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Nonlinear piecewise polynomial
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Abstract

We study nonlinear n-term approximation in L,(R?) (0 < p < oo) from Courant
elements or (discontinuous) piecewise polynomials generated by multilevel nested tri-
angulations of R? which allow arbitrarily sharp angles. To characterize the rate of
approximation we introduce and develop three families of smoothness spaces gener-
ated by multilevel nested triangulations. We call them B-spaces because they can be
viewed as generalizations of Besov spaces. We use the B-spaces to prove Jackson and
Bernstein estimates for n-term piecewise polynomial approximation and consequently
characterize the corresponding approximation spaces by interpolation. We also develop
methods for n-term piecewise polynomial approximation which capture the rates of the
best approximation.

1 Introduction

Nonlinear approximation from piecewise polynomials and splines is a central theme in nonlin-
ear approximation theory. The ultimate problem is to characterize the rate of approximation
in terms of certain smoothness conditions. In the univariate case and in the regular case
in d dimensions (d > 1), this problem has found a completely satisfactory solution involv-
ing a certain class of Besov spaces and the machinery of Jackson-Bernstein estimates and
interpolation (see [P1], [DJP], [DPY], and also [BI] and [D]).

Our goal in this article is to study nonlinear approximation from piecewise polynomials
over triangulations consisting of n pieces. The difficulty of this problem stems from the
highly nonlinear nature of piecewise polynomials in dimensions d > 1. For instance, if S
and S, are two piecewise polynomials over two distinct triangulations of [0, 1]? consisting of
n pieces each, then, in general, S; + S, is a piecewise polynomial over more than n? triangles
(in the univariate case, the number of pieces is at most 2n). This makes the idea of using
a single smoothness space scale (like Besov spaces) and the recipe of proving Jackson and
Bernstein estimates, and interpolation (like in the univariate case) hopeless.

In this article, we take a different approach to this problem. First of all, we modify
the problem by considering nonlinear n-term approximation from piecewise polynomials
generated by multilevel nested triangulations of R?. We consider two types of such n-
term approximation: (a) from Courant elements (continuous piecewise linear elements) and
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(b) from (discontinuous) piecewise polynomials over triangles. More precisely, we consider
nested triangulations {7y, }:mez such that each level Ty, is a partition of R? and a refinement of
the previous level 7,,_1, and define 7 := J,,,c; Trn- Each nested triangulation 7 generates a
ladder of spaces --- C S 1 C S C &) C --- (Multiresolution Analysis) consisting of piecewise
polynomials of a certain degree over the corresponding levels. In the case of continuous
piecewise linear functions, S,, (m € Z) is spanned by Courant elements ¢y supported on
cells 6 at the m-th level 7,,. We impose some natural mild conditions on the triangulations
in order to prevent them from possible deterioration. At the same time, these conditions
allow the triangles from 7 to have arbitrarily sharp angles and a lot of flexibility. After this
preliminary structuring, we consider nonlinear approximation from n-term piecewise linear
functions of the form S = 2?21 ap;pp; Or piecewise polynomials of degree < k of the form
S = 2?21 1a; + Pa;, where 0; and Aj may come from different levels and locations (1
denotes the characteristic function of A). Note that in both cases we have n-term nonlinear
approximation from redundant systems. So, by introducing such a multilevel structure, we
make the problem somewhat more accessible and simultaneously preserve a great deal of
flexibility.

Although the approximation problem has been tamed to some extent, it still remains
highly nonlinear. It is crystal clear to us that such highly nonlinear approximation cannot
be governed by a single (super) space scale like the Besov spaces in the univariate case. For
instance, it is well known that in presence of functions supported on very “skinny” triangles
or long and narrow regions the Besov spaces are completely unsuitable and hence useless (see
§2.5 below). Thus the second important concept is to quantify the approximation process
by using a family of smoothness spaces, say, B*(7T) depending on the triangulations. We
called them B-spaces. So, the idea is to measure the smoothness of the functions from a
family (library) of space scales { B*(T)} instead of a single smoothness space scale.

The third important issue in our theory is the way we represent the functions. On the
one hand, all Courant elements as well as all polynomials restricted to triangles generated
by a nested triangulation form redundant systems. On the other hand, there are no good
bases available which consist of piecewise polynomials over general triangulations. On top
of this, we want to approximate in L,(R?), 0 < p < oo. There is, however, a good and
well-known means of representing functions by using suitable linear or nonlinear projectors
onto the spaces {S,,} (see §2.3 and §2.4). This is our way of representing the functions.

Our approximation scheme is the following:

(i) For a given function f, find the “right” B-space B*(7;) (that means the “right”
triangulation 7;) in which f exhibits the highest smoothness (equivalently, in which f has
the sparsest representation).

(ii) Find an optimal (or near optimal) representation of f by Courant elements (or piece-
wise polynomials) generated by 7.

(iii) Using this representation of f, run an algorithm for n-term approximation that is
capable of achieving the rate of the best n-term approximation.

The first step in this scheme is the hardest one and we still do not have a satisfac-
tory algorithm for it. There is, however, an effective scalable algorithm for this step in the
case of nonlinear approximation from piecewise polynomials over dyadic partitions, see [P2].
Once the triangulation 7 is determined, the machinery of Jackson and Bernstein estimates
combined with interpolation spaces works perfectly well. As we advance through the imple-



mentation of the above program, we shall see that all technological means exist or can be
created so that a coherent theory can be developed. The lack of good bases for our spaces
is the main obstacle that makes some proofs nonstandard. In particular, the Bernstein in-
equalities are the most troublesome and require fine analysis. We borrowed a few ideas
from [P2], where similar results have been obtained in the much simpler setting of nonlinear
approximation from piecewise polynomials over dyadic boxes.

The B-spaces from this article can be considered as a generalization of Besov spaces (see
§2.5 below). They are also a generalization of the approximation spaces from §3.4 in [O] (see
the references therein).

There are several aspects of our theory that we do not even touch in this article, including
nonlinear piecewise polynomial approximation in the uniform norm (p = 00), interpolation of
B-spaces and other aspects of the harmonic analysis of B-spaces, n-term approximation from
smooth piecewise polynomials, and numerical algorithms for nonlinear piecewise polynomial
approximation and their implementation in practice. Some of them will be tackled in a
forthcoming article.

The outline of the paper is the following. Section 2 is devoted to the definition and de-
velopment of B-spaces. In §2.1, we introduce and study three types of nested triangulations
of R?, which later serve three different purposes. In §2.2, we give all necessary facts about
local polynomial and piecewise linear approximation. In §2.3, we introduce and develop
the first family of B-spaces, the slim B-spaces, which are later utilized for nonlinear n-term
Courant element approximation. In §2.4, we introduce the skinny B-spaces that are needed
for nonlinear n-term approximation from (discontinuous) piecewise polynomial. In §2.5, we
introduce the fat B-spaces which are the most immediate generalization of Besov spaces.
Section 3 contains our main results about nonlinear piecewise polynomial approximation. In
§3.1, we give some general guiding principles and results for nonlinear n-term approximation.
In §3.2, we state and prove our main results concerning n-term Courant element approxima-
tion except for the proof of the Bernstein inequality. In §3.3, we give our results on n-term
piecewise polynomial approximation. Subsection 3.4 is devoted to discussion of some aspects
of our theory and open problems. Section 4 is an appendix. In §4.1, we prove the Bernstein
estimates we need. Subsection 4.2 contains the proofs of some auxiliary results.

Throughout the article, the constants are denoted by ¢, ci,... and they may vary at
every occurrence. The constants usually depend on some parameters that will be sometimes
indicated explicitly. The notation A ~ B means that A and B are equivalent, i.e., there are
two constants c;, co > 0 such that ;A < B < ¢y A. For G C R?, |G| denotes the Lebesgue
measure of G and 1 denotes the characteristic (indicator) function of G. We also use the
following notation: || - [|g :== || - ||z, k2), L == L°(R?) (0 < ¢ < 00), and LL¢ := C(R?).

2 B-spaces over triangulations

In this section, we introduce and explore three collections of smoothness spaces (B-spaces),
which will be needed in §3-4 for the characterization of the rates of nonlinear piecewise
polynomial approximation. The B-spaces can be defined on R? or on any polygonal domain
in R? as well as in R? (d # 2). We shall restrict our attention to the case of B-spaces on RZ.
The B-spaces are defined using multilevel nested triangulations which we discuss below.



2.1 Multilevel triangulations

Here we introduce several types of multilevel nested triangulations.

Weak locally regular (WLR) triangulations. We call 7 = J,,.;, T a weak locally
reqular (WLR) triangulation of R? with levels {7, } ez if the following conditions are fulfilled:

(a) Every level Ty, defines a partition of R*, that is, R®* = [J,.7. A and Ty, consists of
closed triangles with disjoint interiors.

(b) The levels {7 }mez of T are nested, i.e., 7,41 is a refinement of 7.

(c) Each triangle A € 7, (m € Z) has at least two and at most M children (subtriangles)
in 7,11, where My > 2 is a constant.

(d) For any compact K C R? and any fixed m € Z, there is a finite collection of triangles
from 7, which covers K.

(e) There exist constants 0 < r < p <1 (r < 3) such that for each A € Ty, (m € Z) and
any child A e Tm—l—l of A

rlAl < |AY < plA]. (2.1)

We denote by V,, and E,, the sets of all vertices and edges of triangles in 7,,, respectively.
We also set V := V(T) := U,cz Vi and E := E(T) := U, ez Em-

Locally regular (LR) triangulations. We call 7 = (J,,c;, T a locally regular (LR)
triangulation of R? if T is a WLR-triangulation of R? and satisfies the following additional
conditions:

(f) No hanging vertices (NHV) condition: No vertex of any triangle A € 7T, lies in the
interior of an edge of another triangle from 7,,,.

(g) The valence N, of each vertex v of any triangle A € 7, (the number of the triangles
from 7, which share v as a vertex) is at most Ny, where Iy is a constant.

(h) There exists a constant 0 < § < 1 independent of m such that for any A’ A" € Ty,
(m € Z) with a common edge

§<|A'/|A" <6t (2.2)

For v € V,, (m € Z), we denote by 6, := 0,(T) the cell associated with v, i.e., 8, is the
union of all triangles A € 7, which have v as a common vertex. We denote by 0, := ©,,(T)
the set of all cells generated by 7, and set © := O(T) := |U,,cz, Om-

Strong locally regular (SLR) triangulations. We call T = |J,,c;, T @ strong locally
reqular (SLR) triangulation of R? if T is an LR-triangulation of R?* and satisfies the following
additional condition:

(i) Affine transform angle condition (ATA-condition): There exists a constant 5 = 3(T),
0 < 3 < /3, such that if Ag € T,,, m € Z, and A : R? — R? is an affine transform that
maps Ay one-to-one onto an equilateral reference triangle, then for every A € 7, which has
at least one common vertex with Ay and for every child A € 7,11 of Ay, we have

min angle (A(A)) > £, (2.3)

where A(A) is the image of A by the affine transform A, and minangle (A’) denotes the
magnitude of the minimal angle of A’.
Obviously, (i) implies (2.2) with some § = 6(5).



Regular (R) triangulations. By definition, 7 = (J,,c; Tm is a regular (R) triangulation
if 7 is an LR-triangulation and 7 satisfies the following condition:

(j) There exists a constant § = (3(7) > 0 such that the minimal angle of each triangle
AeTis>[.

Evidently, every regular triangulation is an SLR-triangulation.

Triangulations on compact polygonal domains in R2. A set £ C R? is said to be a
compact polygonal domain if £ can be represented as the union of a finite set 7y of closed
triangles with disjoint interiors: E = UAE% A. Weak locally regular, locally regular, etc.,
triangulations 7 = ;5 Tm of such domain £ C R? are defined similarly as when £ = R?.
The only essential distinctions are that the levels {Tm}m>0 now are consecutive refinements
of an initial (coarse) level Ty and, if a vertex v € V,, is on the boundary, we should include
in V,,, as many copies of v as its multiplicity.

Remarks. It is a key observation that the collection of all SLR-triangulations with given
(fixed) parameters is invariant under affine transforms. The same is true for similar classes
of LR-triangulations or WLR-triangulations.

Each type of triangulation depends on several parameters which are not completely in-
dependent. For instance, the parameters of an LR-triangulation are M, Ny, r, p, and 6. We
could set, e.g., My = % and p = 1 — r, and eliminate these as parameters, but this would
tend to obscure the actual dependence of the estimates upon given triangulations.

We shall need to know what happens with the levels 7, of a triangulation 7 as m — —oo.

The next lemma answers this question.

Lemma 2.1. For each WLR-triangulation T there exists a finite cover T_o, of R? consisting
of sets with disjoint interiors such that each triangle A € T and all its ancestors are contained
in a set Ao € Tooo. If Agg € T_oo, then Ay must be one of the following: the all of R?, a
half-plane, or an infinite triangle (all points on and between two rays that are not collinear
and have a common beginning). The only possible configurations for T o, are the following:

(a) R? only;

(b) finitely many infinite triangles with a common vertez;

(c) two half-planes;

(d) a half-plane and finitely many infinite triangles which cover the other half-plane and
have a common vertex lying on the boundary between the two half-planes;

(e) two finite families of infinite triangles, each family covering one of two complimentary
half-planes, and such that all triangles from the same family have a common vertex lying on
the boundary between the two half-planes.

Moreover, if T satisfies the NHV-condition, then (a) and (b) are the only possible con-
figurations for T_.

Proof. Let A € 7, for some m € Z. Then there exist unique triangles {A;};<m, A; € 75,
such that A =: A,, C A1 C ---. We let Ay = Ujgm Aj. Clearly, if A", A" € T then
either AL = A” or A and A’ have disjoint interiors. To find out which subsets of R? can
be realized as A, we order the vertices of the triangles {A;};<,, in a sequence {vg}. If {v;}
does not have limit points we consider two cases. First, if for every A; there exists i < j
such that A; C A?, then using condition (d) from the definition of WLR-triangulations one
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can easily see that A, is all of R?. Alternatively, if there exists a A;, which is not contained
in A7 for any j < jo, then each A;, j < jo, has an edge lying on a given line /. Since {v}
does not have limit points, those edges grow infinitely in both directions, and therefore the
whole line [ must be contained in A,,. Hence, since A, is always convex, it must be either
a half-plane or a strip. Using that {v;} does not have limit points and condition (d), one
can prove that sup,cn_ dist(z,l) = oo, which shows that A, cannot be a strip.

If the sequence {vy} has a limit point, say zp, then using condition (d) we obtain that
there exists jo < m such that z, is a vertex of all A; with j < jp. From condition (d), it
follows that a vertex can have only finite valence at any given level. This fact readily implies
that {vg} cannot have more than one limit point and also that if {v)} has exactly one limit
point then A, is an infinite triangle.

Simple arguments utilizing condition (d) limit the possible configurations for 7_,, to
those described in the lemma. There are straightforward examples showing that each of
those configurations can be realized. O

Examples of triangulations and refinement schemes. We begin with the description
of a standard refinement scheme that can be used to refine a given triangle A infinitely many
times. In the first step, we select a point on each edge of A and then join each pair of new
points by a line segment. This first step gives us four disjoint triangles, say, Ay, Ao, As, Ay
which become the first generation of triangles (the children of A). In the second step, we
subdivide each A; in the way described in step one and obtain the second generation of
triangles. Proceeding inductively, we subdivide each triangle from a given generation in
the fashion of step one, thus producing the next generation of triangles. Let 7,,(A) denote
the set of all triangles from the m-th generation. Then T (A) := [J;*_, Tm(A) is a nested
triangulation of A.

Now, we describe a standard procedure for constructing triangulations of R%. We first
cover R? by a sequence of growing triangles Ay C A} C Ay C ..., where every A; is a
child of A; 4, and then refine all children of all {A;} using the standard refinement scheme
described above. More precisely, let Ay be any initial triangle. We select a triangle A; so
that Ag is a child of A;. We similarly define Ay D Ay so that A; is a child of Ay, etc. In
this way we obtain a growing sequence of triangles. The only additional condition that we
impose on {A;}, so far, is that R* = [J7°; A;. After having constructed the sequence {A;},
we subdivide the children of each A; (7 =1,2,...) as it was described above. We denote by
{Tn}mez the sets of triangles from each level and by 7 := T, the whole triangulation
of R?. Variety of other refinement schemes can be utilized.

meZ

How fast can the elements of triangles change? We investigate how the elements (JA'],
min angle (A'), and max ¢(A’), the longest edge of A’) of a triangle A’ € T, (m € Z) can
change as A’ moves away from a fixed triangle A" € 7,,, for different types of triangulations
T.

First, we consider the case of an arbitrary weak locally regular triangulation 7.
Clearly, even if T satisfies the NHV-condition of the LR-triangulations, it may happen that
A" A" € T, (m € Z) are two adjacent triangles and at the same time each of the ratios
”ﬁ,,l‘, %, and %ﬂ:éﬁ% is arbitrarily large (or small) independently of the other two.
This is possible because the first common ancestor of A’ and A” may be at an extremely




distant level, or even A’ and A” may not have a common ancestor at all (see Lemma 2.1).
This fact makes the WLR-triangulations unsuitable for continuous piecewise polynomial
approximation.

Figure 1: A skewed cell

Secondly, we consider the case of an arbitrary locally regular triangulation 7. By

definition (see (2.2)), if A, A" € T, and A" and A" have a common edge, then |A'| ~ |A"].
max {(A") d min angle (A')
max £(A'") an min angle (A'")
(or small), see Figure 1. To show that this situation is possible we shall need the following

simple lemma.

However, it may happen that the ratios are uncontrollably large

Lemma 2.2. LetJ! _ . T, n € Z, satisfy the conditions of the WLR-triangulations or LR-
triangulations or SLR-triangulations with some fized parameters. Assume also that level T,
15 refined uniformly by introducing the midpoints on the edges of each A € T, and connecting
them by line segments (see the standard refinement scheme described above). Denote by Ty .1
the set of all triangles obtained from the refinement of T,. Then UZ;:_OO T satisfies the
conditions of the corresponding type of triangulation with exactly the same parameters.

Proof. This lemma is fairly obvious and its proof will be omitted. [

Armed with this lemma, one can easily construct the claimed example. We shall give only
a sketch of it. We start from a uniform triangulation 7 of R? generated by an equilateral
triangle A (see the examples of triangulations above). Let 7, denote the levels of T for
m < 0. The incomplete triangulation Ufnzfoo T, obviously satisfies the conditions of the
LR-triangulations with any parameters 0 <r < p <1, r < i, p > i. We fix such r and p.
We now refine 7. We choose any two triangles A’, A" € 7, with a common edge, say e. We
may assume that e is horizontal. It is not very hard to see (but it is not obvious) that 7y can
be refined twice so that Ufnzfoo T, satisfies the conditions of the LR-triangulations with the
already selected parameters r and p, and that there are two grandchildren, say, Af, and Af of
A" and A", respectively, with the following properties: (a) A, and A} have a common edge,
say, €2 C e of length ((ey) = 10(¢); (b) |AY] = |AY] = | A'| (= 15]|A"]); (¢) A} is equilateral
and AJ is skewed to the right (or left) at ¢ - £(eq) with € = &(r, p) > 0. More precisely, the
vertex of A, which does not belong to e, is shifted to the right from the midpoint of e, at
distance ¢ - £(ey). We shall call the above an angle sharpening procedure. We next refine 7T
sufficiently many times, by using only midpoints, until we reach a level, say, 7, at which
there exist two great-grandchildren, say, A} and A} of A} and Af, respectively, such that
Al and A have a common edge, |A] | = [A] |, A} is equilateral, A7 is similar to Af, and



most importantly the minimal number of edges from V;, (edges of triangles in 7y,) which
connect an arbitrary vertex of Al or AJ with any vertex of Ay or Ay is sufficiently large
(so, A% and A are located in the middle of Ay UAY). By Lemma 2.2, | J;,__ T, satisfies
the conditions of the LR-triangulations with the already fixed parameters p and r. Since, in
Ts1, AL and Af are surrounded by triangles that are equivalent to Al or Af , we can again
apply our angle sharpening procedure, followed by sufficiently many midpoint refinements,
and keep going on in the same fashion. We use induction to complete the construction of

the claimed example.

Let us consider now an arbitrary strong locally regular triangulation 7. From the
definition of SLR-triangulations, it follows that if A", A" € 7,,, m € Z, and A" and A"
have a common vertex, then |A'| ~ |A”|, minangle (A’) ~ min angle (A"), and max ((A') ~
max ¢(A"). However, this does not mean that 7 is regular or close to regular. It may happen
that some triangles of 7 have arbitrarily small angles, while others are equilateral.
Example of an SLR-triangulation 7" with the property

Auéf%mm angle (A) = 0.

We shall utilize the idea of the construction from the previous example. As above, we assume
that 7 = UE,L:_OO T is an incomplete uniform triangulation generated by an equilateral
triangle Ay. Clearly, 7 satisfies the conditions of the SLR-triangulations for M, = 4 and
an arbitrary 0 < # < 7/3. We fix § and M,. Choose A € 7;. It is readily seen that 7y
can be refined so that Urlnzfoo T, satisfies the conditions of the SLR-triangulations with the
fixed parameters § and My, and there exists at least one child, say, A; € 77 of A such that
min angle (A;) < ¢ - minangle (A) with ¢ = ¢(#) < 1. The next step is to refine 7; several
times by using only midpoints until we obtain a great-grandchild, say, A;, € 75, of Ay which
is sufficiently far from the boundary of A; (in terms of number of edges from V,, needed
to connect it with the boundary). By Lemma 2.2, [ J7!_ T, satisfies the conditions of the
SLR-triangulation with the fixed parameters # and M,. After that, we apply the above angle
sharpening procedure to A;, and then we again refine by midpoints for sufficiently many
levels, etc. Inductively, we obtain the needed triangulation.

We now introduce one more natural condition on triangulations:

Minimal angle condition (MA-condition): There exists a constant J = (7)), 0 <9 < 1,
such that if Ay € T,,, m € Z, then for every A € 7, which has at least one common vertex
with Ay and for every A € 7,1 which is a child of Ay,

min angle (A) < 9!

2.4
~ minangle (A) ~ (24)
Lemma 2.3. If T is an SLR-triangulation, then T satisfies the MA-condition above with
U = J(3). However, the MA-condition is weaker than the ATA-condition.

Proof. Suppose T is an SLR-triangulation and let Ay € 7,,,, m € Z. We may assume that
the largest edge of Ay is of length one. We introduce a coordinate system Oz;z5 so that
the origin O is at the vertex of the sharpest angle of Ay and the largest edge of A lies on
the positive half of the z;-axis. Without loss of generality, we can assume that Ag is in



the upper right quadrant of Ox;xs. We select the equilateral reference triangle Aj to be in
the upper right quadrant of Ox;2, and have one edge coinciding with the longest edge of
Ag. Evidently, both the affine (linear in this case) transform A which maps A, one-to-one

onto A} and its inverse A~ have matrices of the form Zl } . Suppose that the angle
2

1
0
of Af, with vertex at the origin and magnitude of /3 is transformed by A~! into an angle
of magnitude v, 0 < v < 7/3. In this setting, routine (but not trivial) calculations show
that A~! transforms any angle of magnitude > 3 into an angle of magnitude > ¢y, where
¢ = ¢(pP) is a positive constant. We skip all details and only note that it suffices to prove
the above fact only for angles with vertex at the origin because the affine transforms map
parallel lines into parallel lines. This result implies that 7 satisfies the MA-condition.

The MA-condition does not imply the ATA-condition because the following configuration
of triangles is possible: Let A;:=[(0,0),(1,0),(¢/2,2v/3/2)], where ¢ > 0 is sufficiently small.
Denote by A, the triangle symmetric to A; with respect to the x;-axis. Further, let A3 and
Ay be the images of A; and Ay after rotation of —27/3 about the origin, and let Aj, and
Ag be the images of A; and A, after rotation of 27/3 about the origin. A triangulation
containing this kind of configuration on one level can be constructed for an arbitrary small ¢
by starting from some level of a uniform triangulation consisting of equilateral triangles and
“sharpening” the angles near a given node in three equiangular directions while refining the
rest of the triangulations uniformly, as in the previous example. Obviously, this configuration
does not violate the MA-condition but due to the presence of sharp angles in different
directions the ATA-condition fails. [

Our next theorem provides estimates for the rate of change of the elements of triangles
from a given level of a triangulation when moving away from a fixed triangle. For these
estimates, we need the following simple lemma.

Lemma 2.4. Suppose T is an LR-triangulation. If A', A" € T,,, m € Z, and A" and A"
can be connected by < 2V intermediate triangles (with common vertices) from Tp,, then there
exist A1, Ao € Tr_ongw With a common vertex such that A" C Ay and A" C As, where Ny is
from condition (g) of LR-triangulations.

Proof. From conditions (c) and (g) on LR-triangualtions (§2.1), it follows that every edge
of a triangle from 7, is subdivided at least once after 2Ny steps of refinement. From this, we
infer that if G C R?, then Q™ (Q™(G)) C Q™ 2N (@), where Q(G) := U{# € ©,: °NG # 0}
(6° denotes the interior of §). Applying this fact v times, we obtain that A” C Qm=2No¥({y}),
where v is an appropriate vertex of A’. Then the existence of A; and Ay follows readily.
O

Theorem 2.5. (a) Let T be an LR-triangulation with parameters 0 < r < p <1 and Ny. If
AA" € Ty m € Z, and A" and A" can be connected by n (n > 1) intermediate triangles
from Tp,, then

L1 A s
aitnTt < A <cn (2.5)

with s := 2Nolog,2 and ¢y := §~No(2)2No,



(b) Let T be an SLR-triangulation with parameter 0 < 3 < w/3. If A", A" € T, m € Z,
and A" and A" can be connected by n (n > 1) intermediate triangles from Tp,, then

o min angle (A')

c,'n < ¢y’ (2.6)

~ minangle (A”)
with t := 4Nylogy5 and ¢z := 9~ *N~! “where Ny := [%”] and ¥ = 9(B) is the constant from
the MA-condition whose existence is established by Lemma 2.3.

Proof. (a) Let v € Z be such that 27! < n < 2”. By Lemma 2.4, there exist A, Ay €
Ton—2N, With a common vertex such that A’ C A and A” C Ay. By (2.2), 6V < |A|/]Ay] <
6N and by (2.1), it follows that |A'| < p*M¥|A;| and |A”| > r?No¥|A,]. Combining the
above estimates, we obtain (2.5).

(b) The proof of (2.6) is quite similar to the proof of (2.5) and uses Lemma 2.3. We omit
it. O

2.2 Local polynomial and piecewise linear approximation

We let 11 denote the set of all algebraic polynomials in two variables of total degree < k.
For a function f € L,(G), G CR?, 0 < ¢ < oo, and k > 1, we denote by E(f,G), the error
of L,(G)-approximation to f from I, i.e.,

Ey(f,G)q:= inf ||f = P|lL ) (2.7)

PEHk

Also, we denote by wy(f, G), the k-th modulus of smoothness of f on G:

wi(f, G)g = sup AL, )Ly, (2.8)

heR?

where AR(f, ) = Ak (f,2,G) = Y5 (—1)k* (’;)f(x + jh) if the line segment [z, z + kh] is

=0
enirely contained in G and AF(f, x) := 0 otherwise.
For an LR-triangulation 7 and A € 7, (m € Z), we denote by Qa the union of all
triangles A" € 7, which have a common vertex with A, i.e.,

Qpa =U{A" € T, : A'n A # 0} (2.9)

Also, we define
Q% =U{A" € T, : A'NQa # 0}, (2.10)

Lemma 2.6. [Whitney] Suppose G := A or G := Qn for some triangle A € T, (m € Z),
where T is an SLR-triangulation of R%. If f € L,(G), 0 < ¢ < o0, and k > 1, then

Ep(f,G)q < cwr(f,G)q (2.11)

with ¢ = ¢(q, k) or ¢ = ¢(q, k, B), where 3 is the parameter of T from (2.3).

For the proof of this lemma, see the appendix (§4.2).
We shall often use the following lemma, which establishes relations between different
norms of polynomials over different sets.
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Lemma 2.7. Let P lly, k> 1, and 0 < p,q < .
(a) Let A" C A be two triangles such that |A| < ¢i|A'|. Then

1P|z, a) < cllP[lL,an (2.12)

with ¢ = ¢(p, k, c1).
(b) Suppose A" C A are two triangles such that |A'] < p|A] with 0 < p < 1 or A" = ).
Then
1P|z, a) < ellPllz,anan & APV Pl a\an (2.13)

with constants depending only on p, q, k, and p.
(¢) If T is an LR-triangulation and A € T, then

1Pl 00) 2 Q877U P Ly0s) = JAIPY| Pl 04) (2.14)

with constants of equivalence depending only on p, q, k, Ny, and §.
(d) If P € I1y and A = [x1, x9,x3] C R? is a triangle, then

~ 1/q .
1Pl o) 1A ma |P(a)], (215)

with constants of equivalence depending only on q.

Proof. Estimates (2.12)-(2.15) are invariant under affine transforms and hence they follow
from the case when A is an equilateral triangle with |A| = 1 by change of variables. The
details will be omitted. [

We find useful the concept of near best approximation which we borrowed from [DP].
A polynomial P € Il is said to be a near best L,(A)-approximation to f from II; with
constant A if

If = Pallz,a) < AEL(f, A)g. (2.16)

Note that if ¢ > 1, then a near best L,(A)-approximation Pn = Pa(f) can be easily realized
by a linear projector.

Lemma 2.8. Suppose 0 < ¢ < p and P is a near best L,(A)-approzimation to f € L,(A)
from Ily. Then Pa is a near best L,(A)-approzimation to f.

Proof. See Lemma 3.2 from [DP] and also the proof of Lemma 2.12 in the appendix (§4.2).
]

We next introduce some necessary notation. Let 7 = |,y Tm be a WLR-triangulation.
For m € Z and k > 1, we let 8% := S*(7,,) denote the set of all piecewise polynomial
functions over 7, of degree < k, ie., S € Sk if S = ZAeTm 1A - Pa, where 1, is the
characteristic function of A and Pa € 11.

Now, let 7 = J,,cz, Tm be an LR-triangulation. For v € V,,, (m € Z), we let 6, denote
the cell in T, associated with v (§2.1). The NHV-condition on LR-triangulations (§2.1)
guarantees the existence of a Courant element ¢y, supported on #, which is a continuous
piecewise linear function that takes the value one at v.

11



For m € Z, we denote by S, := S(Ty,) the set of all continuous piecewise linear functions
over T,,, i.e., Sy = S§2 N C(R?). From the NHV-condition on 7, each S € S,, has the
representation: S =73 ., S(v)py, and hence S, = span{yy: 0 € O,,}.

Throughout the rest of this section, we assume that 7 is an LR-triangulation of R? with
parameters My, Ny, r, p, and ¢ (see §2.1).

Lemma 2.9. Suppose {ag}oco,,, m € Z, is a sequence of real numbers and S := ) 5o agpy.
Let also 0 < ¢ < co. Then, for every A € 7T,,, we have

1S ~ (X llaoealt)” (2.17)

and, hence,
1/q
111z, = (D llaswollt) (2.18)
€O,

with constants of equivalence depending only on q, Ny, and 0. In the case ¢ = oo, the {,-norm
above 1s replaced by the sup-norm.

Proof. Clearly, S(vg) = ay (vg is the “central point” of ) and |¢yl|, =~ |0|'/9. Therefore,
using Lemma 2.7, (d) and the regularity of 7, we have, for A € T,

1Sz a) =~ |A|1/‘1 max |ap| & max |a9||0|1/q

0€O,,: ACH 0O, : ACH
1/q
~ (Y ||a,0<p9||g) . O
0€©,,: ACH

Quasi-interpolant. We shall utilize the following well-known quasi-interpolant for con-
structing projectors into spaces of continuous piecewise linear functions:

Qu(f) = Qu(f, T) =D _ (f,@o)vo, (2.19)

€O,

where (f, g) := [ fg and {@g} are duals of {y} defined by

D = E Ia - Any,
AE€Tm, ACH

with Aa g the linear polynomial which assumes values at vy (the “central point” of 6)

_9
Nog B3]

and at the other two vertices of A (here N,, is the valence of vy). Evidently,

__3
Nyg A
(pg, Do) = Oggr, 0,0 € O,.

It is easily seen that the quasi-interpolant (), satisfies the following:
(a) Qum : LY — Sy, is a linear operator. .
(b) Q. is a projector into S, i.e., @, (S) = S for S € S,,,.
Other properties will be given in the following.

12



Lemma 2.10. If [ € Llno", 1<n< o0, and A €T, m € Z, then

1Qm (F)lLya) < ellfllLyea)
with ¢ = ¢(n, Ny, 9).
Proof. It is readily seen that
(s @) < N f ol @olly < ell Il @l ollool€1 < cl6]H7|£|1, 0

and |||, < /0|7, where 1/5' := 1 — 1/n. Therefore, for every A € T,,,

1Qu( Nz, < D K @lllwolly e D 1fllye < ellfllz,@a)- O

0€®m,0CQA 0€®m70CQA

Lemma 2.11. If S € 8%, 0<n < oo, and A € T,,, m € Z, then

1@ ()2, a) < Sz, 0a)
with ¢ = ¢(n, Ny, 9).

Proof. If n > 1, then the estimate follows by Lemma 2.10. Let 0 < n < 1. We use the
estimate |@g|l, < c|0]*/", properties of LR-triangulations (§2.1), and Lemma 2.7, (b), to
obtain

1Qu(Slzya < ¢ Y (S @alllealls < D N@olloollS Izl

0€0,,,0C2A 0€0,,,0C2A
4l 4l
< ¢ Yo SILe <c Y AT IS Ly
0€O,,,0COA A'ETm, A'CQA
< c Y 1Shewan <elSln,@y. O

A'€Tm, A'COA

Local piecewise linear approximation. For a given f € Llnoc, n>0,and A €T, mEZ
(recall that 7 is an LR-triangulation), we define the error of L,-approximation to f on Qa
from S,, by .

Sa(f)y = SalF Ty = inf 1f = Slu,a) (2:20)

Similarly as in the polynomial case, we say that S eS8, is a near best L,-approximation
to f on QA from §,, with a constant A if

I1f = SllLy@a) < ASA(f)y-

Lemma 2.12. Suppose 0 < pp < n and S is a near best L,-approzimation to f € L,(Qa) on
Qa from S,,. Then S is a near best Ly-approzimation to f on Qa from S,.

13



The proof of this lemma is similar to the proof of Lemma 3.2 of [DP] (see also Lemma 2.8
above). For completeness, we give it in the appendix (§4.2).

The quasi-interpolant (defined above) is a simple and useful tool for constructing projec-
tors into S, with good localization properties. For n > 0 and f € Ly°, let Pay = Pay(f)
be a near best L,(A)-approximation to f from II,. Note that if n > 1, then P ,/(-) can be
realized as a linear projector into the space of linear polynomials restricted on A. However,
P ,(+) is nonlinear if n < 1. Let

Sma(f) =Y La-Pay(f) forme.

A€Tm

Clearly, Sy, ,(f) € 82 and S,,,(S) = S for every S € S2,. We set

Tm,?](f) = Tm,n(fa T) = Qm(sm,n(f)) (2'21)

This construction is well-known and is needed when working in L, with 0 <7 < 1. Evidently,
Tonn(f) € Sy and 1), ,,(S) = S for S € S,,.

The next lemma establishes the good local approximation properties of the operators (),
and 7;,.

Lemma 2.13. (a) If f € L)>°, 1 <1 < oo, and A € T, m >0, then

1f = Qm(NlL,a) £ ¢Salf)y- (2.22)
(b) IffELbOC,0<77§oo, and A € Ty, m >0, then
1f = Tnn(F)llLa) < eSalf)n- (2.23)

The constants above depend only on 1 and the parameters of T.

Proof. To show that (2.23) holds, we choose Sa € S, for which Sa(f), is attained, i.e.,
|f = Sallz,@a) = Salf)y. Then

1f =Tn( O,y = If = Qu(Sm(f)llL,a)

If = Sa+Sa = Qu(Sm( )L, a)

cdlf = Sallz,a) + cllQm(Sa = Sm()L,a)
cSalf)y + cllSa = Sm(H)llLyoa)

cSalf)y +ellf = Sallzy@a) + €llf = Sm(H)llz,@a)
CSA(f)n;

where we used that @,,(Sa) = Sa on A, Lemma 2.11, and the obvious inequality ||f —

S(Flleo@ay < If = Sallz,@a)- Thus (2.23) is proved.
The proof of (2.22) is similar and will be omitted. [

VAN VAR VAN VAN
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Lemma 2.14. (a) If f € L, 1 <1 < oo, then for A e T
1 = Qu(F)|l1,a) — 0 as m — . (2.24)
(b) If f € LY, 0 < < o0, then for A€ T
1f = T (Pl 2ya) — 0 as m — oo, (2.25)

Proof. Using (2.1) and simple geometric arguments, one can show that if e is an edge of a
descendant of A, and e does not emanate from a vertex of A, then |e| < (1 —r)diam(A). By
condition (g) on LR-triangulations (§2.1), at any given level there can be at most 3N, edges
starting from the vertices of A. From conditions (c¢) and (g), it follows that every edge e is
subdivided within less than 2N, levels after its first appearance, and by (2.1) each of the
pieces of e has length < (1 — r)diam(A). Combining the above observations, we conclude
that after less than 6N levels of refinement all edges of descendants of A will have lengths
< (1 —r)diam(A). From this we derive that

max{diam(A’) : A" € T,,, A" C Qa} = 0 as m — oc.

Hence, ||f — Spn(f)||lz, @) — 0 and [|f — gm(fN)HLn(QA) — 0 as m — oo, where S,,(f) is a
(the) best L,-approximation to f on Q2 from S,,. Therefore,

1f = T (H)lzya) el f = Su(Hllzya) + ellQu(Su(f) = Sul(Nlr,a
el f = Su(Fllz,a) + ellSu(f) = Sl )IIL (2a)
cllf - S’m(f)lan(nA) +ellf = Sm(Nlz,@a

VAN VAN VAN

as m — 0o, where we used that Qm(gA) = Sx on A and Lemma 2.11. Thus (2.25) is proved.
The proof of (2.24) is similar. O

2.3 Slim B-spaces

In this section, we introduce a collection of smoothness spaces (B-spaces) which we later
used for characterization of nonlinear n-term Courant element approximation. Throughout
the section, we assume that 7 is an arbitrary locally regular triangulation of R? (see §2.1).
The B-spaces will depend on 7. This dependence may or may not be indicated explicitly.

Definition of slim B-spaces via local approximation. We define the slim B-space
By (T), «>0,0<p,q < o0, as the set of all f € L,(R?) such that

s =+ (S 2 sag) ) < 20)

mez AeT,2—m<|A|<2—m+1

where SA(f)y := Sa(f, T),, for A € T,,, denotes the error of L,-approximation to f on Qa
from S, (see (2.20)), and the £,-norm is replaced by the sup-norm if ¢ = oo

We shall further study only a specific class of slim B-spaces which are exactly the smooth-
ness spaces needed for nonlinear Courant L,-approximation (see §3.2). We assume that
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0 <p<ooand a> 0, and define 7 by the identity 1/7 := o+ 1/p. We shall need the slim
B-space B% := B*(T), which is a slightly modified version of the space B (7) from above.
We define BY(T) as the set of all functions f € L,(R?) (in place of f € L,(R?)) such that

17llse = 1o 2= (3 (A1 Sa(n))) " < ov. (2.27)

AeT

Remark. In the above definition, the condition f € L,(R?) is not restrictive since B*(7)
is embedded in L, (see Theorems 2.15-2.16 below). Its only role is to eliminate a possible
component S, of f, which is a piecewise polynomial on infinite triangles Ay, € T o (see
Lemma 2.1). This condition can be replaced, e.g., by the condition: [{z : |f(z)| > s}| < 00
for each s > 0 (see Theorem 2.15 below). It also can be replaced by the condition f € L, (R?)
as in the definition of B (7) (see (2.26)), which is a little bit restrictive since the spaces
L,(R*) and L,(R?) (7 # p) are not embedded into one another. However, this condition
is not too restrictive since our approximation tool in §3.2 consists of compactly supported
piecewise polynomials and hence all theorems from §3.2 would hold if it is used.

Evidently,
1f +9ll5e < 1fl5e +lgll5e, 7 = min{r,1}.
Also, if ||f||pe = 0, then SA(f), = 0 for each A € 7. From this, it readily follows that f
coincides with a linear polynomial on each A, € T_,. Therefore, using that f € L,, we
infer that f = 0 a.e. Thus, for a fixed LR-triangulation 7T, || - ||ga¢7) is a norm if 7 > 1 and
a quasi-norm if 7 < 1. In the following “norm” will stand for “norm” or “quasi-norm”.

We next introduce other equivalent norms in B¢(7") which will enable us to operate more
freely with B-spaces. For f € Li*(R?), > 0, we define

1/7
Nsy(f) := Nsy(f, T) = ( Z(|A|fa+1/rfl/nSA(f)n)r)
AeT
N 1 1/7
= (S qaprmsan,) )" (2.28)
AeT
where we used that 1/7 = o+ 1/p. Clearly, N5 -(f) = || f|| Be-
Atomic decomposition of B*(T). For f € L,(R?), we define
) 1/7
No(f) = Na(f,T)i= il (3201 lleoeoll)7) (2.29)
_ZGGG)CQSOG 0cO

where the infimum is taken over all representations f = >, o copp With convergence in
L,(A) for each A € T. (The existence of such representations of f follows by Lemma 2.14.)
As will be seen in the proof of Theorem 2.15 below

> (6 llcopall)” < oo implies | Sl )| < o
0co P

co
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and hence Y, o [copo(-)| converges a.e. and unconditionally in L,(R*). Therefore, the order
of the terms in the series above is not essential. By Lemma 2.7, it follows that

Na(p nt (X leogall) (2:30)

f:Z(ae@CGSOG 9co
Definition of norms in B%(7T) via projectors. We define, for m € Z,

Gm = Qm — Q-1 and by = Tm,n - Tm_l’”' (2'31)

For a given function f € L(R*), 1 < 1 < oo, clearly gn(f) € S, and we define uniquely
the sequence {by(f)}oco,, (m € Z) from the expression

g (f) = bo(f)o- (2.32)

€O,

Also, if f € Li>°(R?), 0 < n < oo, then t,,(f) € Sy In this case, we define {by,(f)}sco,,
by

tua () = Y o (f) 0. (2.33)
€O,
Evidently, {bs(-)} and {by,(-)} with » > 1 are linear functionals, while {by,(-)} are nonlinear
if0<n<l1.
We define y
Noa(F) = Noa(£.T) 1= ( 3001 lba (Fepall:)7) (2.34)
9co

where by . (f) := by(f) are from (2.32) (or from (2.33)) if 7 > 1 and by . (f) are from (2.33) if
7 < 1. More generally, we define

1/7
Noa(F) = Noa(£.T) = ( Do(017 bo,(Heeolla)) (2.35)
e
By Lemma 2.9, we have
1/
Naa(£) = (D 0AM Yl (F)lleyay)) s 0> 1, (2.36)
AeT
/T
Nou(f) =~ (Z(|A|1/p_1/"||tm,n(f)||L,,(A))T)1 , ifo<n<l, (2.37)
AT

and, in both cases,
1/7
Noa() ~ (D loea(Heoll;)
0cO
Our next step is to show that the slim B-space BY(T) is embedded in L,(R?). To do
this, we invoke Theorem 3.3, proved later in §3.1, which is however completely independent
of this section, and can therefore safely be used.

(2.38)
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Theorem 2.15. If [{z : |f(z)| > s}| < oo for each s > 0 and Ng,(f,T) < oo for some
0 <n<oo, then f € L,(R?),

f= Zbg,n(f)(pg absolutely a.e. on R? (2.39)

0cO

and unconditionally in L,(R?), and

171 < | X 1b0a(eo]| < eNau(h) (2.40)

with ¢ depending only on «, p, n, and the parameters of T .

Remark. Observe that the condition: [{x : |f(z)] > s}| < oo for each s > 0 is satisfied if
f € L,(R*) for an arbitrary ¢ < oco.

Proof. Let us consider the case when Ng,(f) is defined via the coefficients by, (f) from
(2.33). We introduce the following abbreviated notation: T, := T}, ,(f), tm = tmy(f),
by = b (), and N(f) = (Xgeo Ibopall5) /7. Note that No(f) & N(F), by (2:38). Since
T is an LR-triangulation, the sequence {®,,} := {bypp}oco satisfies requirements (i)-(ii) of
the general embedding Theorem 3.3 below. Therefore, >, ¢ [bos(-)| < 0o a.e. on R* and

|3 teal]| < envis 2.1
Hence

Z tj(-)] <oco ae. on R’ (2.42)
and

H Z |tj(')|Hp < eN(f) < <. (2.43)

Evidently, (2.39) and (2.41) imply (2.40). Therefore, it suffices to prove that (2.39) holds.
To this end, we first show that

f=Ty+ th absolutely a.e. on R?. (2.44)
j=1

Set g := Ty + > ;2 t; pointwise. By (2.42), it follows that g is well defined. Clearly,
9="Tn+ 5 1t ae. for m € Z. Hence, by (2.43),

lo=Tully < || 3 150)I| =0 as m— oo (2.45)
j=m+1

On the other hand, f € L*°(R?) and by Lemma 2.14 we have, for A € T,

Hf — TmHLT,(A) — 0 as m — oo.
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From this and (2.45), it follows that ¢ = f a.e. and hence (2.44) holds.
We shall next prove that for every Ay € T_, (see Lemma 2.1) there exists a unique
linear polynomial Pa_ such that

0
Ty — Pa, = Z t; absolutely a.e. on A. (2.46)

j=—o0

Using Lemma 2.7, we have that for any A € T; (j € Z)

[t5llzwia) < ClA 2 t5ll,a) S A7 Y Nlbogally, < c| A7 N(f). (2.47)
0€0,: ACh

Since T is an LR-regular triangulation, if A C A',; A € Ty, and A’ € T;, then |A| < pF7|A],
where 0 < p < 1 is the parameter of 7 from (2.1). Using this and (2.47), we obtain, for
AeT ke,

k k
S Msllieis) < N(HIAL Y ST g6 < AT N <00 (2.48)

j:—oo j:foo

For A € Ty, we set Pa =T}, —Zf:_w t; pointwise. By (2.42), the series converges absolutely

a.e. and, therefore, Pa is well-defined. Clearly, P =1}, — Z;n:_oo t; for m < k and, hence,
by (2.48),

T — Pallza) < H 3 |tj(.)|HL S S Millsmia) =0 as m— —co.  (249)
j==00 = j=—00

Since all t;’s, j < k, are linear polynomials on A € 7Ty, so is Pn. Moreover, Pa is the
same polynomial for all A € 7 contained in a fixed Ay, € T_o. Indeed, let A", A" € T,
A"V A" C Ay (A" and A" are possibly from different levels). Since Ay is an infinite union
of nested triangles, there exists A € T such that A", A" C A C A,. By (2.49),

HTm — PA'HLOO(A') — 0 and HTm — PAHLOO(A') —0 as m — —oo.

Hence Panr = Pa. Similarly, Pa» = Pa. Therefore, there exists a unique linear polynomial
Pa_, such that (2.46) holds.
Combining (2.44) with (2.46), we obtain

f—Pa, = th absolutely a.e. on Ay, Ay € Too- (2.50)

JEL

Using that > ., t; € L,(R?) and the hypothesis of the theorem, we obtain

{z € As: [Pag (@) > s} < W s [f(2)] > s/2} + [{z: Ith(x)l > s/2}]

< R [f@) > s/2H + (s/2)7F thz

JEZ

< 00,
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for each s > 0. Since A, is an infinite triangle or a half plane or R? and Pa__ is a polynomial,
this is only possible whenever Px_ = 0. Thus (2.39) is established.

The proof of the theorem when Ng,(f) is defined via the coefficients by, (f) := by(f)
from (2.32) is the same and will be omitted. O

Theorem 2.16. For f € BX(T), the norms ||f||se(r), Nsy(f) (0 < n < p), No(f), and
No,(f) (0 < n < p), defined in (2.27)-(2.29) and (2.35) are equivalent with constants of
equivalence depending only on p, «, 1, and the parameters of T .

Proof. By (2.30), (2.38), and Theorem 2.15, it follows that

No(f) < eNoa(f). (2.51)

Clearly, if A € 7, and A’ is the (unique) parent of A in 7, 1, we have

[tmn(F)llLya) < ellf = Tog(Hllz,a) +cllf = Tory(H)llz,an
< Sa(f)y+Saf)y,

where we used (2.23). A similar estimate holds for ||¢,,(f)[z, ), using (2.22). These imply
Naa(f) < eNsy(f)- (2.52)
We next prove that if Ng(f) < oo, then
Ns . (f) <cNg(f) for0<p<p. (2.53)
By Holder’s inequality, it follows that
Nsu(f) < Ns(f), 0<p<T.

Thus it suffices to prove (2.53) only for 7 < pu < p.
Suppose f € L, and Ng(f) < oco. Let f =3, o copp be an arbitrary representation of
f, where the convergence is in L,(A) for every A. Recall that

A=

Noulf) = (DD (AP E8a(0),)7) (2.54)

AeT

where Sa(f), is defined in (2.20). Evidently, Sa(g), = 0 for A € T, if g € S,,, and
Sal9)y < l9llz.a)- Now, fix A € T,, n € Z. Using the above properties of Sa(g), and
Theorem 3.3 with {®,,} := {copp : 0 € ©,0 C Q% } (for the definition of O3, see (2.10)), we
obtain

5 = Sa( Y0 Yam) <[ 20 e

j:n+1 96@]' j:n+1 96@]'
T

o0
| anf<e X lawl;

Jj=n+l0eo;,0Cc0] 0€0,0C0%

(L 1 .
¢ Z |0| (M T)HC@@@HTJ

0€0,0CN%

Lu(Qa)

IN

IN
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where for the latter inequality we used that ||¢gll, =~ |0]'/9, 0 < ¢ < co. Substituting the
above estimate in (2.54), we get

(Lol (i1 -
Nou )" < e d AT 37 105 legpoll;

AeT 0€0,0CON%

< >3 (01AN SR eapall)” (2.55)
A€T 0€0,0C0)
< (01 lleogoll) DT (6l/1ANT

USC) AeT:0CQ3

where we once switched the order of summation. By condition (g) on LR-triangulations
(§2.1), we have, for 6 € O,

#{A € T;: 0 C Q4} < (M),

and by (2.1)-(2.2), |8] < ¢(Np,0)p’|A|, if & C Q4 with A € T,—; and § € O,,. Hence, for
ESECR

o0

ST oA EY <Y < e <o, (2.56)

AET:0COQ% 3=0

where we used that p < 1 and p < p. Finally, combining (2.56) with (2.55), we obtain

No ()T < e (181 leapoll)",

0coO

which implies (2.53). Evidently, (2.51)-(2.53) imply the theorem. O

Remark. The following simple example shows that, in general, Theorem 2.16 is not valid
for n > p. Let f := p for some § € ©. It is not hard to see that || f||ge(r) = [0]'/7 = ||@0]|,,
while Ns ,(f, T) = oo, if n > p. Therefore, Ns,(f, T) is not equivalent to ||f||Ba if n > p.

2.4 Skinny B-spaces

In this section, we define a second family of B-spaces which we shall use in §3.3 for the
characterization of nonlinear (discontinuous) piecewise polynomial approximation generated
by nested triangulations.

Throughout this section, we assume that 7 is an arbitrary weak locally regular triangu-
lation of R? (see §2.1). We define the skinny B-space Bgf(T), a>0,0<pg<oo, k>1,
as the set of all f € L,(R?) such that

Vg =1+ (e X wray)’]) <o @57
meL A€ET,2-m<|Al<2—m+]

where wg(f, A), is the local modulus of smoothness of f, defined in (2.8).
As for the slim B-spaces, we shall explore in more details only the skinny B-spaces that
are needed in nonlinear piecewise polynomial L,-approximation. Suppose 0 < p < oo, a > 0,
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k > 1, and let 1/7 := o+ 1/p. We shall need the skinny B-space B**(T), which is a slight
modification of B®*(T) from above, and is defined as the set of all f € L,(R?) (in place of
f € L, (R?)) such that

17 llsee = 1 llssecr = (32 (A, 4),)7) " < oc. (2.59)

AeT
Whitney’s estimate (Lemma 2.6) implies

Flseen ~ (30081 B (£.2),)7) (2.59)

AeT

where Ej(f,A), is the error of L, -approximation to f on A from II; (see (2.7)).

If ||f|lger = 0, then Ei(f,A); = 0 for each A € 7. From this, it readily follows that
f=1a, - Pa, (Pa, €1II;) on each A, € T_. Therefore, using that f € L,, we infer that
f=0ae. Thus, || - [[ges(r) is @ norm if 7 > 1 and a quasi-norm if 7 < 1.

Remark. The only difference between skinny B-spaces and slim B-spaces is that the local
approximation from continuous piecewise linear functions on sets Qa, A € 7T, is replaced by
local polynomial approximation on triangles from 7. The key is that the triangles from 7
form a tree with respect to the inclusion relation, while the sets Qa, A € 7 do not form
a tree; they overlap more significantly. This fact allows for developing the theory of the
skinny B-spaces and their application to nonlinear (discontinuous) piecewise approximation
(see §3.3) under less restrictive conditions on the triangulations, namely, for weak locally
regular triangulations.

Next, we introduce two other equivalent “norms” in B**(T). For f € L"*(R?), n > 0,
we define

e (S hais ) o
AeT
— (0B tatr ) = (B E L))
AeT =

where we used that 1/7 = o+ 1/p. Clearly, N, (f, T) = || fll gor(7)-

For each A € T and n > 0, we let Pa,(f) be a near best L,(A)-approximation to f
from II; with a constant A which is the same for all A € T (see (2.16)). Note that if n > 1,
then Pa,(f) can be realized as a linear projector into the space of polynomials of degree
< k restricted on A. Let P, (f) == X acr, 1a - Pay(f). Clearly, P, ,(f) is a near best
L,-approximation to f from &% (T) and a projector into S¥ (7). We define

Py (f) = Py (f- T) = Puy(f) = Pro1,4(f) € Si(T), (2.61)
and set pa,(f) == 1a - pmy(f) for A € Ty,. We define
1/

N (£,T) = (D (A (D)]l)")

AeT

(2.62)
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Using Lemma 2.7, we obtain

Neal£. TV = (08 IpsnN)) = (S leanly) " 263)

A€T AeT

The following embedding theorem is pivotal for our theory of nonlinear piecewise poly-
nomial approximation.

Theorem 2.17. If [{z : |f(z)]| > s}| < oo for each s > 0 and Np,(f,T) < oo (0 <n < 00),
then f € L,(R?),

f= me,n(f) absolutely a.e. on R? (2.64)

meZ

and unconditionally in L,, and

171l < || 3 WpaDI|| < eNeal£.T) (2.65)

meZ
with ¢ depending only on «, k, p, n, and the parameters of T.

Proof. Since 7 is a WLR-triangulation, the sequence {®,,} := {pa,(f)}acr satisfies
requirements (i)-(ii) of Theorem 3.3 below. Therefore,

H Z |pA,n(f)|Hp < C( Z HpA’"(f)H;) 1T ] CNPm(f: T) < oc. (2.66)
AT AeT

From this, similarly as in the proof of Theorem 2.15, it follows that for every A, € T_
(see Lemma 2.1) there exists a polynomial Pn_ € I such that

f—Pa, = mem(f) absolutely a.e. on A.

meZ

Using that [{z : |f(z)| > s}| < oo for s > 0 and (2.66), we infer Pn_ = 0 and the theorem
follows. [
We next give the equivalence of the skinny B-norms introduced above.

Theorem 2.18. For cach f € BY(T), the norms ||f|lspxr), Now(f,T) (0. < 1 < p), and
Np,(f, T) (0 <n <p) are equivalent with constants of equivalence depending only on «, k,
p, n, and the parameters of T .

Proof. The proof of this theorem is similar to (but easier than) the one of Theorem 2.16
and will be omitted. The difference is that the role of SA(f), is now played by wi(f, A),.
See also the proof of Theorem 2.20 below. [

Remark. The following simple example shows that, in general, N, ,(f, T) is not equivalent
to || fllgercry if m > p. Let f:= 1a for some A € T. It is easily seen that [|f||garr) =~
AP = [/ llp, while Ny (f, T) = oo if > p.
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2.5 Fat B-spaces: The link to Besov spaces

Throughout this section, we assume that 7 is an arbitrary strong locally regular triangulation
of R? (§2.1). We define the fat B-space IB%;‘: (T), «>0,0<p,q<o0, k>1,as the set of all
f € L,(R?) such that

g =+ (X[ X wneay)]) " <o

meL AET,2-m<|A|<2—m+1

where Q4 is defined in (2.9).

As in the previous sections, we shall focus our attention only on the scale of fat B-spaces
which naturally occur in nonlinear approximation, namely, the spaces B**(T), where o > 0,
k>1,0<p<oo,and 1/7 := a+1/p. We define the space B** (T as the set of all functions
f € L,(R?) such that

[l o= (3008 wn(£,20).)7) " < o, (2.6)

AET

which is a modification of the space B** (T) from above. By Whitney’s inequality (Lemma 2.6),
we have

7l cry ~ (081 Bu(r,20)7)

AeT

where Ey(f,Qa), is the error of L -approximation to f on Qa from II; (see (2.7)).
Note that the use of Q5 in the definition of || f||gak () is not crucial. Tt is almost obvious
that, for instance,

fllse = (3001 n(£.00)7)

fcoO

It is critical, however, that the neighboring sets in the collections {Qa }ac7 or {#}gco overlap
significantly. This makes the difference between the fat and skinny B-norms.

Clearly, for f € L. (R?) and A € T, we have the inequalities Ey(f, A), < SA(f, T)r <
Ey(f,QA)7, which yield the following comparison theorem.

Theorem 2.19. We have
1 fllgerry < NS llgar oy
and

1 llse2cry < el fllsecry < ellfllggz -

We next introduce another norm in BX* (7). For f € L,*(R?), n > 0, we define

A=

Q

l\u,n<f,’r>:=(2<m|%%wk(f,szmr)1 (Y0ap  E(r20,)7) " (268)

A€T AeT

Evidently, N, . (f,T) = ||f||15%2’“(7')'
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To prove the equivalence of || f||gar (7) and N,,,, (f, T) for 0 < 7 < p, we need to introduce
one more norm in B** (7). For every A € T, we let Pa ,(f) be a near best L,-approximation
to f on Q4 from II; with a constant A which is the same for all Qa, A € T (see (2.16)). We
define

Pm,n(f) =P m,n f7 Z IA - PAU

AE€ETm

and
Tan(f) = Loy - Pugry(f) = Pay(f)), if A€ T

The new norm is defined by

Nea(£.T) 2= (S (AP# sy (1)) (2.69)

AET

Clearly, since 7 is an SLR-triangulation,

Neal5.T) % (S0 lmsn(07) "~ (X I ())

A€T A€T

Theorem 2.20. For f € BX*(T), the norms |/ f|lset (1), Now(f,7) (0 < 1 < p), and
Ney (f,T) (0 <n <p), defined in (2.67)-(2.69) are equivalent with constants of equivalence
depending only on «, p, k, n, and the parameters of T .

Proof. Using Holder’s inequality and the properties of the SLR-triangulations, we readily
obtain

As we pointed out earlier, Nw T(f T) = ||f||]Bak . Therefore, it suffices to show that
Nopu(f, T) = Neyp (f,T), forall 0<p,n<p.
From the definition of Pa ,(f) and ma ,(f), it follows that for any A’ € T,

[marm(F)lly < ellf = Prrin(H)llL,@an + el f = Parg(H)lLo@an
< ¢ YN =PanDllnya) + cB(f, Qar)y

AeTm+1; ACQAI

¢ Y EB(f.Qua)y + cBE(f, Qa)y.

AeTm+1; ACQAI

IN

Substituting this estimate in the definition of N, (f,7T) in (2.69), we easily obtain
New(f; T) < eNoy (f,T), 0> 0. (2.71)
We next prove that if N, (f,7) < oo, n > 0, then
Now(fs T) < Ny (f, T), 7 <p<p. (2.72)

Evidently, (2.70)-(2.72) yield the theorem.
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We introduce the following abbreviated notation: Pa := Pa,(f), Pp = Pny(f), and
A = Ta,(f). We also set pp, := Py — Py, and pa = 1a - py, = La - ma for A € T,
Evidently, ||pall, < [|7allp, and, hence,

(S teall) " < (X trally) " % Moy (5. 7) < o
AeT AET

It is readily seen that the sequence {®,,} := {pa}acr satisfies conditions (i)-(ii) of Theo-
rem 3.3. Therefore, >\ 7 [pa(-)| < o0 a.e. on R?, and

| 32 1eatl] < eMen (2.7 .73
AT

On the other hand, since f € LP°(R?), ||f — Ppl|L,a) — 0 as m — oo for every A € T.
Exactly as in the proof of Theorem 2.15, it follows that f — P, € L,(R?) and

f—Pun = Z p; absolutely a.e. on R? (2.74)
j=m+1

and unconditionally in L,(R?). Now, fix A" € 7,,, n € Z. Since Pas is a polynomial of degree
< k on Qas, we have

wi(f, Qar) = wi(f = Par, Qan)y < ellf — Pavllr,(0)- (2.75)
Using (2.75), (2.74), and Theorem 3.3 with {®,,} := {pa : A € T, A C Qa/}, we obtain

o0
Wk(faQA'); < ||Prta _PA’HLL(QN)_FC Z ||Pj||2#(QA,)

j=n+1
o T
<cralp+ed |2 pa| <emalpre 3o sl
j=n+l A€T;,ACQy 1 AET, ACQ,
1 1
<ec > mali<e > AT mall,
AET,ACQas A€ET,ACQar

where we used Lemma 2.7 and the properties of the SLR-triangulations. Substituting the
above estimate in the definition of N, ,(f,7), we proceed as in the proof of Theorem 2.16,
to obtain (2.72). O

Comparison of regular B-spaces with Besov spaces. The Besov space B;(L,) =
B:(Ly(R?)), s > 0,1 < p,q < 00, is usually defined as the set of all functions f € L,(R?
such that

0 dt\ 1
e = ([ antr o)) <o (2.76)

with the L,-norm replaced by the sup-norm if ¢ = oo, where k := [s] + 1 and w(f, 1), is the
k-th modulus of smoothness of f in L,(R*), i.e., w(f, 1), := supp, <, | A (f,-)llp- The norm
in B;(Ly) is defined by

I 5oy = IFllp + 1 f|Bs(Ly)-
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It is well-known that if k£ in (2.76) is replaced by any other integer > s, then the resulting
space would be the same with an equivalent norm. However, the situation is different when
p < 1 (see [P1]). For this reason we introduce k as an independent parameter of the Besov
spaces in the next definition.

In this article, we are interested in nonlinear piecewise polynomial (spline) approximation
in L,(R?*) (0 < p < 00). The Besov spaces B2*(L,) with > 0 and 1/7 := a + 1/p play
a distinctive role in this theory. Taking into account that B2*(L,) is embedded in L, and
the above observation regarding the independence of k£ and the smoothness parameter, we
naturally arrive at the following slightly modified version of the Besov space B2%(L,):

Assuming that 0 < p < 0o, @ > 0, k > 1, and 1/7 := a+ 1/p, we define the Besov space
B2*k(L,) as the set of all functions f € L,(R?) (in place of f € L,) such that

o dt\1/7
||f||B$a”°(LT) = (/0 (t > wi(f, t)T)T?) < 00. (2.77)
Notice that the B-spaces and Besov spaces are normalized differently with respect to the
smoothness parameter. Thus, e.g., the fat B-space B** (7)) corresponds to the Besov space
B2 (L,).
From the properties of wg(f,t),, it readily follows that

1/7
1 llgzerry = (3o @ man(f,27™)7) (2.78)

mez

Next, we give an equivalent norm for the Besov space B?**(L,) in terms of local poly-
nomial approximation. We let D! denote the set of all dyadic squares I of the form

v—1 v p—1 p
I:|: 7_) [—7_)7 ) Z7
gm 2 gm) X Tgm gm ) PHE

and let D! be the set of all shifts of I € D!, by the vector e := (271 27™1) ie,
D! ={I+e:1¢€ D} Wedenote D, := D, UD!" and D :=J, 4 Dn. We now
introduce the following norm

meZ

&

N = (S n0) "~ (Swesgny) . @)

IeD IeD
where Ey(f, 1), is the error of L,(I)-approximation to f from Il.

Lemma 2.21. If f € B***(L,), then

N() & 11l gz

with constants of equivalence depending only on p, «, and k.

Proof. This lemma is well known and fairly easy to prove. Its proof hinges on the following

equivalence:
1

alt. 07~ o [ 18k Dl dedn (2.80)
| S0, 002 1
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where (1) := |I|'/? and AK(f,2,1) := Z?ZO(—I)’““(?)f(x + jh) if [x,x + kh] C I and
Ak(f,z,I) := 0 otherwise (see [PP] for the proof of (2.80) in the univariate case; the same
proof applies to the multivariate case as well). (See also [T]). O

We next consider B-spaces over regular triangulations (see §2.1).

Theorem 2.22. If T* is a regular triangulation then B* (T*) = B2k (L,) with equivalent
norms.

Proof. This theorem is an immediate consequence of Lemma 2.21 and the following lemma.
O

Lemma 2.23. Suppose T* is a regular triangulation with minimal angle 3 > 0. Then there
exists ig = io(3) such that the following hold:
(a) If I € Dy, (m € Z), then there exists A € T* such that I C Qa and |A] < 272+,
(b) If A € T* and 272™ < |A| < 272™%2 then there exists I € Dy,_;, such that Qa C I.

Proof. The proof of this obvious lemma will be omitted. [

Exactly as in the case of B-spaces, we introduce the following norm in the Besov space
B?“’k(LT)i

1
p

No(f) = (D21 e £, )0)7) " = (Do 7 Eelf, 1)) (2.81)

1eD 1eD

1
p

which in integral form gives

1
=

N, (f) ~ (/OOO/R (25 (£, Bla))y| ¢ ), (2.82)

where By(z) :={y € R? : |ly — x|l <t} or By(z) :={y e R*: ||y — x||oc < t}.
Proposition 2.24. The norms Ny (-) with 0 <n <p and || - || gza.x;_y are equivalent.

Proof. Using Lemma 2.23 as in the proof of Theorem 2.22, one can show that N,(-) ~
Ny (+, TF) if T* is a regular triangulation. From Theorems 2.20 and 2.22, we obtain

Now (T 2 - g ey & - Ml pzei gy B

Remark. This result is (in essence) well known, see [T] and the references therein. The
equivalence of Ny(+) and || - || gzar ; _y clearly shows the intimate relation of B-spaces with
Besov spaces.

Our last goal in this section is to find the range for the smoothness parameter o, where
the Besov B**-spaces coincide with the corresponding slim or skinny B-spaces over regular
triangulations.
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Theorem 2.25. Suppose T* is a reqular triangulation of R2, 0 < p < oo, and k > 1.
(a) If0 < a < 141/p and 1/7 := a+1/p, then f € B*(T*) if and only if f € B***(L,),
and

11 g2,y = (1 f B2 () (2.83)
with constants of equivalence depending only on p, o and § = B(T*). This equivalence is
no longer true if « > 1+ 1/p. Moreover, for every 6 € O(T*) and o > 1+ 1/p, we have
[0l 2021, = 00, while [[ol| 2 (7+) = llpollp-

(b) If0 < a < 1/p and 1/7 := a+ 1/p, then f € B>*(T*) if and only if f € B>**(L,),

and

1l g2k = W Fllser(re) (2.84)

with constants of equivalence depending only onk, p, « and 3 = B(T*). This equivalence is
no longer true if o > 1/p. Moreover, for every A € T* and o > 1/p, we have ||1A||Bza,k(LT) =
00, while ||1A||ng(7'*) ~ HILAHP

Proof. (a) From Theorems 2.19 and 2.22, we have || f||pe(7+) < ¢[[f|| g2a2(, ) for o> 0. We
next show that

Let f € B*(T*). Then by Theorems 2.15-2.16, and (2.38), it follows that f can be repre-
sented in the form
f= Zbgapg absolutely a.e. on R? (2.86)
e

and

£ sy ~ (X logolly) (2.87)

co

where © := O(T™).
Denote Z; := {# € © : 27% < |0] < 272U=D}. Since T* is regular, straightforward
calculations show that, for each 0 € ©,

a0, )7 9|U=7)/2 i 0 <t < ]0)V2,
e 10, if ¢t > [0]/2,

and hence, for § € Z; and ¢ > 0,
wa(bopo, )7 ~ minf|bepp|l;, - 27T by [} - 279273, (2.88)

where we used that 1/7 = a + 1/p.
Denote f; := 3 gc= bop. Since T* is regular, #{0 € Z; : v € 0} < ¢() for 2 € R? and
j € Z. Therefore,

waf5, 07 < ¢ walboo, )], j € L. (2.89)

0€E;

From (2.88)-(2.89), we derive that for any fixed m € Z

waf;, 277 < ey 27t RT gmmUED gy |7 i < m, (2.90)

HEE]'
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and
wa(f5,27™7T < e Y 272 |bygy||7, i j > m (2.91)

HEE]'

Let A := min{7, 1}. Then, using (2.90)-(2.91), we have

wa(f,27™)2 < Z wa(f5,27™)2

JEZ

<3 (e ) oS (X 5 )

j=—o00 0€E; Jj=m 0€E;

Substituting this in (2.78), we obtain

m(a—1—3)7 = —jla—1-3)7 7—%
g,y < 3o 2me (30 (270 S libll) )

>3

meZ j=—00 0eEj
=\ %
+ Cz2m2ar<22 ]2ar<z Hbg(ngT) )
mez 0e=;

where we used that 2a7 — 7 — 1 = 7(a — 1 — 1/p) since 1/7 = a+ 1/p. To estimate the
above sums, we use the well known discrete Hardy inequalities. Namely, we apply, e.g., the
inequality from Lemma 3.10 of [PP] to estimate the first sum and Lemma 3.4 from [DL] to
the second sum. We obtain

1oy < €D > Ibopolly < el flle (s

JEZ O€E;
which completes the proof of (2.85).
Using (2.88), we obtain
. 2 L dt
L ™ b
0
jo)/2 %
~ |0|(1—T)/2/ t(—2a+1)7— dt + |0| t—2aT—1 dt
0 |g‘1/2

o2
~ |0|(1—T)/2/ t(—2a+1)7 dt + |0|T/p
0

Therefore, [|¢g||y202(;, ) = 00 if (=2 + 1)7 < —1 which is equivalent to a > 1+ 1/p, using
that 1/7 = o + 1/p. It is easily seen that ||@g| pe(r-) = ||¢sllp, which follows from the

Bernstein inequality in Theorem 3.7 as well.
(b) Simple calculations show that wg(1a,t)7 ~ min{|A['/?t,|A|} for A € T* and t > 0.
The rest of the proof is similar to the proof of part (a) and will be omitted. [

Comparison between B-spaces over different triangulations and Besov spaces.
Suppose T is an arbitrary strong locally regular triangulation of R? (§2.1) and 0 < p < oo.
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It can be proved that there exists ag = ag(p, 3, My) > 0 such that if 0 < a < ag and
f € BY(T) with 1/7 := a+ 1/p, then

[/ lez2 () < ellfllsg(m)-

We leave the proof of this result for elsewhere since it is much longer and more involved than
the proof of Theorem 2.25. Thus the fat B-norm || f{|ge2 (7 is equivalent to the slim B-norm
|| f|| Ba() for some relatively small range 0 < o < ag and becomes much larger when a > «y.
The relationship between fat and skinny B-spaces is quite similar. We skip the details.

It is essential for our theory that the Courant elements g, # € ©(T), have infinite
smoothness (smoothness of order o« > 0 for every «) in the slim B-space scale B¢(7). At the
same time each py has limited smoothness o < g in the corresponding fat B-space scale.

If one compares a B®-space over an arbitrary triangulation with the corresponding Besov
space B?¥k(L.) (or two B-spaces over different triangulations with each other), then ev-
erything changes dramatically. As was shown in §2.1, there exist strong locally regular
triangulations with extremely skinny Courant elements which cause problems to Besov
spaces. More precisely, let ¢y be the Courant element associated with a cell # € © which
is convex, has length [ > 0 and width e/ with 0 < ¢ < 1. Simple calculations show
that wy(pg, )7 ~ min{e7I'"7t147, el?}. Furthermore, we have [|@g| g2z, ) = £7%(|@o|l, if
0 <a<1+1/pand [@g|| 202 =o0ifa > 1+1/p. At the same time, |[¢g||p2(7) = [|¢0l[,
for each o > 0. Therefore, even for small o the Besov norm of a Courant element can be huge
in comparison to its Ly-norm. This is why the Besov spaces are completely unsuitable for the
theory of n-term Courant element approximation in the case of nonregular triangulations.

B-spaces in dimensions d # 2. Slim, skinny, and fat B-spaces in d dimensions (d > 2)
can be defined and utilized similarly as in the two-dimensional case. We do not consider
them in the present article simply to avoid some complications that are unnecessary at this
point. Of course, the B-spaces can be defined in the univariate case as well. However, it
can be shown that the univariate slim, skinny, and fat B-spaces do not give anything better
than the corresponding Besov spaces if 0 < p < oo and, therefore, are useless. The point
is that in the univariate case the Bernstein inequality holds with no restrictions on o > 0
(see [P1]). In the case of p = oo, however, the B-spaces are different from the corresponding
Besov spaces.

3 Nonlinear piecewise polynomial approximation

In this section, we give our main results for nonlinear n-term approximation in L,(R?) (0 <
p < 00) from: (a) Courant elements generated by LR-triangulations and (b) discontinuous
piecewise polynomials over WLR-triangulations.

3.1 Nonlinear n-term approximation: General principles

We begin with a brief description of the general principles that will be guiding us in devel-
oping the theory of nonlinear n-term approximation by piecewise polynomials.
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Let X be a normed or quasi-normed function space, where the approximation will take
place (in this article, X = L,(R*), 0 < p < o0). Suppose ® = {@p}gsco is a collection of
elements in X which is, in general, redundant, and we are interested in nonlinear n-term
approximation from ®. We let ¥,, denote the nonlinear set of all function S of the form

S = APy,

where A, C O, #A,, < n, and A, varies with S. The error of n-term approximation to
f € X from @ is defined by

oulf) i= dnf 1 = Sllx.

Our main objective in this article is to describe the spaces of functions of given rates of
n-term approximation. More precisely, we want to characterize the approximation space
A7 = AJ(®), v > 0, 0 < ¢ < oo, consisting of all functions f € X such that

£y = 1Al + (S an()) ™ < oo (3.1

with the /;-norm replaced by the sup-norm if ¢ = co. Thus A] is the set of all f € X such
that o,(f) < en™7.

To achieve our goals, we shall use the machinery of Jackson and Bernstein estimates plus
interpolation spaces. Suppose B C X is a smoothness space with a (quasi-)norm || - ||z,
satisfying the A-triangle inequality: ||f + gl < [|f[3 + [|g]l3 with 0 < A < 1 (in our case,

B will be some B-space), and let & C B. The K-functional is defined by

K(f.1) = K(f,; X, B) := inf(|[f — gllx +tllglls), *>0.

The interpolation space (X, B),, (real method of interpolation) is defined as the set of all
f € X such that

S /
Il = Il + (™ K(f2 ™) " <oe, 0<pst

m=0

where the ¢,-norm is replaced by the sup-norm if ¢ = oo (see, e.g., [BL, BS]).
The well known machinery of Jackson and Bernstein estimates allows to characterize the
rates of n-term approximation from :

Theorem 3.1. (a) Suppose the following Jackson estimate holds: There is o > 0 such that
for feB
on(f) < en™ | flls, n=1. (3.2)

Then, for f € X,
on(f) <cK(f,n %), n>1. (3.3)

(b) Suppose the following Bernstein inequality holds: There is a > 0 such that

1S5 < en®|[Sllx,  for S € Xp, n>1. (3.4)
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Then, for f € X,

n

K(f,n ) < cn*a([z %(u%u(f))x] "y ||f||X), n>1. (3.5)

v=1
Proof. For the proof of this theorem see, e.g., [PP]. O

An immediate consequence of Theorem 3.1 is that if the Jackson and Bernstein inequali-
ties (3.2) and (3.4) hold, then 0,,(f) = O(n™7),0 < v < «, ifand only if K(f,n" %) = O(n™").
More generally, Theorem 3.1 readily yields the following characterization of the approxima-
tion spaces A7 (®):

Theorem 3.2. Suppose the Jackson and Bernstein inequalities (3.2) and (3.4) from Theo-
rem 3.1 hold. Then

Al(®) = (X,B)%ﬂ, 0<vy7<a,0<q< oo,
with equivalent norms.

General embedding theorem and Jackson estimate for nonlinear n-term approx-
imation.

Theorem 3.3. Suppose {®,,} is a sequence of functions in L,(R?), d > 1, 0 < p < oo,
which satisfies the following additional properties when 1 < p < 0o :
(i) @, € Loo(RY), supp ®,, C E,, with 0 < |E,,| < oo, and
[P0 < Cl|Em|_1/p||(I)m||p'

(ii) If x € E,,, then
Y. (B/IEDY < e,

Ej3z, |Ej|2|Em|

where the summation is over all indices j for which E; satisfies the indicated conditions.
Denote (formally) f =" ®m and assume that for some 0 <1 < p

1/7
N = (X lenly) < o (3.6)
Then Y, |®m(-)| < 0o a.e. on RY, and hence, f is well-defined on R?, f € L,(R?), and

171 < | 3o 12a)l| < eN ). (3.7)

where ¢ = ¢(a, p,cq).
Furthermore, if 1 < p < 0o, condition (3.6) can be replaced by the weaker condition

N(f) = [{Ul[®mllpHlwe. < o0, (3-8)

where ||{xm}||we, denotes the weak (.-norm of the sequence {xp,} :

{2 Hlwe, := inf{M : #{m : |z,,| > Mn "} <n forn=1,2,...}. (3.9)
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Theorem 3.4. Under the hypothesis of Theorem 3.3, suppose {CD }321 is a rearrangement
of the sequence {®y,} such that || @[], > |95, > .. .. Denote S, :=3 7, ;. Then

f = Sully < en ™ *N(f) with « =1/7 —1/p, (3.10)

where c =1 4f 0 <p <1 andc=cla,p,c1) if 1 <p < oo.
Furthermore, the estimate remains valid if condition (3.6) is replaced by (3.8) when 1 <
p < 0.

Proof of Theorems 3.3 and 3.4. Case I. 0 < p < 1. Since 7 < p, we have

S @Ol < (S 1eal)” < (3 12nlr) = )
1> <2 >

which proves Theorem 3.3 in this case. To estimate ||f — S,||, we shall use the following
simple inequality: If x1 > 29 > ... > 0and 0 < 7 < p, then

s 1/ ad 1/7
( 3 a;?) Pénl/P—l/T<Zx]T_) _ (3.11)
j=n+1 j=1

The proof of this inequality is given in the appendix (§4.2). Applying (3.11) with z; := ||®[,
we obtain

1 = Snlly

VAN

| S @ 1| < ( Ejnéﬂv)

j=n+1 =n+1

. nl/p—w(f: o51;)" = nen )

which proves Theorem 3.4 in Case I.
Case II: 1 < p < o0o. We need the following lemma:

Lemma 3.5. Let F':= ) ., |®;|, where #J, <n, and ||®;]l, < L for j € J,. Then
[l < cLn'?

with ¢ = ¢(p, ¢1).

Proof. Let 1 < p < oo (the case p =1 is trivial). Using property (i) of the sequence {®,,},

we have
10, < || 30185l 15, () < L Do 1B 15,0
JEITn JEITn

We define E := J;.; Ej and E(z) := min{|E;| : j € J, and E; > x} for x € E. Property
(ii) yields >, [E;]~ 1/” g, (z) < c1&(z) =17 for © € R%. Therefore,

1Fll, < cLlE() 7L, = CL(/ E(x)! d:v)l/p

E

< cL( Z |E5] 1/ g () d l’)l/p = cL(#J,)"" < cLn'?. O

JE€EIn
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We define =, := {j : 27*N(f) < ||®], < 27**'N(f)}. Then U,., = = {j : [|®ll, >
27“N(f)} and hence, using (3.6) or (3.8), we derive

» #E, = #( U E,,) < oM, (3.12)

v<p v<p

Therefore,
#HE, <D #E, <27 (3.13)
v<p
We denote M := 3 _  #Z,. By (3.12), M < 2™7. Let F, := }_
and (3.13), we obtain

|®;|. Using Lemma 3.5

JEEL

<3 IR,

If=sul, < | 3 &

pu=m+1 p=m+1
< e Y ZEN(HHE)P <eN(f) ) 27w
p=m+1 p=m+1

= cN(f)2 T < e MCYTHYPN(f) = eMON(f).

This estimate readily implies (3.10). Evidently, (3.7) is also contained in the above result
(take Sps :=0). This completes the proofs of Theorems 3.3 and 3.4. O

As will be seen in §3.2 and §3.3, Theorem 3.4 easily gives the needed Jackson estimates
for piecewise polynomial approximation (see Theorems 3.6 and 3.10). However, there is no
simple recipe for proving Bernstein estimates (see §4.1).

3.2 Nonlinear n-term Courant element approximation

In this section, we assume that 7 is a locally regular triangulation of R2. We denote by
@1 the collection of all Courant elements ¢y generated by T (see §2.1). Notice that @7 is
not a basis; @7 is redundant. We consider the nonlinear n-term approximation in L,(R?)
(0 < p < o) from ®7. Our main goal is to characterize the approximation spaces generated
by this approximation. We let in(T) denote the nonlinear set consisting of all continuous
piecewise linear functions S of the form

S=" appp.

ey,

where A, C O(T), #A, <n, and A, may vary with S. We denote by 7,(f, T), the error of
L,-approximation to f € L,(R?) from X, (7):

on(f, T)p = inf [If =Sl
7

Sezn(

Throughout this section, we assume that 0 < p < oo, @ > 0, and 1/7 := a+1/p, and denote
by B%(T) the slim B-space introduced in §2.3. We next prove a pair of companion Jackson
and Bernstein estimates.
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Theorem 3.6. [Jackson estimate] If f € BY(T), then

Gn(fs T)p < en” || fllB2(m) (3.14)

with ¢ depending only on «, p, and the parameters of T .

Remark. Estimate (3.14) remains valid if || f|| sa(7) is replaced by ||{||bagsl|p } ||lwe, With {bg}
from (2.32) or (2.33) as in the definition of Ng ,(f) (see (2.34)), where || - ||y, is the weak
¢-norm defined in (3.9).

Proof. By Theorem 2.15, it follows that

[ = Zbg(f)gog absolutely a.e. on R?,

where {bp} are from (2.32) or (2.33). We use Theorem 3.4, (2.38), and Theorem 2.16 to
obtain

~ T 1T —« —«
Gulf, T)p < en” (ZHba 900||p) ~en “No(f) = en” % fllsecr). O

0co
Theorem 3.7. [Bernstein estimate] If S € X,(7), then
ISl se¢ry < en®(| S]], (3.15)

with ¢ depending only on «, p, and the parameters of T .

The proof of this theorem is more involved than the one of Theorem 3.6. We shall give
it in the appendix (§4.1).

We denote by A"Y = A7(Lp, T) the approximation space generated by n-term Courant
element approxnnatlon (see (3.1)). The Jackson and Bernstein estimates from Theorems 3.6
and 3.7 yield the following characterization of the approximation spaces Ag(Lp,'T) (see
Theorem 3.2):

Theorem 3.8. If0 < v < a and 0 < ¢ < 00, then
AZ(LpaT) = (vaB?(T))g,q
with equivalent norms.

“Algorithm” for nonlinear n-term Courant element approximation. One of our
primary motivations for this work was the development of methods for n-term Courant
element approximation which capture the rates of the best approximation. The proofs of
Theorems 3.3 and 3.6 suggest the following approximation scheme, where we assume that
feL,(R),1<p<oo,and T is a fixed LR-triangulation of R?:

Step 1. We use the operators ¢,,(f) := ¢ (f, T) induced by the quasi-interpolant (see
(2.31)) to find the following decomposition of f:

F=Y () =D bo(f)o,

meZ meZ €@,
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where {by(f)} are defined by (2.32) and the identity was established by Theorem 2.15.
Step 2. We order the terms {by(f)@s}oco in a sequence {by, (f)py; }32, such that

160, ()P llp = [1ba, (F)asllp > -+

Then we define the n-term approximant by
Ay = Au(£, Ty = Y bu, (f) s,
j=1

This procedure becomes practically feasible in the setting of approximation of functions
defined on compact polygonal domains.
By Theorem 3.4, it follows that

If = An(f)p”p < CniaHfHB,‘?‘(T)'

If 0 < p <1, we use the more complicated nonlinear operators ¢, ,(f) (7 < p) from (2.31)
instead of ¢,,,(f) and the coefficients by(f) := by, defined in (2.33). The same estimate for
the error holds again by Theorem 3.4.

These results imply that the above algorithm achieves the rates of the best n-term
Courant element approximation. We shall further elaborate on this in a forthcoming ar-
ticle.

n-term approximation from the library {®7}. We denote by 6,(f), the error of
n-term approximation to f € L,(R?) from the best Courant element collection, i.e.,

5’n(f)p = 1171_f 6n(f7 T)IH

where the infimum is taken over all LR-triangulations 7 with some fixed parameters M,
Ny, 1, p, and 9. The following result is immediate from Theorem 3.6.

Theorem 3.9. Suppose infr ||f||pe(r) < o0, where the infimum is taken over all LR-
triangulations with some fized parameters My, Ny, v, p, and §, and let f € L,(R?*). Then

5y < en~int |l )
where ¢ depends on «, p, and the parameters My, No, 1, p, 6.

It is an open problem to characterize the rates of approximation generated by {7,(f),}
The difficulty stems from the highly nonlinear structure of approximation from the library

{®7}r.

3.3 Nonlinear approximation from (discontinuous)
piecewise polynomials

In this section, we assume that 7 is a weak locally regular triangulation of R? (§2.1). We
denote by ¥ (T), k > 1, the nonlinear set of all n-term piecewise polynomial function of the

form
S= ) 1a-Pa,
A€EA,
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where Px € I, A, C T, #A, < n, and A, may vary with S. We denote by o,(f,7T), the
error of L,-approximation to f € L,(R?) from £ (7):

on(f,T)p:= inf Hf Slp-

SETk(T

We want to characterize the approximation spaces generated by o, (f,T),. To this end we
shall proceed according to the recipe from §3.1. We shall first prove Jackson and Bernstein
estimates. Throughout the rest of the section, we assume that 0 < p < oo, £ > 1, a > 0,
and 1/7 = o+ 1/p. Recall that B**(T) denotes for the skinny B-space introduced in §2.4.

Theorem 3.10. [Jackson estimate] If f € B (T), then

on(f, T)p < Cn_a”fHBg’f(T)
with ¢ depending only on p, a, k, and the parameters of T .

Remark. The conclusion of Theorem 3.10 remains valid if || f|| gak (7 is replaced by the weak
C-norm |[{pa,(f)}aer|lwe, of the sequence {pa,(f)}aer, 0 <n < p, defined in (2.61) (see
also (3.9) for the definition of || - ||,e,)-

Proof. By Theorem 2.17, we have f = ), 7 pa absolutely a.e. on R* and ||f||ge(7) ~

(X acr Ipallp)™, where pa := pany(f) (0 < n < p) are from (2.61). Evidently, the sequence
{®,} := {pa}acT satisfies the requirements of Theorem 3.3 and, therefore,

oulf. Ty < e (Y loal) " < en | Flsprer. O
AeT
Theorem 3.11. [Bernstein estimate] If S € X¥(T), then
15| ger(ry < en®(|S]lp (3.16)
with ¢ depending only on p, a, k, and the parameters of T .

We shall give the proof of this theorem together with the proof of Theorem 3.7 in the
appendix (§4.1).

Now, we denote by A} := AY(L,,T) the approximation space generated by {o,(f,7T),}
(see (3.1)). The following characterization of the approximation spaces A} follows by Theo-
rems 3.10 and 3.11 (see Theorems 3.1 and 3.2):

Theorem 3.12. If 0 <y < a and 0 < g < o0, then
AZ(LIH T) = (LP7 ch-!k(T))%;q
with equivalent norms.

Similarly as in the previous section, we set
Un(f)p = iI71_fUn(f, T)pa

where the infimum is taken over all WLR-triangulations 7 with some fixed parameters r
and p. The following result is immediate from Theorem 3.10.

38



Theorem 3.13. Suppose infr || f||gar(7) < 00, where the infimum is taken over all WLR-
triangulations with some fized parameters r and p, and let f € L,(R?). Then

oul £y < n™ inf | s
It is an open problem to characterize the rates of approximation generated by {o,(f),}

“Algorithm” for nonlinear n-term piecewise polynomial approximation. We as-
sume that f € L,(R?), 0 < p < oo, and T is an arbitrary WLR-triangulation of R?. The
proofs of Theorems 3.3 and 3.10 suggest the following approximation scheme:

Step 1. We use the local polynomial approximation to obtain the following decomposition

of f:
F=> pmalf) =D pan(f),
meZ AeT
where pa,(f) = La * pmy(f) if A € Ty, and n < p (see Theorem 2.17).
Step 2. We order the terms {pa,(f)}aer in a sequence {pa; ,(f)}52, such that

1PaL (F)lly = 1Pasy(Dlp = -+

Then we define the n-term approximant by
An(f)p = Au(f, T)p = Zij,n(f)-
7=1

By Theorem 3.10 and its proof, it follows that, for f € B**(T),
1 = APl < en=®flssecry

Haar bases generated by general triangulations. An important point in this article
is that we carry out here nonlinear n-term approximation without using bases. In the
exceptional case of nonlinear approximation from piecewise constants, however, Haar bases
can be constructed and utilized for nonlinear n-term approximation in L,, 1 < p < oo.
To make it simple, suppose that 7 is a weak locally regular triangulation of R? which is
obtained by the standard refinement scheme described in §2.1: Every triangle A € 7 has
four children obtained by choosing a point on each edge of A and joining these points by line
segments. Denote by Aq,..., A, the children of A so that Ay is the triangle in the middle
(with its vertices on the three edges of A). We associate with A the following three Haar
functions: HAJ = |A1|_11A1 — |A \ A1|_11A\A1; HAQ = |A2|_11A2 — |A3 U A4|_11A3UA4;
and Hp 3 := |A3]7'1a, — |A4g|7'1a,. The way we order the children of A is not important.
Clearly, 1a, Ha 1, Hago, and Ha 3 form an orthogonal system which spans the set of all
piecewise constants over {A;}j_;. Then

Hr :={Ha1,Hao, Hastaer

is a Haar basis associated with 7. It is easily seen that H7 is an orthogonal basis in Ly (R?).
It can be proved by a standard technique that H7 is an unconditional basis for L,(R?),
1 < p < oo, and that Hy characterizes the skinny B!(7)-norm, a > 0, 1/7 = a + 1/p.
As a consequence, the nonlinear n-term L,-approximation from H7 can be characterized as
above (compare with [P2]). We skip the details of these results.
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3.4 Conclusions and open problems

We bring forward again the fundamental question of how to measure the smoothness of the
functions. There is a close connection between sparsity of representation and smoothness
of functions that we also wish to discuss here. As we mentioned in the Introduction, we
believe that in highly nonlinear approximation as well as in some other nonlinear problems
the smoothness of the functions should not be measured using a single space scale (like
Besov spaces) but by a family (library) of suitable space scales. To explain this concept
more precisely we return to n-term Courant element approximation considered in §3.2. For
this type of approximation, a function f should naturally be considered of smoothness order
a > 0 if inf7 || f[| pe(7) < 00, which means that there exists an LR-triangulation 7; such that
|l Ba(7;) < oc. Then the rate of the n-term L,-approximation of f from the library {®7} is
at least O(n~%). It is an open problem to develop effective procedures that: (a) determine (or
estimate) the maximal smoothness « of a given function f and (b) for a given function f, find
an LR-triangulation 7y such that || f||a(r;) = infr || f[[pa(r). Another related open problem
is to determine whether for each function f € L, there exists a single LR-triangulation 7
such that the n-term Ly-approximation of f from the library {®+} can be characterized
using the B-spaces B(Ty).

An important issue for discussion is the smoothness of the approximating tool 7 :=
{po}oco(r). Clearly, in nonlinear approximation, there is no saturation, which means that
the corresponding approximation spaces A] are nontrivial for all 0 < v < oo. Therefore,
the smoothness spaces to be used should naturally be designed so that the basis functions
{py} are infinitely smooth. This was one of the guiding principles to us in constructing the
B-spaces. For instance, the Courant elements {¢g}gco(r) are infinitely smooth with respect
to the BX(T) space scale, namely, ||g||pa(r) < cf|¢all, for 0 < a < oo (see §2.3). This makes
it possible that our direct, inverse, and characterization theorems impose no restrictions on
the rate of approximation 0 < o < 0o (see §3.2-3.3). Also, this explains the complete success
of Besov spaces in the univariate nonlinear piecewise polynomial (spline) approximation
in L, (p < oo). The important fact is that, any univariate piecewise polynomial (with
finitely many pieces) is infinitely smooth with respect to the corresponding Besov spaces.
More precisely, for univariate discontinuous piecewise polynomials, the Bernstein inequality
holds without any restriction on the smoothness parameter o (0 < a < 00) if p < 0o (see
Theorem 2.2 from [P1]). In dimensions d > 1, however, the situation is totally different.
Even for nonlinear approximation from regular piecewise polynomials (piecewise polynomials
generated by regular triangulations, in our terms), the Besov spaces are not exactly the right
smoothness spaces. Namely, the Besov spaces coincide with the right smoothness spaces
only for some range of the smoothness parameter . For instance, for nonlinear n-term L,-
approximation from Courant elements generated by a regular triangulation of R?, the Besov
spaces B**?(L,), 1/7 := a+1/p, 0 < p < oo, are the right spaces only for 0 < o < 1+1/p.
In the case of discontinuous piecewise polynomial approximation, the range is 0 < o < 1/p
(see §2.5). For the same reason, the fat B-spaces (§2.5) are not exactly the right spaces for
characterization of n-term Courant element approximation over general triangulations.

In nonlinear n-term approximation, it is natural to work with bases. Except for the
simplest case of n-term piecewise constant approximation (see the end of §3.3), we are not
aware of good (unconditional) bases for L,(R?) (1 < p < co) and the B-spaces over general
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triangulations. However, as was shown in the previous sections there are equally powerful
means to tackle the problems. Namely, using simple projectors into subspaces of piecewise
polynomials, one can get sufficiently spars representations of the functions, which allow to
capture the rates of the best nonlinear n-term spline approximation. It is an open problem
to construct good bases consisting of continuous or smooth compactly supported piecewise
polynomials (or other functions) over general triangulations.

Methods and algorithms for piecewise polynomial approximation are in demand. This
was one of the primary motivations for this work.

4 Appendix

4.1 Appendix 1: Proof of the Bernstein estimates

In this subsection, we prove Theorems 3.7 and 3.11. We recall our assumptions: 0 < p < o0,
a>0,and 7:= (a«+1/p) .

Tree structure in 7 generated by A C 7. Suppose 7 is a multilevel triangulation
(WLR or better), and let A C 7 and #A < co. The set A induces a tree structure in 7 that
we want to bring forward here and utilize in the proof later on. We shall use the parent-child
relation in 7 induced by the inclusion relation: Each triangle A € 7, has (contains) < M,
children in 7,,,1 and has a single parent in 7, ;.

Let [’y be the set of all A € T such that A D A’ for some A’ € A. We denote by I', the
set of all branching triangles in Ty (triangles with more than one child in I'y) and by I'}, the
set of all children in T of branching triangles (each of them may or may not belong to T'y).
Now, we extend ['y to I' := I\ UT. We also extend A to A:=AUT,U I',. In addition,
we introduce the following subsets of I': I'; the set of all final triangles in I' (triangles in
I' containing no other triangles in I') and I'e, := I'\ A the set of all chain triangles. Note
that each triangle A € I', has exactly one child in I'. Since the final triangles in 'y belong
to A, then #I', < #A and hence #I') < Mo#I'y < c#A, #I'y < #A + #I') < c¢#A, and
#A < #A+ #T + #I', < c#A. Note that #I'., can be uncontrolably larger than #A.

We next introduce chains in I'c,. By definition A = {A,,...,; Ay} C Ty (> 1) is a finite
chain in gy, if AY D Ay D --- D Ay D A} for some Ay, AY € A, A is a child of A7, A; is a
childof A;_y, 5 =2,...,¢, and A, is a child of A,. Notice that A} ¢ I', and hence A, is the
only child of AY in I'. We let £ denote the set of all finite chains in I'.;. Also, by definition
A={...,A 5 A} C Ty is an infinite chain in Ty, if we have --- D Ay D A; D A)
for some A € A, Ajis achild of Aj_4, 7 = —1,-2,..., and A} is a child of A_;. We let
L denote the set of all infinite chains in ['.,. Clearly, £U £> consists of disjoint chains of
triangles, Ty = Uy ey A and #(L U L) < #A.

Finally, we use the above sets to introduce rings generated by A. First, for each A €
T'\ (T, UTy), we denote by A (A # A) the unique largest triangle from A contained in A.
We associate with each A € I'\ (I' UT;) a ring K defined by Ka := A\ A. Also, we
define Kp :=Aif Ael'yand Ka:=0if A € I, U(T \I'). Notice that if A € X for some
A€ LUL™, then A = Al Tt is readily seen that K3, NKS, = 0 if A’, A” € A and A’ # A",

A= U K, fOI‘AE/N\, (41)

AN, A'CA
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and hence

Ua=J Ka. (4.2)

A€l A€l

For the proof of both theorems, we need the following lemma.
Lemma 4.1. Suppose S = Y rcp 1a - Pa, where Py € I (k > 1), A C T with T a
WLR-triangulation, and #A < co. Then
—ar T LT e
(1Al lISl;, o) < c#A) 1S
A€A

with ¢ depending only on p, a, and the parameters of T .

Proof. We adopt all necessary notation from “Iree structure in 7 generated by A C 77
developed above with 7 and A from the hypotheses of the lemma. We may assume that

S:ZHA'PA-

AchA

It is an important observation that S is a polynomial of degree < k on each ring K = A\A.
Hence, using Lemma 2.7,

1SNz, (xs) = KAl PNS ], r0) 2 A1 IS 2, 500)- (4.3)

We shall also need the obvious estimate (see (2.1)):

Y (AIAN < elpyy) <o, 7> 0. (4.4)

A€, ADA!

We use (4.1)-(4.4) to obtain

D IATTISIE ) = D IATT Y ISIE

A€l A€l AeN,A'CA
=D WSk, D 1A

Alel A€EA, ADA!
<O S geanlA >0 (A /jApeT

A’eA A€, ADA!

7/p A\l—7 ar T

<3 IS0 < e 30 18I ucyy) BT < NS,

A’elA A’el

where we once switched the order of summation and applied Holder’s inequality. [

Proof of Theorem 3.7. Let S € in(’T) with 7 an LR-triangulation and suppose that
S =13 yem Cos, where M C O(T) and #M < n. Let A be the set of all triangles A € T
which are involved in all § € M. Then S = ZAGA Sa, where Sa =: 1a - Pa, Pan € 1ls.
Evidently, #A < Nyg#M < ¢n. For the rest of the proof, we adopt all the notation from
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“Tree structure in 7 generated by A C 77, given in the beginning of this section, with 7
and A from the above. In addition, we denote

X ={AeT,:ACQa for some A’ € /N\ﬂTm},

X ={AeT,:AcQ forsome A’ € AN7T,}, where, for A € Ty,
Qa = U{A' € T : A'NA # 0} and Q3 ::U{A'ETm:A'ﬂQA%Q}.
Also, we denote X* := J _, X% and X*™ = |J _, A*. Evidently, we have #X* <

- mezZ - m mezZ “*m
3No#A < cn and #X** < 3NZ#A < cn. .
For m € Z, we denote S,, := ZGEM,level (0)<m CO%0- Clearly, S,, € S,, and, therefore, for
A€ T, N

Sa(S)r =SalS = Sm)r < IS = SmllL, (@a)- (4.5)

We shall also use the obvious inequality SA(S); < ||S||L,@a)-

Next, we estimate [|S[|5a ) = D acr [A]*"Sa(S)7 by splitting up 7 into two subsets,
namely, X* and T \ X*. )

(i) If A € X, then A C Qar for some A’ € AN T, and hence Qa C Q3,. From this, we

find
Sal) S ISIem = D WSHEans Do ISy
A*ETm, A*COA A*E€Tm, A*CQZ,
and hence, using (2.2),
AFTSAS) e Y IS .

A*eTm,A*cQZ,

Therefore,

Do IATSAS); < e Y IATISIE

AEXy, AeXy

and, summing over m € 7Z, we find

D IAITSAS)E < e > ATIS|],
AEX* AEX**
< e(#X)T|ST < en® IS5, (4.6)

where we applied Lemma 4.1 to S with A replaced by X** which is legitimate since X** D A
and hence S has the required representation.

(i) Let A € Ty \ Ao Then Qa =: ;2 A; for some Aj € (Tep N Tr) U (T \ T),
j=1,...,na, with nn < 3Ny. We have, using (4.5),

na
Sa(8); =8a(5 = Sm)7 < D 1S = Smlli, ) (4.7)
j=1

Note that if A; € T, \ T, then S|s;, = S,|a, and hence ||S — S, |1, (a;) = 0.
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Suppose A; € I'cy, N T,. It is an important observation that, in this case, S|KAJ_ =
ST|KAj~: ILKAj - Pa; and Sy, |a; = 1a; - Pa;, for some Py, € Iy, where Ka; = A\ Aj
(A; € A) is the ring associated with A;. Using this, we find

1S = Sulli, a5y = IS =Snll}, 4, <clSIE, a +CIIPA4I|ZT(A])
< dISIE & +C|A 1A% 1|IS||Lp (Ka,) (4.8)

For the last inequality in (4.8) we used that

1P 7, s < 18P I ay) < el HIPA I ia, ) (4.9)
DG TP N 10a,) < ABGNATTHISIIE, s

AN

where we applied Lemma 2.7 and used that S|KA]_ = Pa, |KAj- From (4.7)-(4.8), we infer

ONICRE IS S I (e AR A

AET\ X mEL AEL o, N T
el Al o,
< e ) IAPTTISI A e D WHSHLP(KA)
AEFCh AEFCh
= 21 + 22.

Switching the order of summation and applying (4.4), we obtain

o= e ISl Y, 1A

A€l A€, ADA!
< e NSIL anlAT DY (A/1AD> (4.10)
A’eA A€el, ADA!
< e > IATYISIL o < c(F#DTIS]E,
A’eA

where for the latter estimate we applied Lemma 4.1 to S with A in place of A.

To estimate X5, we shall use the representation of I',, as a disjoint union of chains: 'y, =
Usecuge A- Let A € £ and suppose A = {Ay,..., Ay}, where AY D Ay D .- D Ay D A
with A}, A% € A (A% ¢ T'y). Then

14
D ANAT ST, k0 < IS amay D 1NN

AEN j=1
Z .
< ISIE ) )y ot < lISIZ, -
j=1

If e £% and A € A, then S|k, = 0 and hence ||S||,, k) = 0.
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Summing the above inequalities over all A € £, we obtain

%5 e 3 1 0ea < o X IS sy) R < RS ()

A*eA A*eA

where we used Holder’s inequality and (4.2). Estimates (4.10)-(4.11) yield

D 1ASAS)] < c(#A)T|IS]; < en S]],

AeT\x*
This and (4.6) imply [|S||5a(r) < en®7[|S][7. O

Proof of Theorem 3.11. Let 7 be a WLR-triangulation and S € ¥(7). Then S can be
written in the form S = Y., 1a - Pa, where Py € Iy, A C T, and #A < n. As in the
previous proof, we adopt all the notation from “Tree structure in 7 generated by A C 77
with 7 and A from the above.

To estimate ||S||5ar) = Doaer [A7*wi(S, A)7, we shall split T into three subsets:

(i) f A € T\ T, then S is a polynomial of degree < k on A and hence wy(S,A), =

(i) If A € A, then evidently wy (S, A), < ¢[|S||z.(a) and hence

DA W (S, A) T < e AT, a) < cH#D)TISIL (4.12)

A€l Aeh

where for the last inequality we used Lemma 4.1 (with A replaced by A).
(iii) Let A € T'ep, (recall that I'y, ;=T\ A). Clearly, S|g, = 1k, - Pa for some Px € Il
where K := A\ A is the ring associated with A. Therefore,
wk(S,A)Z = wk(S—PA,A) <C||S||T +C||PA||L
< clSII7, () + clAl]AFT 1||5||Lp Ka): (4.13)

where we used that ||PA||T ) < c|Al|AleT1 |1 PAll7, (k) Which follows by Lemma 2.7 exactly
as in (4.9). From (4.13), We 1nfer

Do 1A Twe(S, A7 < e IATISIT ) Fe Y IAIAITISIE, k)

A€l A€l A€l
=: X7 + 3.

We estimate ¥} and 33 exactly as the sums X; and Xy were estimated in (4.10) and (4.11),
respectively. We obtain

Y AT Tw(S,A)7 < e(#A)™ (1SN, < en IS,

A€l

Combining this estimate with (4.12), we find ||.S||ga(r) < en®7||S||, and the proof of Theo-
rem 3.11 is complete. [

45



4.2 Appendix 2

Proof of Lemma 2.6 [Whitney]. Suppose P C R? is a parallelogram and f € L,(P).
Evidently, there exists an affine transform A which maps P one-to-one onto [0, 1]2. Whitney’s
estimate

Ep(f,P)g < cwr(f,P)q (4.14)

is invariant under affine transforms and, hence, follows from the case P := [0,1]%. For the
proof of Whitney’s inequality on [0, 1]?, we refer the reader to [B] (for the case of ¢ > 1) and
[SO] (for the case of 0 < ¢ < 1).

Now, having (4.14), we can prove Whitney’s estimate for a triangle as well. Fix an
arbitrary triangle A = [z1, 29, x3]. Let y1 = (2 + 23)/2, yo = (1 + x3)/2, and y3 =
(x1 + x2)/2 be the midpoints of its edges, and let A" := [y, y2, y3]. Consider now the three
parallelograms Py := [x1,y3, Y1, Y], P := |22, Y1, Y2, ys], and Ps := [23, 12, y3,11]. Clearly,
A = U?’:l P; and A" = ﬂ?:l Pj. We select polynomials Pas, Py, Py, Ps € Il such that
|f = ParllL,ary = Ex(f, A')g and || f — Pjl|,cp;) = Ek(f, Pj)q for j =1,2,3. Evidently, since
A" C P; and |P;| = 2|A'|, using Lemma 2.7 and (4.14), we have

cl|Pj — ParllLyany < cllf = Pillegan +cllf = ParllLyan
cllf = Pjll,p,) + cEx(f, A")q < cER(f,P;))q
ka(fa Pj)q S ka(fa A)q

with ¢ = ¢(q, k). From this, we obtain

1P — ParllL,cp))

IA AN

3
Ex(f,0)y < If = Parlliga) < eI = Parlligeey

j=1
3 3
< SN = Pilleyry + > I1Pa = Pilliywy < cwrlf, A),
7j=1 7j=1

where we again used (4.14). Thus (2.11) is proved for a triangle.

To prove (2.11) in the second case one can proceed similarly, using that the estimate is
invariant under affine transforms and most importantly that 7 is an SLR-triangulation (see
§2.1). We omit the details. O

Proof of Lemma 2.12. Let S € S,, be an element of best L, -approximation to f on Qa
from S,,. Using Lemma 2.7,(c) and Holder’s inequality, we obtain

If = Slleys) < ellf = Slley@a) + IS = Sl @a)
cSalf)y + el Qal VNS = SlL,0a)
cSa(f)n + lQal" Ve f = Sllzu@a) + 11 = Sllz,@a))
cSalf)y + el Qal VN f = S|lL,@a)
n

eSa(f)y +€llf = Slliyn) < cSalf)y O

Proof of inequality (3.11). We shall use the obvious inequality

IN AN IANCIN N

ab’"* < (a+0b)°, f0<a<s and a,b>0, (4.15)
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which is immediate from (a/b)* < (a/b+ 1)* < (a/b+ 1)*. Now, set o := 1/7 — 1/p,
b:

Pp— PR T
s: =1/ > a, a:=na], and

=Y ions1 7} Applying inequality (4.15), we find

()" <y m) =at( 3 )"

1 1 > 1/7
=n T < n e+ b)Y < n’C“(Zx;)
7j=1
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