
IMI
Preprint Series

INDUSTRIAL

MATHEMATICS

INSTITUTE

Department of Mathematics
University of South Carolina

2001:06

Irreducible testing of lacunary 0,1-
polynomials

M. Filaseta and D.B. Meade

Irreducibility Testing
of Lacunary 0,1-Polynomials

Michael Filaseta1

Mathematics Department
University of South Carolina

Columbia, SC 29208

Douglas B. Meade
Mathematics Department

University of South Carolina
Columbia, SC 29208

February 6, 2001

1The first author was supported by grants from the National Security Agency.

1 Introduction

For w(x) ∈ C[x] with w(x) 6≡ 0, define the reciprocal of w(x) to be the polynomial

w̃(x) = xdeg ww(1/x).

We refer to w(x) as being reciprocal if w(x) = ±w̃(x) and as being non-reciprocal otherwise.
Irreducibility will refer to irreducibility over the integers (so that, in particular, ±1 are
neither reducible nor irreducible). We define the non-reciprocal part of a monic polynomial
w(x) in Z[x] to be w(x) with its monic reciprocal irreducible factors removed. The purpose
of this paper is to establish the following result:

Theorem 1. There is an algorithm for determining whether the non-reciprocal part of f(x) =∑r
j=0 xdj , with 0 = d0 < d1 < d2 < · · · < dr = n, r ≥ 2, and n ≥ 2, is irreducible that runs in

time � 2rr log r log n. Furthermore, if the non-reciprocal part of f(x) is reducible, then the
algorithm determines a non-trivial factor of f(x) expressed in the form gcd(f(x), w(x)) where
w(x) =

∑r
j=0 xkj ∈ Z[x] for some integers kj satisfying 0 = k0 < k1 < k2 < · · · < kr = n.

If r is small compared to n, we say that f(x) is lacunary (a precise definition is unnecessary
here). The significance of the result above is that typically such an algorithm can be used to
determine if a polynomial f(x) is irreducible by checking whether the following conditions
hold:

(i) The polynomial f(x) is itself non-reciprocal.

(ii) The non-reciprocal part of f(x) is irreducible.

(iii) The greatest common divisor of f(x) and f̃(x) is 1.

For “most” polynomials f(x), condition (i) will hold. If (i) holds and either (ii) or (iii)
does not hold, then f(x) is reducible. If, however, conditions (i), (ii), and (iii) all hold,
then f(x) is irreducible. The condition (i) is quickly checked. Theorem 1 implies that
for a fixed number of non-zero terms of an f(x), with coefficients all 0 and 1, one can
check whether (ii) holds in time O(log deg f). To determine the irreducibility of a non-
reciprocal f(x) with coefficients all 0 and 1, it remains to determine whether condition (iii)
holds. To our knowledge, determining if gcd(f(x), f̃(x)) = 1 requires considerably more time
than O(log deg f). Nevertheless, the above does give a convenient method for determining
whether a lacunary polynomial f(x) with coefficients all 0 and 1 is irreducible. A web-based
implementation of this irreducibility test, making use of the algorithm in Theorem 1 for (ii),
currently can be found at:

http://www.math.sc.edu/~filaseta/irreduc.html

2 Preliminary Remarks Concerning 0,1-Polynomials

We will make use of two preliminary results concerning 0, 1-polynomials. Define

S =

{
t∑

j=0

εjx
j : t ∈ Z+, εj ∈ {0, 1} for each j, ε0 = 1

}

1

http://www.math.sc.edu/~filaseta/irreduc.html

and

Sr =

{
r∑

j=0

xaj : aj ∈ Z, 0 = a0 < a1 < a2 < · · · < ar

}
.

Thus, S is the set of all polynomials f(x) having each coefficient either 0 or 1 and satisfying
f(0) 6= 0 and Sr is the subset of such polynomials having exactly r + 1 terms.

Lemma 1. Let r be a positive integer, and let f(x) ∈ Sr. Then the non-reciprocal part of
f(x) is reducible if and only if there is a w(x) ∈ Sr satisfying w(x) 6= f(x), w(x) 6= f̃(x),
and w(x)w̃(x) = f(x)f̃(x).

The proof of the above lemma can be found in [1]. To explain our next lemma, we note
that it is possible for a reciprocal polynomial to have non-reciprocal factors or to consist
entirely of non-reciprocal irreducible factors. For example,

f(x) = (x3 + x + 1)(x3 + x2 + 1) = x6 + x5 + x4 + 3x3 + x2 + x + 1

has this property. Note that the non-reciprocal part of f(x) is reciprocal (and in fact f(x))
for this example. On the other hand, f(x) 6∈ S. For polynomials in S, the situation is
different.

Lemma 2. Let f(x) be a reciprocal polynomial in S. Then f(x) is not divisible by a non-
reciprocal polynomial in Z[x].

We prove Lemma 2 by contradiction. Let f(x) be a reciprocal polynomial in S, and
assume f(x) is divisible by a non-reciprocal polynomial in Z[x]. Then f(x) is divisible by
a non-reciprocal irreducible g(x) ∈ Z[x]. Suppose that g(x) is monic (otherwise, consider
−g(x)). Observe that g(0) > 0 since otherwise g(x) being monic would imply g(x) has a
nonnegative real root contradicting that g(x) is a factor of f(x) which has only nonnegative
coefficients (and f(0) 6= 0). Now, g(0)|f(0) and f(0) = 1 implies that g(0) = 1. Thus, g(x)
is monic and has constant term 1. Let α be a root of g(x) and, hence, f(x). Since f(x) is
reciprocal, it follows that 1/α is a root of f(x). On the other hand, g̃(x) is a monic irreducible
polynomial that has 1/α as a root. It follows that g̃(x) (the minimal polynomial for 1/α)
divides f(x). Furthermore, g̃(x) is non-reciprocal because g(x) is. Clearly, g̃(x) 6= g(x).
Therefore, we deduce that the non-reciprocal part of f(x) is reducible.

We apply Lemma 1, and write

f(x) =
r∑

j=0

xdj and w(x) =
r∑

j=0

xkj (1)

where 0 = d0 < d1 < · · · < dr and 0 = k0 < k1 < · · · < kr. Thus, w(x) is different from
f(x) = f̃(x) and such that

w(x)w̃(x) = f(x)f̃(x). (2)

Let n = deg f , and it follows from (2) that kr = dr = n. Expand the products on each
side of (2). The exponents on the left will be of the form n − kj + ki where i and j are in
{0, 1, . . . , r}, and the exponents on the right will be of the form n − dj + di where i and j
are in {0, 1, . . . , r}.

2

We continue by induction. Observe that k0 = d0 and kr = dr. Suppose that kj = dj

and kr−j = dr−j for all nonnegative integers j less than some positive integer t ≤ r/2. We
prove kt = dt and kr−t = dr−t. Consider (2) again with both sides expanded. Compare the
exponents n− kj + ki on the left with the exponents n− dj + di on the right. The induction
hypothesis implies that n− kj + ki = n− dj + di if each of i and j is in

T = {0, 1, . . . , t− 1} ∪ {r, r − 1, . . . , r − t + 1}.

Eliminate the terms xn−kj+ki on the left and the terms xn−dj+di on the right for such i and
j. Consider the uncanceled terms in (2). Denote the remaining set of exponents n− kj + ki

on the left by L and the remaining set of exponents n− dj + di on the right by R. In other
words,

L = {n− kj + ki : i /∈ T or j /∈ T} and R = {n− dj + di : i /∈ T or j /∈ T}.

By (2), L = R. Consider the least element from each set. For R, we want n − dj + di as
small as possible with at least one of i or j not in T . Given the ordering of the dj’s, this
minimum is achieved by n−dr +dt = dt or n−dr−t +d0 = n−dr−t. Since f(x) is reciprocal,
we deduce that dt = n − dr−t. Thus, dt is the minimal element in R and it occurs as an
exponent at least twice on the right-hand side of (2). In fact, since n−dr +dt increases if the
subscript t is replaced with a larger subscript and since n−dr−t+d0 increases if the subscript
r − t is replaced with a smaller subscript, we deduce that among the uncanceled terms in
(2) on the right, the exponent dt occurs exactly twice. Similarly, one of n− kr + kt = kt and
n−kr−t +k0 = n−kr−t is the minimal element of L. We do not know that w(x) is reciprocal,
so we cannot immediately deduce kt = n − kr−t. However, the least exponent among the
uncanceled terms in (2) on the left must equal the least exponent among the uncanceled
terms in (2) on the right and both must occur as an exponent an equal number of times on
their respective sides. This can only occur if kt = n− kr−t = dt = n− dr−t. We deduce that
kt = dt and kr−t = dr−t. This completes the induction.

It easily follows now that w(x) = f(x). This is a contradiction. Hence, the lemma
follows.

Lemma 2 implies that if our input f(x) ∈ S is reciprocal, then there is no need to do
further work to determine the irreducibility of the non-reciprocal part of f(x). In this case,
the non-reciprocal part of f(x) is 1. As noted earlier, 1 is neither reducible nor irreducible
and so the non-reciprocal part of f(x) is not irreducible. Also, note that the converse of
Lemma 2 holds as well. In other words, if f(x) is not divisible by a non-reciprocal polynomial
(that is if the non-reciprocal part of f(x) is 1), then f(x) is reciprocal. This follows since a
product of reciprocal polynomials is reciprocal.

3 The Factoring Tree

In the next section, we describe an algorithm for determining whether the non-reciprocal
part of a given polynomial f(x) ∈ S is irreducible. The idea behind the algorithm is to
determine, from a given f(x) ∈ Sr, all possible w(x) ∈ Sr for which (2) holds. We do this by
constructing a tree whose nodes (or vertices) are pairs (A, B) with A being a list of exponents

3

kj appearing in such a w(x) and B being a list of exponents n− kj appearing in w̃(x).1 We
refer to such a tree as the factoring tree T associated with the given polynomial f(x). We
describe next how T is constructed (and, hence, make more explicit its definition).

Consider f(x) and w(x) of the form (1) with dr = kr = n. We use(
r∑

i=0

xki

)(
r∑

j=0

xn−kj

)
= w(x)w̃(x) = f(x)f̃(x) =

(
r∑

i=0

xdi

)(
r∑

j=0

xn−dj

)
(3)

to determine possible values of A and B for the node (A, B). Observe that since f(x) is a
fixed given polynomial, the right-hand side of (3) is known. We are seeking then values for
kj which, when substituted into the left-hand side of (3), produce the known exponents on
the right-hand side of (3).

Initially, we introduce some simplifications. An exponent e appears on the right or left of
(3) if and only if the exponent 2n−e does as well. Also, the exponent n occurs on both sides
of (3) with multiplicity r + 1. Thus, we simply need to equate the exponents < n together
with their multiplicities on each side of (3). If we can find kj for which these exponents
agree, then (3) will be satisfied.

At the outset the coefficients k0 = 0 and kr = n are known. Label the first node of
the factoring tree ([0], [0]) (since k0 = 0, the least exponent appearing in w(x) is 0; since
kr = n, the least exponent appearing in w̃(x) is n − kr = 0). This node then contains the
known information about k0 and kr. In general, the nodes will be of the form (A, B) where
A = [k0, k1, . . . , ki] and B = [n−kr, n−kr−1, . . . , n−kj] for some i ≥ 0 and j ≥ 0 with i < j.
Here, the quantities k0, k1, . . . , ki and kr, kr−1, . . . , kj represent numbers being considered for
the corresponding exponents in w(x). Observe that if i = j − 1, then w(x) is completely
determined. To create the next nodes in the tree, put k0, k1, . . . , ki and kr, kr−1, . . . , kj into
(3), expand the left-hand side, and cancel any terms where the exponents agree with the
right-hand side. For example, beginning with ([0], [0]) (i.e., k0 = 0 and kr = n), there are
only four exponents on the left-hand side (including multiplicity) that do not involve some
unknown, so those four exponents are what we cancel from both sides of the equation. We
look at the smallest positive exponent that still occurs on the right; call it α. The minimal
exponent remaining on the left-hand side must equal α. This minimal exponent will be of
the form ku + n− kv where at least one of ku and kv is an unknown. In other words, either
i < u < j or i < v < j. In the case that i < u < j, the minimum value of ku + n − kv is
obtained by taking v = r and u = i + 1. In the case that i < v < j, we obtain the minimum
value of ku + n − kv by taking u = 0 and v = j − 1. Thus, we branch off into two new
possibilities, each of which determines exactly one more exponent in w(x) than the original
node. In the first case ki+1 = α and in the second case n − kj−1 = α. Thus, the two new
nodes are

([k0, k1, . . . , ki, α], [n− kr, n− kr−1, . . . , n− kj])

and
([k0, k1, . . . , ki], [n− kr, n− kr−1, . . . , n− kj, α]).

1Since a 0,1-polynomial is uniquely determined by the exponents that appear in the polynomial, it is
convenient to express a 0,1-polynomial as a list of these exponents.

4

After r−1 branchings from the initial node ([0], [0]), w(x) will necessarily be associated with
the values of kj determined by one of the endnodes from the last branching of the factoring
tree T . There are no more than 2r−1 endnodes corresponding to no more than 2r−1 possible
values of w(x). Our construction of the factoring tree can be summarized as follows.

Algorithm T (Construct Factoring Tree): Given f(x) =
∑r

j=0 xdj ∈ S with 0 = d0 < d1 <
d2 < · · · < dr−1 < dr = n, construct the factoring tree associated with f(x).

Step T1. Initialize. Compute the ordered list E of r(r+1)/2 increasing exponents n−dj+di

where 0 ≤ i < j ≤ r (appearing on the right-hand side of (3)). Delete the number 0
from this list (the exponent n− dr + d0).

Step T2. Set first node. Set the value of the first node to be ([0], [0]). Set an exponent list
E([0], [0]) associated with the node ([0], [0]) to be E (defined in Step T1). Set i = 0
and j = r. Set the level ` to be 1.

Step T3. Start to develop nodes at level ` + 1. Begin a loop through the nodes at level
`. For each N = ([k0, k1, . . . , ki], [n − kr, n − kr−1, . . . , n − kj]) at the level `, set the
minimal element of E(N) to be α and delete it from the list to form a new list E ′(N)
(remove only one copy of α from E(N) if more than one occurs). Set E ′′(N) = E ′(N).

Step T4. Consider ki+1 = α at node N . Compute α + n − kt for j ≤ t ≤ r. For each
such t in turn, revise E ′(N) by deleting one copy of α + n − kt from list E ′(N) if it
exists. If α + n− kt /∈ E ′(N) for some t, then go to Step T5. Otherwise, add the node
N ′ = ([k0, k1, . . . , ki, α], [n− kr, n− kr−1, . . . , n− kj]) (so that ki+1 = α) to level ` + 1,
and set E(N ′) = E ′(N).

Step T5. Consider n − kj−1 = α at node N . Compute α + kt for 0 ≤ t ≤ i. For each
such t in turn, revise E ′′(N) by deleting one copy of α + kt from list E ′′(N) if it
exists. If α + kt /∈ E ′′(N) for some t, then go to Step T6. Otherwise, add the node
N ′′ = ([k0, k1, . . . , ki], [n − kr, n − kr−1, . . . , n − kj, α]) (so that n − kj−1 = α) to level
` + 1 and set E(N ′′) = E ′′(N).

Step T6. Check if level is finished. If there are more nodes to consider at the current level,
then continue with Step T3. Otherwise, check if the current level is r − 1. If so, the
nodes on level r have just been created and the factoring tree is complete; stop. If not,
check if there exist any nodes at the next level. If there are no nodes on level ` + 1 the
factoring tree is complete with no endnodes at level r; stop. Otherwise, increment the
level ` by 1 and begin the loop at Step T3 for the new level.

Before continuing, we discuss the running time of Algorithm T. For each i and j with
0 ≤ i < j ≤ r, computing n − dj + di takes � log n bit operations so the elements of E
can be computed in � r2 log n bit operations. Ensuring that the elements in E are ordered
increases the time estimate by a factor of � log r. Hence the total time in Step T1 is
� r2 log r log n. A bound on the number of bits occupied by the list E is � r2 log n. It
follows that Step T2 requires at most � r2 log n bit operations. The factoring tree contains
one node at the first level, and at each subsequent level the number of nodes at most doubles

5

(from Steps T4 and T5) so that the number of nodes at level ` does not exceed 2`−1. Suppose
we are at level ` ≥ 1. In Steps T3-T5, each new node N created in level ` + 1 is assigned
an increasing exponent list consisting of less than |E| � r2 elements. Each element in each
exponent list is no larger than n. Because the exponent list is kept in increasing order, the
least element in a given exponent list is always the first element. Since there are ≤ 2`−1

nodes at level `, we deduce that Step T3 takes � 2` log n bit operations performed at level
`. Computing the r − j + 1 numbers α + n − kt in Step T4 takes at most � r log n bit
operations. Also, exploiting the fact that the elements in E ′(N) are ordered, the number
of bit operations for determining whether a given α + n − kt is in E ′(N) (and deleting it
if it is) is � log |E ′(N)| log n � log r log n. Forming N ′ and E(N ′) then requires at most
� r log r log n bit operations. Since this is done for each node N at level `, the amount of
time spent on level ` in Step T4 is � 2`r log r log n. Similarly, Step T5 requires running time
� 2`r log r log n. Step T6 only requires � log r � log n bit operations. We deduce that the
running time for Algorithm T is

�
r−1∑
`=1

2`r log r log n � 2rr log r log n.

4 A Proof of the Theorem

We are now ready to describe an algorithm for determining if the non-reciprocal part of a
given polynomial is irreducible.

Algorithm NR (Determine Irreducibility of the Non-Reciprocal Part): Given the polyno-
mial f(x) =

∑r
j=0 xdj ∈ S with d0 = 0 < d1 < d2 < · · · < dr−1 < dr = n, determine if

the non-reciprocal part of f(x) is irreducible.

Step NR1. Check if f(x) is reciprocal. Check if di = n− dr−i for every integer i ∈ [0, r/2].
If so, stop and output the non-reciprocal part of f(x) is 1 and therefore not irreducible.

Step NR2. Construct the factoring tree. Construct the factoring tree T (using Algorithm
T) associated with f(x) having at most 2r − 1 total nodes and at most 2r−1 endnodes.

Step NR3. Check polynomials associated with the endnodes. If there are no endnodes
on level r of the factoring tree or if each endnode on level r corresponds to either
w(x) = f(x) or w(x) = f̃(x), then the algorithm terminates with a message that the
non-reciprocal part of f(x) is irreducible. Otherwise, select an endnode on level r that
corresponds to a polynomial w(x) such that w(x) 6= f(x) and w(x) 6= f̃(x) and termi-
nate the algorithm by reporting that the non-reciprocal part of f(x) is reducible and
that w(x) is a polynomial with the property that “gcd(f(x), w(x))” is a factor of f(x).

We explain the correctness of the algorithm. If di = n−dr−i for every integer i ∈ [0, r/2],
then the input polynomial f(x) is reciprocal. It follows from Lemma 2 that the non-reciprocal
part of f(x) is 1 and not irreducible. If di 6= n − dr−i for some integer i ∈ [0, r/2], then
f(x) is not reciprocal and, hence, f(x) has a non-reciprocal factor of degree at least 1. By

6

the construction of the factoring tree T , if w(x) ∈ Sr and (2) holds, then the exponents
kj of w(x) are determined by one of the endnodes at level r of T . By Lemma 1, if some
w(x) formed from such an endnode satisfies w(x) 6= f(x) and w(x) 6= f̃(x), then the non-
reciprocal part of f(x) is reducible. Hence, in this case, the non-reciprocal part of f(x) is
not irreducible. If no w(x) formed from the endnodes at level r of T satisfies w(x) 6= f(x)
and w(x) 6= f̃(x), then Lemma 2 implies that the non-reciprocal part of f(x) is not reducible
and, hence, is irreducible. This justifies the algorithm.

To complete the proof, the running time of the algorithm will be shown to be �
2rr log r log n. In Step NR1, we check for each i ∈ [0, r/2] whether di = n − dr−i. Each
such check requires at most � log n bit operations, so that the time spent in Step NR1 is
� r log n. As indicated at the end of the previous section, the running time for Step NR2 is
� 2rr log r log n. There are at most 2r−1 nodes at level r of the factoring tree. For each such
node, constructing w(x) =

∑r
j=0 xkj takes on the order of � r log n bit operations. For each

such w(x), the checks to see if w(x) 6= f(x) and w(x) 6= f̃(x) can be completed by comparing
sorted exponent lists; these comparisons can be performed in � r log r log n bit operations.
Hence, Step NR3 takes at most � 2rr log r log n bit operations. Theorem 1 follows.

References

[1] M. Filaseta, On the factorization of polynomials with small Euclidean norm, Number
theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 143–
163.

7

