(l—-p).

Combined with the development logp = log(1 — (1 —p)) =
—(1—=p) +o(1 — p), equations (34) and (35) finally lead to
(31). O

Lemma 3 is actually a corollary of Lemma 8. Let A <
1 < X and define

(35)

Ar(AN) = 11)1311 1—p (Z(0,X,p) — Z(0,A,p))
_ 9 _

It is easy to show by a change of variables that Z(0,1/A,1—

p) =Z(0,\,p), hence using Lemma 8 we get

A1 (A)X) =
AO(A)X) =
which gives (12) and (11) O

a(%) ~ a()
b(Y) — b(A).

(36)
(37)
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VII. SizE orF AFS TREE

The branches of the AFS tree T(X,'%;) correspond to
permutations of the eigenvalues of X 'Y, which share the
same first term Ag, . Along each branch, the subsequence of
eigenvalues larger than one (resp. smaller than one) is de-
creasing (resp. increasing). Let p (resp. ¢) the number of
eigenvalues of ¥, 'Y, that are larger (resp. smaller) than
one. Using a classical result of combinatorics , the total
number of such sequences cannot exceed C% ' = C% |
(resp. CL_Y, = C%_,) if A\gy > 1 (vesp. A, < 1). Be-
cause some nodes in the tree may have only one child,
these actually give upper bounds on the total number of
branches. The worst cases are p — 1 = | (N — 1)/2] (resp.
p = [(N —1)/2]). Combined with Stirling’s formula they
give the overall upper bound

_ 9N
olN=D/2) _ 38
N 2N (38)
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