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1 Introduction

Highly detailed Digital Terrain Elevation Data (DTED) and associated imagery are now
becoming widely available for most of the earth’s surface. However, algorithms for effective
approximation of data of this type are not yet available. A primary motivation for this work
is the development of effective algorithms for nonlinear piecewise polynomial approximation
of DTED maps from a redundant hierarchial system over (possibly) irregular triangulations
which are constructive in nature. Application of the ideas and theory from [3] to the resulting
framework will permit optimal entropy tree encoding of the elevation data, enable progressive
view-dependent refinements which may be focused to user localized regions, and permit the
registration of similarly encoded image textures to the surface (see [10, 3] for more details).

Our philosophy is that dependable practical approximation procedures can be built only
upon a solid theoretical basis. Accordingly, we have two primary goals in this paper. The
first is to better understand nonlinear piecewise polynomial approximation, in particular, to
understand the nature of the global smoothness conditions (spaces) which govern the rate of
approximation. The second goal is to develop or refine existing constructive approximation
methods for nonlinear approximation which capture the rate of the best approximation and
can be implemented effectively in practice.

This paper addresses nonlinear n-term approximation from Courant elements generated
by multilevel nested triangulations. More precisely, for a given bounded polygonal domain
E C R? | let (T;n)m>0 be a sequence of triangulations such that each level 7, is a triangulation
of E consisting of closed triangles with disjoint interiors and a refinement of the previous
level 7,,_1. We impose some mild natural conditions on the triangulations in order to prevent
them from possible deterioration, but our results are valid for fairly general triangulations
with sharp angles. We define 7 := {J, ~ 7. Each such multilevel triangulation 7 generates
a ladder of spaces Sy C S; C - - - consisting of piecewise linear functions, where S,, (m > 0)
is spanned by all Courant elements ¢y supported on cells # at the m-th level 7,,.

Utilizing these primal elements, we consider nonlinear approximation from n-term piece-
wise linear functions of the form S = Z?Zl ag;e,, where ¢; may come from different levels
and locations. Our first goal is to characterize the approximation spaces consisting of all
functions with a given rate of approximation. For approximation in L,, p < oo, this is done
in [11], where a collection of smoothness spaces (called B-spaces) have been introduced and
utilized. In this paper, we develop this theory in the more complicated case of approximation
in the uniform norm (p = co). Our program counsists of the following steps. First, in order
to quantify the approximation process, we develop a collection of smoothness spaces B¥(T)
which depend on 7 and will govern the best approximation. Second, we prove companion
Jackson and Bernstein estimates and, third, we characterize the approximation spaces by
interpolation space methods.

Our second and primary goal is, by using the B-spaces and the related techniques, to
develop (or refine) algorithms for nonlinear n-term Courant element approximation so that
the new algorithms are capable of achieving the rate of the best approximation. In the
present paper, we develop three such algorithms for n-term Courant element approximation
in L,, which we call “Threshold” (p < o0), “Irim and Cut” (0 < p < o0), and “Push the
Error” (p = oo) algorithms.

The first step of each of these algorithms is a decomposition step. We denote by © the



set of all cells (supports of Courant elements) generated by 7. The set (g)geco is obviously
redundant and, therefore, every function f has infinitely many representations of the form

F=> bo(Fpe- (1.1)

It is crucial to have a sufficiently efficient (sparse) initial representation of the function f
which is being approximated. In our case, this means that the representation (1.1) of f should
allow a realization of the corresponding B-norm || f||ge(7). Thus the problem for obtaining
an efficient initial representation of the functions is tightly related to the development of
the B-spaces. We achieve such efficiency by using good projectors into the spaces S,
m=0,1,....

For completeness and comparison, we first consider the natural “Threshold” algorithm
for n-term Courant element approximation which is valid only in L,, 0 < p < oo. This
algorithm simply takes the largest (in L,) n-terms from (1.1). Using the results from [11], it
is easy to show that the “Threshold” algorithm captures the rate of the best n-term Courant
element approximation in L, (p < 00).

The second algorithm, which we call “Trim & Cut”, originates from the proof of the
Jackson estimate in [7] and uses the following idea. First, we partition © through a coloring
into a family of disjoint trees ©” (with respect to the inclusion relation): © := |J, ©~.
Second, we “trim” each tree by removing cells § € ©" corresponding to insignificant small
terms agypy from (1.1), located near the tips of the branches. Third, we divide (“cut”) the
remaining parts of each tree ©" into sections of small “energy”. Finally, we rewrite the
significant part of each section as a linear combination of small number of Courant elements.
The resulting terms determine the final approximant. We shall show that “Trim & Cut” is
capable of achieving the rate of the best approximation in L, (0 < p < 00).

Pivotal in our development is the “Push the Error” algorithm, the name of which was
coined by Nira Dyn. The idea for this algorithm appears in [5] and may be roughly described
in L., as follows. For a fixed € > 0, we “Push the Error” with ¢, starting from the coarsest
level ©¢ and proceeding to finer levels. Namely, we denote by Aq the set of all § € O such
that |ag| > € (||sllc = 1) and define A := ) 4.4, ass. Then we rewrite all remaining
terms agpg at the next level and add the resulting terms to the existing terms agpy, 6 € O1.
We denote the new terms by dppg, 6 € ©1, and select in A; all § € ©; such that |dg| > . We
continue pushing the error in this way to the finer levels in the representation of f. Finally,
we define our approximant by A := 3" .. A;. Thus terms dppy with |dg| < € are discarded
only at a very fine level and hence the error (in Ly,) is < ¢.

Of course, this naive “Push the Error” algorithm cannot achieve the rate of the best
approximation. However, as we shall show in §3.3 and §5, after some substantial improve-
ments, the algorithm is capable of achieving the rate of convergence of the best n-term
Courant element approximation in the uniform norm.

A focal point of our developments is the characterization of the approximation spaces
generated by the best n-term Courant element approximation in L, and the characterization
of certain approximation spaces associated with the three algorithms developed, which show
that they capture the rate of convergence of the best approximation.

The outline of the paper is as follows. In §2, we collect all facts needed regarding mul-
tilevel triangulations, local approximation, quasi-interpolants, and B-spaces. In §3, we de-
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velop and explore the three algorithms for nonlinear n-term Courant element approximation:
“Threshold” algorithm (in §3.1), “Trim & Cut” algorithm (in §3.2), and “Push the Error”
algorithm (in §3.3). Section 4 is devoted to establishing Jackson and Bernstein inequalities
in order to study best n-term Courant element approximation. In §5, we show that the three
algorithms capture the rate of the best n-term Courant element approximation and identify
the associated approximation spaces as B-spaces. In §6, we discuss some of the main issues
of nonlinear Courant element approximation. We postpone until the Appendix the proof of
an important coloring lemma used in § 3.2 for tree approximation in the “Irim and Cut”
algorithm.

For convenience, we use the convention that positive constants are denoted by ¢, ¢y, ...
throughout and they may vary at every occurrence. The notation A ~ B means that
1A < B < cA.

2 Preliminaries

In this section we collect all the facts needed regarding multilevel triangulations, local ap-
proximation, quasi-interpolants, and other results which were developed in [11] and earlier
papers. The essentials are presented for clarity but without proofs.

2.1 Triangulations

By definition £ C R? is a bounded polygonal domain if E can be represented as the union
of a finite set 7o of closed triangles with disjoint interiors: £ = (J., A. We shall always
assume that there exists an initial triangulation 7y of E of this form. We call

T=UTm
m=0

a multilevel triangulation of E with levels (7,,) if the following conditions are fulfilled:

(a) Every level T,, is a partition (or triangulation) of E, that is, E' = (Jxc7, A and Ty,
consists of closed triangles with disjoint interiors.

(b) The levels (7,,) of T are nested, i.e., T,,+1 is a refinement of 7,,.

(c) Each triangle A € 7, has at least one and at most M children (subtriangles) in 7,1,
where My > 4 is a constant.

(d) The valence N, of each vertex v of any triangle A € 7, (the number of the triangles
from 7,, which share v as a vertex) is at most Ny, where Ny > 3 is a constant.

(e) No hanging vertices condition: No vertex of any triangle A € 7, which belongs to the
interior of E lies in the interior of an edge of another triangle from 7,,.



We denote by V,, the set of all vertices of triangles from 7,,, where if v € V,, is on
the boundary of E, we include in V,, as many copies of v as is its multiplicity. With this
understanding, we set V = U Vin.

m>0
We now introduce three types of multilevel nested triangulations which will play an

essential role in our developments:

e Locally regular triangulations. We call a multilevel triangulation 7 = Umzo T of
E, a compact polygonal domain in R2?, a locally regular triangulation, or briefly an LR-
triangulation, if 7 satisfies the following additional conditions:

(i) There exist constants 0 <r < p <1 (r < 1), such that for each A € T and any child
A’ of A which belongs to T
rlAl < A" < plA]. (2.2)

(ii) There exists a constant 0 < § < 1 such that for each A", A" € T, (m > 0) with a
common vertex
A

Al

S (2.3)

7| =

e Strong locally regular triangulations. We call a multilevel triangulation 7 = |J,,~o Tm
of E, a compact polygonal domain in R2, a strong locally regular triangulation, or simply
an SLR-triangulation, if 7 satisfies condition (2.2) and also the following condition (which
replaces (2.3)):

(iii) Affine transform angle condition: There exists a constant 3 = 3(7) >0, (0 <3 < )
such that if Ag € T, (m > 0) and A : R* — R? is an affine transform mapping A,
one-to-one, onto an equilateral reference triangle, then for every triangle A € 7, with
a common vertex with Ay, we have

min angle (A(A)) > 3 (2.4)
where A(A) is the image of A under A and is therefore also a triangle.

e Regular triangulations. By definition a multilevel triangulation 7 of E C R? is called
a regular triangulation if 7 satisfies the following condition:

(iv) There exists a constant 5 = $(7) > 0 such that the minimal angle of each A € T is
greater or equal to [3.

The remainder of this subsection makes several observations to better understand the
nature of multilevel triangulations. First, it is clear that the classes of LR- and SLR-
triangulations are each invariant under affine transforms. We next observe that each SLR-
triangulation is an LR-triangulation, but that the converse statement does not hold. More-
over, each regular triangulation is an SLR-triangulation, but again the converse is in general
false. Counterexamples are given in [11].

Each type of triangulation depends on several parameters which are not completely inde-
pendent. For instance, the parameters of LR-triangulations are My, Ny, 7, p, 6, and #7 (the
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cardinality of Tg). We could set My = %, p = 1 —r and eliminate these as parameters, but
this would tend to obscure the actual dependence of the estimates upon given triangulations.

We next briefly describe a simple standard procedure for constructing multilevel trian-
gulations. We start from an initial triangulation 7Ty of the given compact polygonal domain
E C R?. We then select a point on each edge of every triangle A € Ty and join them within
A by edges to subdivide A into four children. The collection of all such children becomes
the first generation of triangles, which we denote by 7;. We recursively refine in this way
to produce succeeding generations 73, 73,.... The resulting collection T := |J,,~ Tm is a
multilevel triangulation of E. -

It is important to know how the quantities |A|, min angle(A), and max edge(A) of a
triangle A € 7 may change as A moves away from a fixed triangle A® within the same level
or through the nested refinements. Consider the case when 7 is an LR-triangulation. Then
conditions (i)-(ii) suggest a geometric rate of change of |A| (at the same level). In fact, the
rate is polynomial [11]. Furthermore, if A’, A” € 7,,, (m > 1) have a common vertex and are
also children of some A € 7,,_1, then, as shown in [11], it is possible that A’ is equilateral
(or close to such), but A” has an uncontrollably sharp angle (see Figure 1).

Figure 1: A skewed cell

If 7 is an SLR-triangulation, the above configuration is impossible, but the triangles from
T still may have uncontrollably sharp angles. In this case, min angle(A) changes gradually
from one triangle to the adjacent ones.

For any vertex v € V,, (m > 0), we denote by 6, the cell at level m associated with v,
i.e., 0, is the union of all triangles from 7,, which have v as a common vertex. We denote
by ©,, the set of all such cells 6, with v € V,,, and set © =, ,~q Om-

2.2 Local piecewise linear approximation and quasi-interpolants

We denote by II; the set of all algebraic polynomials of total degree less than k. We shall
often refer to the following lemma (see [11]), which establishes the equivalence of different
norms of polynomials over different sets.

Lemma 2.1. Let Pellg, k> 1, and 0 < p,q < oo.
(a) For any triangle A C R?,

11
1Plya) = (A7 [Py a)-



(b) If A and A" are two triangles such that A" C A and |A| < ¢1|A'|, then
[Pllz,a) < ¢ [[Pllzyan-
(c) If A" C A and |A'| < c1|A| with 0 < ¢ <1, then
1Plzya) < € IPllzyaan ~ A1 2 [Pz,

In the above expressions, the constants depend at most on the corresponding parameters and
the constant c;.

The nohanging vertices condition (e) of triangulations guarantees the existence of Courant
elements. Namely, for any vertex v € V,,, (m > 0) there exists a unique Courant element @y,
supported on 6, € ©,, which is the unique continuous piecewise linear function on £ which is
supported on 6, and satisfies g, (v) = 1. We denote ® := ®(T) := (pg)yeo- We also denote
by S,, the space of all continuous piecewise linear functions over 7,,. Clearly, S € S,, if and
only if S = Z S(v)gy,. Throughout the remainder of this section, we assume that 7 is an

vEVM
LR-triangulation of E. We shall often use the following stability estimates for (0g)ycq. -

Lemma 2.2. Let 0 < g < o0 and S = Z ag g, m > 0, with coefficients ag € R. Then for

0cOm,
every A € T, we have
1
18I~ (X loawols)”
€0, DA
and hence )
181z, ~ (D laoeolly)”
0EOM,

with constants of equivalence depending only on the parameters of T. In these estimates the
ly-norm s replaced by the sup-norm if ¢ = oo.

The proof of this lemma is fairly simple and can be found in [11].

e Local piecewise linear approximation. The local approximation by continuous piece-
wise linear functions will be an important tool in our further development. For f € L,(E),
n >0, and any A € T, (m > 0), we denote the error of L,(§2a)-approximation to f from
Sm by

SA(f)n := Sal(f, T)n = Sle%fm If — SHLW(QA) (2.5)

where (2 is the union of all triangles from 7, which have a vertex in common with A.

e Quasi-interpolants. The set ®(7) of all Courant elements is obviously redundant. To
obtain a good (i.e., sparse) representation of a given function f, we shall use the following
well known quasi-interpolant:

Qm(f) == Qm(f,T) =D (f,%0) 0 (2.6)

0cOn,



where (f,g) := [, fg and (@g) are the duals of (¢g) defined by

Bo= >, ladag (2.7)
AETm,ACH

with S\A,g the linear polynomial which is equal to ﬁ at vy, the “central vertex” of 6, and

—ﬁ at the other two vertices of A (recall that N, is the valence of v). It is easily seen
that

(pg, Do) = Opgr, for 6,0' € O,,.

Evidently, @,, is a linear projector, i.e., @,(S) = S for S € S,,. It is crucial that
0y € Lo, and ¢y is locally supported. Consequently, @,, is locally bounded and provides
good local approximation.

Lemma 2.3. (a) If f € L,(E), 1 <n < o0, and A € T;,, m > 0, then

1@m(N)lzya) < cllfllzy@a)-

(b) If0<n<ooand g =7 a7 la-Pa with Px €y and m > 0, then

1Qm(9)]L,(a) < cllgllz,a),  for A€ T
The constants above depend only on n and the parameters of T .

For a proof of this lemma, see [11].

From the above lemma, we see that Q,, : L,(E) = S,, (1 <1 < 00) is a locally bounded
linear projector. There is a well-known scheme for extending (),, to a nonlinear projector
Qm : Ly(E) — S, for 0 < n < 1. This is needed for nonlinear approximation in L,
(0 < p <1). To describe this extension, let Pa, : L,(A) = II; (0 < n < 00) be a projector
(linear if n > 1 and nonlinear if 0 < n < 1) such that

|f = Pan(F)llz,a) < cBa(f,A)  for fe Ly(A),

where E(f, A) is the error of the best L,(A)-approximation to f from II, (the linear poly-
nomials). We define

pm,n(f) = Z I - PA,n(f)

AETm
and set
Tnn(f) = Qm(pma(f)), forf e Ly(A). (2.8)
Clearly, Tony ¢ Lyy(E) — Sy, is a projector (linear if 7 > 1 and nonlinear if 0 < n < 1).

The next lemma, established in [11], shows that @, and T,,, provide good local approx-
imation from S,,.



Lemma 2.4. (a) If f € L,(E), 1 <n <o0, and A € T;,, m > 0, then

If = Q@)L a) < cSalf)n

(b) If f e L, (F), 0 <n <00, and A € Ty, m > 0, then

1f = T (Pl Ly(a) < ¢Salf)y-

The constants above depend only on n and the parameters of T .

The needed convergence of Q,,(f) and T,,,(f) to f is provided by the following result (see
Lemma 2.15 from [11]).

Lemma 2.5. If f € L,(E), then

||f_Qm(f)||Ln(E) —0asm— 0, Zfl < n < 00, and
N f = T (F)llzyE) — 0 as m — 00, if 0 <n < oo,

Now, we apply a well known scheme for obtaining sparse Courant element representation
of functions. We define

G = Qm — Qm—1 and t,, ,, := Ty, — Tpoq yy, for m >0, (2.9)

where Q_1 :=0, T_;,, := 0. Clearly, g (f), tmn,(f) € Sm.
For a given function f € L, (E), 1 <7 < oo, we define the sequence b(f) := (bg(f))oco,,
from the expression

n(f) =) bo(f)ps, m > 0. (2.10)
9€Om
Using Lemma 2.5, we have
F=an(f)=>_ bo(fles inL, (2.11)
m>0 m>00€0,,

If feL,(FE),0<n <1, we define the sequence b, (f) := (bg,,(f))eco,. by

tma(f) = D bon(flpe, m >0, (2.12)

0EOM,

and again by Lemma 2.5, we have

f= Ztm,n(f) = Z Z be,n(f)‘PH in Ly. (2.13)

m>0 m>060€0,,

Clearly, b(-) is a linear operator while b, (-) (0 <7 < 1) is nonlinear.
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2.3 B-spaces

In this section, we include the necessary tools for the B-spaces which we need for nonlinear n-
term Courant element approximation. The B-spaces over multilevel nested triangulations of
R? are introduced in [11] and used there for nonlinear n-term Courant element approximation
in L,(R*) (0 < p < o). In the present paper, we shall use the B-spaces for n-term Courant
element approximation in L,(E) (0 < p < o0), where E is a compact polygonal domain in
R?. We shall put the emphasis on approximation in the uniform norm (p = oo). There are
three types of B-spaces (skinny, slim, and fat B-spaces) which were introduced in [11] to
serve different purposes. For Courant element approximation, we need the slim B-spaces
which we shall simply call B-spaces.

Throughout this paper, we assume that 7 is an LR-triangulation of a compact polygonal
domain F in R?. Moreover, the B-spaces B*(T), with parameters set 1/7 := a + 1/p
according to two specific choices: (a) p = oo and a@ > 1; or (b) 0 < p < 00 and « > 0, will
arise naturally in our algorithms and error estimates. These spaces have several equivalent
definitions, which we briefly describe.

e Definition of B(7) via local approximation. We define BZ(7) as the set of all
functions f € L.(F) such that

[flsacry = (D (Al *Sa(f)r)")"" < o0, (2.14)
AeT

where Sa(f), is the error of L,(Q2a)-approximation (local) to f from S,, for A € T, (see
(2.5)). Tt is readily seen that |f + g|pa < |f|5a +[g|5a with 7 ;= min{7, 1}, and |f + 5|2 =
|f|ge for s € Sy. Hence | - |pe is a semi-norm if 7 > 1 and a semi-quasi-norm if 7 < 1.

By Theorem 2.7 and Theorem 2.9 below, it follows that if f € B(T), then f € L,(E).
Therefore, it is natural to define a (quasi-)norm in B¥(7T) by

I fllBry == I fllp + | flB2(T)- (2.15)

More generally, for 0 < n < p, we define

Noo(£) = 1fllp + (Y (A5 (£))T)H. (2.16)

AeT

Evidently, Ns,(f) = || f||B=() and is dependent upon 7", Ns,(f) = Ns.(f, T)-

¢ Definition of norm in B (7) via atomic decomposition. For f € L.(E), we define

No(f) = __inf (S8 ewpoll)) (217)

f=220co covo 9co

where the infimum is taken over all representations f = >, ¢ copg in L.(E). Note that the
existence of such representations of f follows by (2.11) and (2.13). By Theorem 2.7 below,

> (81 lcowsll-)™ < oo implies || |eopa(-)|ll, < 00

0cO 0cO
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and hence f € L,(E) and the series ) , o |cops(-)| converges a.e. and in L,(E). Therefore,
the way in which the terms of the series are ordered is not essential and the convergence in
L.(F) implies a stronger (absolute) convergence in L,(E) (7 < p). By Lemma 2.1, it follows
that

1/
N, R~ inf ( 6|'/?|c T)
o) it (308l
R CoPo ) . 2.18
. zee@cm(%;” I; (2.18)

If p = 00, then

No(f) ~ inf (Z |ce|7)l/T.

f=2l0co copo beo

¢ Definition of norms in B%(7") via projectors. For f € L,(E), we let

F=> boy(f)eo (2.19)

0cO

be the representation of f from (2.11) if » > 1 and from (2.13) if 0 < n < 1. We define

Nor(f) = (D (1617 lbor (f)poll))7 (2.20)

0cO

and, more generally (in accordance with (2.16)),

Now(f) = (1617~ [bo,y (f)poll) )" (2.21)

0cO

By Lemma 2.1 and Lemma 2.2, we have

Noa(£) = O (AP qu(Allya))Y" ifn>1, (2.22)
AeT
Noo(f) = O AP [t o (F)llLya) )Y, 0 <n <1, (2.23)
AET
and
Noan(F) =~ O (1817 [ben (DY = O lban(Feells) /. (2.24)
6cO cO

In the most interesting case of p = oo,

NQ:TI Z |b9ﬂ7 l/T (2-25)
0cO
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e General B-spaces. A more general B-space B, (T), a > 0, 0 < p,q < oo, is defined as
the set of all f € L,(E) such that

. 1/p7a\ 1/a
I lssn = _gint (S22 3 eowallp) ) < oo

= Copo
[=Y0ce covo N 0€0,2-m<|g|<2-m+1

where the /,-norm is replaced by the sup-norm if ¢ = co. In this paper, we do not need the
B-spaces in such generality.

e Embedding theorems and equivalence of norms. We recall our assumptions. We
have 0 < p < 0o, and @ > 1 if p = oo and a > 0 if p < oco. In both cases, 1/7 := a + 1/p
(1/7 :== a if p = 00). We record estimates and embeddings from [11], along with the
necessary modifications, which are necessary for the development of the main results of this
paper. The first embedding result appears as Theorem 2.16 in [11].

Theorem 2.6. For 0 <7 <p < oo orp= 00,7 < 1, then for any sequence of real numbers

(co)oco, we have
1/7
I3 teotel| < e(32 Newgollp) (2.26)
6O P 60

where ¢ depends only on T, p, and the parameters of T.

Theorem 2.7. If f € L,(E) with 0 <n < p, and Ng,(f) < oo, then f € L,(E) (f € C(E)
if p = 00) and f has the representation f = Y, ¢ bon(f)pe with the series converging
absolutely a.e. in E and in L, (respectively, in C(E)) and

£l < |2 b0l 09| < eNow(h) (2.27)
0cO

where ¢ is independent of f.

Proof. For 0 < p < oo, the result follows from (2.11), (2.13), and Theorem 2.9 below. If
p = 00, the theorem follows by (2.11), (2.13), (2.25), and the following estimates

HZ bo.y(f) sDeHoo < (Z |bo,n(f)|r)1/T < cNo,(f), (r=1/a<1). O
St EC)

Remark 2.8. [t is easily seen that Theorem 2.7 is not true when p = o0 and a < 1. For
this reason we impose the restriction o > 1 when p = oo throughout.

Theorem 2.9. The norms || - ||e(r), Nsy(-) (0 <n <p), Na(-), and Ng,(-) (0 <n <p),
defined in (2.15), (2.16), (2.17), and (2.21) are equivalent with constants of equivalence
depending only on p, T, n, and the parameters of T .

Proof. One proceeds exactly as in [11] (see the proof of Theorem 2.17 of that reference)
and proves that

1/7
Flaeen ~ (A8 ()~ it (S el

AET I=20e0 090 Xy “500,

(D lbon(Hesllp)VT, (2.28)

0c0\Og

Q
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provided 0 < 1 < p. To obtain the norm estimate from these semi-norm equivalences, we use
Theorem 2.6 to give || f||, < c¢Ng(f). Using this, (2.28), and the remark after the definition
of Ng(f) in (2.17), we obtain

[fllB(7) & Nsn(f) < eNa(f) < cNou(f), 0<n<p.

For the reverse inequality, we use Lemma 2.2, Theorem 2.6, and (2.28) to obtain

(3 IoatNeal) < ctk0,70) (X ItsalHieoll)

[ASSH) SIS

| 3= tunthrgo] < e(IFl+ || Do boalF1eo
(ZSCAEH)

[ASEN)

1/
< dlfllte( X Iboaeoly)

0cO\O9

IN

)

< clflleer-
This and (2.28) imply No,(f) < c||f|lBe(r- O
The next embedding theorem of Sobolev type follows immediately from (2.18) or (2.24).

Theorem 2.10. For 0 < g < ay and 7; := (o; + 1/p)~', j = 0,1, we have the following

continuous embedding
BN (T) C Bx(T), (2.29)

i.e., if f € BR(T), then f € BX(T) and || fl| gzo () < cllfll per (-

e Interpolation. We first recall some basic definitions from the real interpolation method.
We refer the reader to [1] and [2] as general references for interpolation theory. For a pair of
quasi-normed spaces Xy, X1, embedded in a Hausdorff space, the space X+ X is defined as

the collection of all functions f that can be represented as fy+ f1 with fo € Xy and f; € X;.
The quasi-norm in Xy + X; is defined by

= inf .
P lsasx = inf ol + LAl

The K-functional is defined for each f € Xy + X; and ¢ > 0 by
K(f,1) = K(f,t; X0, X1) := inf |l follx, +t]lf1llx,- (2.30)
f=fot+f1

The real interpolation space (Xo, X1)r, with 0 < A <1 and 0 < ¢ < oo is defined as the set
of all f € Xy + X; such that

1/q

oo, = ([ @K Lorg) " <o

where the L,-norm is replaced by the sup-norm if ¢ = oo.
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It is easily seen that if X; C X (X; continuously embedded in Xj), then K(f,t) ~ || f]| x,
for f € Xy and ¢ > 1 and, consequently,

o0

1l xoxina = I llxo + (Y AK(f,27)]9). (2.31)

v=0

Theorem 2.11. Suppose 0 < p < oo and further assume that both ag,; > 1 in the case
p =00, and ag,a; > 0 otherwise. Furthermore, let 7; := (o; +1/p)™%, 7 =0,1. Then

(B (T), BE(T)ar = BX(T) (2.32)
with equivalent norms, provided o = (1 — XN)ag + dag with 0 < A < 1 and 7 := (a + 1/p) L.

Proof. We shall prove (2.32) only in the case p > 1. For a proof of (2.32) when p < 1, see
[4].

We shall use the abbreviated notation B* := B*(T) and B* := B;/(T), j = 0,1.
Also, we denote by ¢, the space of all sequences a = (agp)pco of real numbers such that
lalle, = (Xpce lasl*)t/* < oco.

We set n := 1 and normalize the Courant elements in L,, that is, ||¢gl|, = 1. We
also renormalize the duals @y from (2.7) accordingly. We denote again by b(f) = (bg)sco
the sequence from (2.10) with respect to the normalized Courant elements. By (2.24),
Theorem 2.7, and Theorem 2.9, if f € B%, 5 = 0,1, then

f=2 bo(f)ps and ||fllpes = [b(f)lle,, (2.33)
0O
recalling that the elements ¢y are normalized in L,. The corresponding statement holds for
functions f € B* as well.

We shall next employ the following interpolation theorem (see, e.g., §5.1 of [2] or [1]) which
follows directly from the definition of the K-functional and the norms of the interpolation
spaces. Suppose T is a linear operator which maps boundedly Xy into Yy and X, into Y,
where (X, X1) and (Yp, Y1) are couples of quasi-normed spaces as above. Then for 0 < A < 1
and 0 < ¢ < oo, T maps boundedly (Xo, X1)x4 into (Yo, Y1)r4-

We introduce linear operators Z and P as follows: Z is defined by Z(f)s := bg(f), 0 € O,
and P is given by P(a) := > 5co 000, @ = (ag)oco- By (2.33), [b(f)lle,, < cllfllp
for f € B*, j = 0,1, and hence Z : B% — (. (boundedly). By the above mentioned
interpolation theorem,

Z:(B*,B*)xr = (bry,lr)r,r (boundedly). (2.34)
Similarly, if a € £, then by Theorem 2.7 and Theorem 2.9, we may conclude that P(a) Le
Y oco Gowo is well defined so if we set f = P(a), then

P(a)|lges <c inf c <cllalle., 7=0,1.
IP(a)llpes < szee@cesoQH( o)ocolle, < cllalle,, J

Thus P : {;, — B% (boundedly) and by interpolation

P:(lry,lr)ar — (B*,B%),, (boundedly). (2.35)
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Finally, we recall the well known interpolation result (see, e.g. [1, 2]):

(brys lr)rr = e, where £ = 122 4 2 with 0 < X < 1. (2.36)

70

Clearly, (2.32) follows by (2.33)-(2.36). O

e Skinny B-spaces. The skinny B-spaces were introduced in [11] and used for character-
ization of nonlinear (discontinuous) piecewise polynomial approximation on R%. We next
adapt that definition to the case of approximation on a compact polygonal domain E C R?.
Suppose T is a multilevel nested triangulation of £ which additionally satisfies condition
(2.2) (see §2.1 and [11]). The skinny B-space B*(T), where k > 1 and « and T are as above,
is defined as the set of all f € L,.(F) such that

|flseecry = O (1A wi(f, A)7))Y™ < o0, (2.37)
AT

where wi(f,A), is a k-th modulus of smoothness of f in L, (A) defined by wi(f,A), =
suppere |AE(f, )L (a) and AF(f,-) is the k-th difference of f. The norm in B**(T) is
defined by [| - [[gge(r) == I - lp + | - |ser(7)-

e Fat B-spaces: The link to Besov spaces. Suppose 7 is an SLR-triangulation of a
compact polygonal domain £ C R?. Similarly as in [11], we define the fat B-space B**(T),
where k > 1 and a and 7 are as above, as the set of all functions f € L,(FE) such that

Plase 1= (S (A (£, 20))7)" < o0, (2.38)
A€eT
We endow B2*(T') with the norm || - ||gor (7y := || - || + | - [per (7)- Using Whitney’s theorem, it

readily follows that ciwa(f, A); < Sa(f)r < cowa(f,Qa)- and hence |f|gaz(7) < | f|e(r) <
c|flpe2(7). The space B2?(T) is a natural candidate to replace B2(7) in nonlinear n-term
Courant element approximation. This is, however, only possible for sufficiently small «
(0 < @ < ap). Otherwise B**(T) is too “fat” and is not suitable for these purposes.

e Comparison between B-spaces and Besov spaces. As shown in [11] (Theorem 2.28),
if 7 is a regular triangulation and 0 < o < 1+ 1/p, then

B(T) = B2(L,) (= BX(T)) (2.39)

with equivalent norms, where B2*(L,) is the Besov space of all Lebesgue measurable func-
tions f on R? such that

oo d 1/7
| flB2a(L,) ::(/0 (t 2wy (f, t)T)TTt) < o0 (2.40)

with wy(f,t), the second modulus of smoothness of f in L,(R?). (Notice that the smoothness
parameters of B-spaces and Besov spaces are normalized differently, o corresponds to 2«.)

Moreover, the identification (2.39) is no longer valid if « > 1 + 1/p. More precisely (see
[11}), for each § € ©, |pg|p2a(s,) = 00, if a > 1+ 1/p, while |pg|pe() = [|0o|lp-

16



A peculiar situation occurs when p = oo since, in that case, the constraints on a provide
no range of a for which (2.39) holds.

The univariate case is another interesting case to be mentioned. Jackson and Bernstein
estimates and the identification of approximation spaces determined by nonlinear approxi-
mation rates was established in [13] for uniform grids. B-spaces similar to these from the
present article can be defined in dimension d = 1 but all of them will be equivalent to the
corresponding Besov spaces and hence are not needed. For more complete discussion of this
and other related issues, see [11]. Our constructive algorithms are never-the-less valid and
should prove very useful in this simplified setting as well.

3 Algorithms for n-term Courant approximation

e Decomposition step for all approximation algorithms. The first step of each of
the three approximation algorithms that we consider in this section is a decomposition step.
This step is not trivial since the set ®(7) := (pg)geco of all Courant elements is redundant
and, therefore, each function has infinitely many representations using Courant elements.
For each algorithm, it is crucial to have a sufficiently efficient initial representation of the
function f which is being approximated. This means that the representation of f should
allow a realization of the corresponding B-norm.

To construct the initial representation, we consider two cases of metric approximation.
If the approximation takes place in L,, 1 < p < oo, we utilize the decomposition of f via
quasi-interpolation from (2.11) with 1 < n < p, while if 0 < p < 1, we use (2.13) with
0 < n < p. In both cases, we have an initial desirable sparse representation of f of the form

F= bops, bo=Db(f), (3.1)
0cO
which allows a realization of the B-norm (see (2.24)-(2.25) and Theorem 2.9). For the

remainder of this subsection, in order to more easily track the dependency of the constants
appearing in inequalities, we redefine || f| ga(7) by

1/7

fllszcr = (S tallo)) "~ (3 lewol) (32

0cO 0cO

which is an equivalent norm in B¥(7") (see Theorem 2.9). Without loss of generality we may
assume (when needed) that there is a final level O (L < o0), in (3.1).

3.1 “Threshold” algorithm (p < oo only)

In this algorithm we utilize the usual thresholding strategy used for n-term approximation
from a basis in L, (1 < p < 00). The resulting procedure performs extremely well due to
the sparse representation realized by the first step. We note, however, that the derived error
estimates involve constants that depend on p and become unbounded as p — oo. The “Push
the Error” and “Trim & Cut” algorithms described later in this section will be shown to
achieve the corresponding estimates for the uniform norm (p = oo). For this subsection we
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therefore assume that f € L,, 0 < p < oo.

e Description of the “Threshold” algorithm.
Step 1. (Decompose) We use the decomposition of f € L,(E) from (3.1).

Step 2. (Select the n largest terms) We order the terms (bgipp)oce in a sequence (bg, pg; )32
so that

||b91(1001||p > ||b929092||p > (33)
Then we define the approximant A7 (f), by AL (f), := D", ba, 0,
e Error estimation for the “Threshold” algorithm.
We denote the corresponding error of approximation of this threshold algorithm by AL (f), :=

lf = AZ(f),|l,- The argument used in establishing the Jackson error estimate in [11] may
be modified in obvious ways to prove the following error estimate.

Theorem 3.1. If f € BX(T),a>0,1/T:=a+1/p (0 <p < 0), then

A (f)p < en™ (I fllsecr), (3.4)

where ¢ depends on «, p, and the parameters of T .

In §5, we shall need the following result:
Lemma 3.2. If f =), o boys is the decomposition of f from (3.1), then

a 1/7
85, < en™ (3 Noyen,ll;)

Jj=n+1
where (b, P, );";1 is as in Step 2 and c depends on «, p, and the parameters of T .

Proof. Applying Theorem 3.4 from [11] to (by,¥p;)32,,, 1, immediately provides the desired
result. [

Remark 3.3. As we have mentioned, the main drawback of the “Threshold” algorithm is
that it is not applicable to approzimation in the uniform norm since the constant ¢ = c(a, p)
in (3.4) tends to infinity as p — oo and the performance of the algorithm deteriorates as
p gets large. The obuvious reason for this behavior is that f can be built out of many terms
(bog) which have small coefficients and are supported at the same location. These terms
can pile up to an essential contribution but the algorithm will fail to anticipate their future
significance.
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3.2 “Trim & Cut (the tree)” algorithm

The idea of this algorithm has its origins in the proof of the Jackson estimate in [7] (see §5,
pages 272-276). The approximation considered there is by wavelets or splines over a uniform
partition in the uniform norm. We shall refine this idea to develop an algorithm for n-term
Courant element approximation in L,(E), 0 < p < oo, over LR-triangulations. We begin
with a brief description of the algorithm and then elaborate on the details of each of the
main steps.

e Description of the “Trim & Cut” algorithm.
Step 1. (Decompose) We use the common decomposition of f € L,(E) given in (3.1).

Step 2. (Organize the cells of © into manageable trees ©%) We develop an algorithm (pro-
cedure) for coloring the cells of © in such a way that the cells of the same color form
a tree structure as described in Lemma 3.4 below. This organization greatly simpli-
fies the management of the estimates, both the approximation construction and the
enumeration of “active” Courant elements in our approximant.

Step 3. (Trim each tree) Since all the elements may initially effect the B-space norm of
a function, we need to preprocess each tree by pruning all branches which may have
many leaves, but do not have significant contribution to the norm of the function f.
We do this by running a stopping time argument from the finest level to coarser, until
a significant cumulative contribution is met. We prune the branch just below that
element.

Step 4. (Partition the remaining trees into “segments”) We continue to partition the re-
mainders of each of the K trees by cutting them at each of the joins of branches to form
chains from the tree. We will easily be able to track the number of chains produced
by this procedure. A second stopping time argument is then applied to cut the chains
into “segments” in order to control the number of significant elements added to the
approximant (at most N+ 1 from each segment) and to guarantee that the cumulative
effect of the left-over elements (i.e., error) can be controlled by the final Step 5.

Step 5. (Rewrite the “segments” to control error) Here each segment is rewritten at its finest
level and its terminal element (with the new coefficients) and some of its neighboring
elements are added to the approximant. This allows for a void to be created so that
the residual of the segment will have disjoint support with all remaining segments as
well as the residuals of those previously processed. This insures that the cumulative
pointwise error remains under control.

We now describe these rather vague steps in more detail. Step 1 is clear from our earlier
discussion.

Step 2. In the following lemma, we construct a procedure for coloring the elements of ©
with K colors v, so that no two Courant elements of the same color from the same level
have supports that intersect, in fact corresponding cells of the same color will have a tree
structure with set inclusion as the order relation. This allows us to partition © into a disjoint
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union of sets 0 (1 < v < K), and correspondingly organize f as the sum f = Zle fv,
where f, = Eoeev beg. We can then proceed to process each of the f, without worry
about its terms from the same level overlapping and at worst a factor of K will come into
the constants for the estimates that we derive. For its proof, see the Appendix.

Lemma 3.4. [Coloring lemma| For any multilevel-triangulation T of E, the set © :=
O(T) of all cells generated by T can be represented as a finite disjoint union of its subsets
(OY)E_, with K = K(Ny, My) (No is the mazimal valence and My is the mazimal number
of children of a triangle in T ), such that each ©" has a tree structure with respect to set
inclusion, i.e., if ', 0" € O with (6')° N (0")° # 0, then either ' C 6" or 6" C ¢'.

In order to complete the remaining Steps 3-5 we must consider two variations in the
details of the algorithm depending whether p = oo or 0 < p < 0co. The case of the uniform
metric is presented in Subsection 3.2.1, while the case of L, (0 < p < o0) is given in
Subsection 3.2.2.

3.2.1 The case p = oc.

Fix € > 0 and let £* := ;5 where we recall that K is the number of colors representing the

2K
tree structures.

Step 3. Trimming of ©” (1 <v < K ) with €*.
We trim each ©, starting from the finest level ©* and proceeding to the coarsest level. We
remove from ©Y every cell §° such that

Z |bg| < €. (3.5)

0Co°

We denote by I'V the set of all # € ©” which have been retained after completing this
procedure and by I'} the set of all final cells in T, i.e., 6 € T'} iff there is no 6 € 'V such
that 6 C 0°. Clearly, for each 6° € T'%,

> " |bg| < " for each 6’ C 6°, but »  |by| > ", (3.6)

0Co’ 0Co°

We denote frv := Zaerv bepy. Therefore,

1y = frolloo < tnax 1> boolloo < max Y Jbg <& (3.7)

0CoH° 0Co°

and hence if we set fr := Zﬁ{:l frv, then

If = frllo < Ke™ =¢/2. (3.8)

Step 4. Partitioning the branches of each tree I'V into chains and the chains into “segments”.
For each of the tree structures I'V (1 < v < K), we denote by 'Y the set of all branching
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cells in T (cells with more than one child in I') and by I'Y, the set of all chain cells in I'
(cells with exactly one child in T'"). It is easy to see that

4Ty < #T%. (3.9)

In fact, one proceeds by induction from the finest to coarser levels, associating each branch
cell from I'y by a cell from I';. For each branch cell, there is always at least one member of
I still available from each descendant edge. Only one is used to associate with the current
branch cell thereby leaving at least one available for its next ancestor branch cell in that
line.

On the other hand, #I'), may be much larger than #I'; and so we will need to process
these elements. A collection of cells 1 D 0y D --- D 6, is called a chainif for j=1,...,1—1
0j+1 is a child of 0; and 0; € I'},, and the terminal cell §; € I'; UT'y. We partition the tree
I'” into chains. Namely, we start at the coarsest level and construct (maximal) chains which
will terminate with either a final cell (in I'}) or a branching cell (in I'y). We continue this
procedure to the finest level.

We next “section” each chain into segments using €* as a threshold. Namely, if A is a
chain and A = (9]-)5-:1 with 6, D 03 D --- D 60, then we start from the coarsest element ¢; and
sum the coefficients of each cell moving to the next child of the chain until the sum exceeds
the threshold. At this point we cut the chain to form the first (significant) segment and
start this procedure again with the next child in line until this is not possible (i.e., ending
without the threshold being crossed). We call this type of segment a “remnant segment”.
Therefore, this procedure cuts A into disjoint segments o of the form (GJ);J;‘; , b > 0, so that
each segment satisfies exactly one of the following conditions:

(a) o consists of a single “significant cell”:

|bg,| > €* (case of u = 0), (3.10)
(b) o is a “significant segment”:
i+p—1 i+ p
Z |be,| < €%, but Z |bo,| > €, (case of p > 0), (3.11)
P j=i

(c) o is an “remnant segment”:

l
> by, | <& (3.12)
j=i

We denote by % the set of all such segments o = (GJ);J;‘; resulting from this procedure.

Step 5. Rewriting elements from certain segments of ¥¥.

Let 0 = (0;)}—, be any segment from ¥” and suppose that the finest cell 6, of o belongs
to ©,,. We rewrite the Courant elements (3_%_, by, g;) of the segment at its finest (m-th)
level, finding coefficients (cp) such that

"
Z Copo = Zbej%j on6,.
j=1

0€0,,,0°M0,,#0
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We denote X, := {# € ©,, : 0°N0, # Dand § C 6;}. Obviously, if u = 1 (ie., the
segment consists of a single cell), then the coefficient remains unchanged and X, = o = {6, }.
Observe in any case that #X, < Ny + 1 and Upey, 0 C ;. Finally, set ¥ := UleZ”, and

correspondingly define
AT(f) = Z Z Cop- (3.13)

ceEX GGXU'

as our approximant produced by the “Trim & Cut” algorithm.

e Error estimation for the “Trim & Cut” algorithm (Case p = c0).

Suppose that the “Trim & Cut” procedure has been applied to a function f with ¢ > 0, and
ATC(f) = > gea. Cowo is the resulting approximant from (3.13), where A, = Usex&,. We
denote

n(e) =ng(e) = #Ae,  ALG(Hoo = IIf = AL (f)lloo;
and

AZC (f)oo := inf {AZ(CE’)(f)oo : n(g) < n} .

Note that each of these quantities depend implicitly on 7. To complete our results for the
“Trim & Cut” algorithm, we first show in Lemma 3.5 that this is a good approximation to
f, and that the number of elements which are used in the approximant satisfies the correct
estimates (see Theorem 3.7 below).

Lemma 3.5. Suppose that ATC(f) is the approzimant for f given in equation (3.18) which
has been constructed using the “Irim & Cut” algorithm, then there holds the error estimate

If = AT(Nllw < e (3.14)

Proof. Following the definition (3.13) of ATC(f), we define

AV = Z Z CoPo,

o' €TV OEX,,

then obviously ATC(f) = 5 | A, Since &* = 57 it suffices to show that || frv — 4[| < €™
In Step 5 we extracted the heart of each segment o = (6;)}_,, added its contribution to
the approximant (3.13), and cleared room for descendant cells. To estimate the associated

error, we introduce the ring for o as R, := 61\, then R, = () when ¢ consists of a significant

cell (i.e., condition (3.10) holds). For any nonempty ring R, (o € ¥¥), set ¢’ := (03-)9-‘;11 and
observe that at worst
o= ANy = [Ctwo = S e,
fco e X, oo(Ho)
< HZbMH <) byl < e (3.15)
fea’ Loo (61) fco’

It is easy to see that all rings R, (o0 € ¥¥) are disjoint and the set where A” may differ from
frv is contained in U,cs» R,. Hence, by summing over all segments o and then over all colors
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v, it follows that

9

K
1o = AL oo <D0 D Mo = A () < K™ = 5

v=1 oe¥¥
This together with estimate (3.8) implies the desired error estimate (3.14). O
Remark 3.6. Conditions (3.5), (3.11), and (3.12) can be relazed by replacing every sum

> |bgl by || bews ||oo- This would not change the rate of approximation, but may improve
the constants in a practical implementation.

Theorem 3.7. If f € B*(T), a > 1, 7 :=1/a, then for each ¢ > 0

Al (Moo <& and n(e) < ce™ ™| fllper), (3.16)
where ¢ = ¢(Ny, My, ). Therefore,
AT (oo < e || fllBecr- (3.17)

Proof. We have already shown in Lemma 3.5 that AZ(C;)( floo < &, so we only need to
establish n(e) < ce™"[|f|[Ga(r). We first observe that it is enough to estimate #3”, since
contributions to the approximant occur only as each segment from " is processed. Note
that at most one element is contributed for segments consisting of a single significant cell
(3.10) and at most Ny + 1 contributions for the segments satisfying instead either (3.11)
or (3.12).
In order to estimate #X" we first estimate #I" since it will estimate certain terms. The
stopping criterium (3.6) in Step 3
e < Y |byl (3.18)
0C06°
must hold for each 6° € T, so if we apply the 7-th power to both sides, use the embedding
of the sequence spaces (7 < 1), sum over all # € T'%, and observe that the supports of the
cells in I} have disjoint interiors, then we obtain

#0% ()7 < D D bl < N fllBeer: (3.19)

6T 9Co°

The right most inequality follows immediately by our definition of the norm of BX(T)
(see (3.2)).

To complete the proof of the theorem, we only need to establish a similar estimate for
the number of elements of ¥¥. Recall, however, that the segments o are formed as disjoint
segments of cells from the tree structure and come as one of two types, Yg,, those exceeding
the threshold (see conditions (3.10) or (3.11)) and, ¥ ey, those that do not (see condition
(3.12)). From the construction it follows that remnant segments terminate with either a
unique final cell or a unique branching cell, and so by (3.9)

#rem < #TY + #T < 2 4T (3.20)
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which has just been shown in (3.19) to satisfy the desired bound.

Therefore we are reduced to estimating #Xg,. But the same idea used in estimating
#1 (see estimates (3.18)-(3.19)) may be employed once again. Indeed we just replace the
condition (3.18) with

e <) |bal (3.21)

fco

and use the fact that the segments are disjoint (considered as part of the tree structure) in
order to obtain

#86g (€)7 < D > bol” < [1f IBecry- U (3.22)

Uezsig fco

Although not required here, the following lemma will be needed in §5 and can now be
established using the techniques of this section.

Lemma 3.8. Let f = fO+ f1, where f = 3o bos, [ = Y pcolhps (5 = 0,1) with
be = by + by (all 0 € ©) and let

. 1/7j
Ny = (D7) <00 (G=0,1)
6cO

with o > 1 and 7; = 1/a;. If the “Trim & Cut” algorithm with ¢ = €9 + 1 (¢; > 0) has
been applied to f, represented as above in place of Step 1, then

A580+51)(f)w < g&o+ey, (3.23)
n(eo+¢e1) < e PNG® + e N, (3.24)

and consequently
ATC(f)oo < en Ny +cen @ N;, n=12,... (3.25)

with ¢ depending only on «g, oy, and the parameters of T.

Proof. All the elements for the proof already appear in this subsection, especially in the
proofs of Theorem 3.7 and Lemma 3.5 and we shall assume complete familiarity with the
notation, terminology, and estimates given there. Denote the number of cells used in the
“Trim & Cut” algorithm for (by), with approximation error €, by n(e). Similarly, let n;(e;)
be the corresponding number of cells used for f/ (j = 0,1), again represented as f/ =
Y eco bggoj, in place of Step 1. The theorem will be proved once we establish the estimate

n(60 + 61) S 2 (no(é‘o) + TL1(€1) ) (326)

for any 9,1 > 0. Indeed, by combining this inequality with the results of Theorem 3.7 (in
particular inequalities (3.16)-(3.17)), we can see that

n(eo +e1) < 2ceq "NG® + 2ce; "Nt = n. (3.27)
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is true if we set ¢; := (40)1/T1n_1/7f/\/'j, jJ = 0,1, where c is the constant appearing there. But
the fact that n > n(ep + ;) and the definition of n(-) imply

Agc(f)oo < Afgo+5l)(f)oo <eg+er.

Hence, by the definition of the ¢;, the right most terms of this last inequality are bounded
by the desired terms on the right hand side of inequality (3.25).

In order to prove estimate (3.26), we only need to estimate the number of segments %
for f. First observe in Step 3 of the algorithm that for the thresholding condition (3.6) to
hold for f, with € := ¢y + €1, the condition must also be satisfied for that same cell #° for
at least one of the f7 with corresponding threshold ¢; (j = 0,1). This shows that the tree
'Y =TY(f,e) determined by threshold ¢ is contained in the union of the corresponding trees
I'“(f7,e;) ( = 0,1). By the construction of segments ¢ from maximal chains of T'(f) in
Step 4, the segments for f are disjoint and one of the conditions (3.10)-(3.12) must hold. If
either of conditions (3.10) or (3.11) hold for a segment o of f, then >, [b) + bj| > €0 + &1
implies the corresponding condition for at least one of f° (and &g) or f! (and &;). That is, for
one of either j = 0,1 there must hold },__ b}| > ¢; and so for at least half of the segments
of f this condition must persist for a fixed index j (5 = 0,1). The number of remnant
segments (see (3.12)) on the other hand may be estimated by the sum of the number of
remnant segments of f° and f!, plus the number of new branching cells which may arise
within the union of the trees of f° and f!. These new cells are introduced in I'V(f, ) when
two chains, exclusive to each of the I'V(f7, ¢;) meet, thereby dividing the existing chains for
each of the trees and creating an additional segment. It is easy to see that the number of
such new branching cells does not exceed min{T%(f°, o), T%(f", 1)}

This accounting of the three qualifying conditions (3.10)-(3.12) for segments gives

[ﬂ] < max{#E(f0, ), AN, 21} + mind DU, ), TS, 21)}

2
< #E(foa 60) + #E(fla E':1)
which implies the desired estimate (3.26) and completes the proof. UJ

3.2.2 The case 0 < p < oo.

We now return to completing Steps 3-5 in the case that p < co. The arguments are quite
similar to the case p = oo in the previous subsection and we shall use the notation there and
indicate only the differences. Introduce a new parameter o, where 0 < o < p, and fix € > 0.

Step 3. Trimming of ©¥ (1 <v < K) with ¢.
This step is the same as in Case 1 (p = oo) with (3.5) replaced by

(Z(|be||9|1/”)")l/g <e. (3.28)

0CH®

In contrast to the case p = oo, the error || f, — frv||, is no longer controlled solely by e. It will
depend on the smoothness of the function f which is being approximated (see Theorem 3.9
below).
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Step 4. Partitioning the branches of each tree I'V into chains and the chains into “segments”.
We proceed exactly as in the case p = 0o, replacing conditions (3.10)-(3.12) by the following

|bg, ||6:]'/? > & (case of = 0), (3.29)
vt /e e /e
(Z (Iba,|16;14/7)e ) <e, but (Z(|bej||0j|1/fﬂ)@) >¢, (case of u>0),  (3.30)
j=i j=i
! 1/e
(- (leayll67)e) <= (3:31)
j=t

Step 5. Rewriting elements from certain segments of 37 .

This step is exactly the same as for the case p = oo.

e Error estimation for the “Trim & Cut” algorithm (Case 0 < p < o0).

Suppose that the “Trim & Cut” algorithm has been applied to a function f with 0 < o <p
and € > 0, as described above. Let ATC(f), = > oen. CoPo, Ae C O, be the approximant
produced by the algorithm. We denote

n(e) :=#A  AG(p = IF = AFlly

and

ATC(f)p = f{ALG) (f)p  nle) < n}.
Theorem 3.9. If f € B(T), where a > 1/0—1/p and 7 = (a + %)_1, then for each e > 0

AT Ny < e | fllfry and n(e) < ce || faer. (3.32)

and hence
Az:c(f)p S CniaHfHB?‘(T)a n = 1727"'7 (333)

where ¢ depends on p, 0, «, and the parameters of T .

Proof. We first estimate n(¢). From the stopping time criterium (the converse inequality
of (3.28)) in Step 3, it follows that

o< (S mllor) " < (S liorey) mcer <o) (339

0Co° 0Co°

for each 6° € T}, which enables us to repeat the arguments from the proof of Theorem 3.7

and obtain the estlmate #1't < ¢ 77| f|Ba(r)- In going further, we use (3.30) in a similar
fashion and the above to 1nfer as in the proof of Theorem 3.7 that
#2" < ce || flle - (3.35)

This implies the desired estimate for n(e).
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It remains to estimate the error ||f — An(s (f)pllp- We first estimate || f, — frv||,- To this
end, we group the removed cells into collections of comparable B&-norms. We denote by

2 :={0ecO"\T":0Z 0 for any ' € ©"\I", 0" #6}

the set of all cells at which a trimmed branch starts. Note that for each #° € =¥ the inequality
(3.28) holds. Therefore, we can partition =" into disjoint collections =¥, j = 1,2,...,L",
such that 2¥ = U}", 2% and

< > ) (Iboll6]7)e < 220 (3.36)

0°€E‘; 0Co°

for all j = 1,2,...,L" except possibly for j = L” when the left most inequality may fail.
Hence, since the cells from = have disjoint interiors and recalling that |b||0|'/? = ||boy]|»,
we obtain

v LY 1
1= el = 1323 S bwole < (3501 3 bowol)”

j=1 6°€EY 0CH° j=1 6°€EY 6C6°

(U S (uleryepre)’ (337

<
j=1 6°€Ey 6Co°
v

< ¢ (Z 2;0/@5;0)1/13 —c (LV)I/pg,
j=1

where we used the embedding inequality (2.26). To estimate L” we once again exploit the
idea used in estimating #I" (see estimates (3.18)-(3.19)). Since 0 < 7 < p, we have by
estimate (3.36) that

/e 1/
e< (2 S amlermye) < (3 S (wllery)
0°cEY 0C0° 6°€=Y 6C6°
We use this and the fact that the collections Z7 are disjoint to obtain
LV
e <e 3 (3D beeoly) < el fullfgcry: (3.38)
j=1 6°€EY 9Co°
Combining (3.37) and (3.38), we obtain
1fs = foolly < e (&7 Fullpecr) e = ce 1l o,

and hence by standard subaddivitity estimates for L, (0 < p < co) we may estimate the sum

K .\ 1/p*
1= fels < (S = Al (3.39)
v=1
K . 1/1)*
< e (MUl ) < e IR
v=1
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where p* := min{1, p}.

To complete the proof of the theorem, we must estimate || fr» — A”||,. This differs from
our earlier arguments in the case p = oo which involved the error estimate (3.15) over a ring
of a segment. For any such ring R, (0 € %) we use instead the estimate

I fre = ANLpry = 1D bogo = > copalliyr) < 11D boallLyon)
0co e X, f0co’
i 1/7 1 1/e0
< (X lbawolly) < e (D amaller)e) T <,
fco’ fco’

where we used the embedding inequality (2.26). From above, using that all rings {R, },czv
have disjoint interiors, we obtain

1 for = ANl < (D Wfow = AIE (5, VP < e (HE)7e. (3.40)

ocexv

Combining (3.40) and (3.35) yields

Ifre = Allp < ce | full b,

and hence
TC = A\ P
1= AZplly < (30 M — A7)
v=1
K 1/p*
< e (MU hllaaer) ) T < eI,

v=1

where p* := min{l,p}. From this and (3.39), we obtain the appropriate estimate which
corresponds to (3.14) of the case for p = oo,

1f = ATl < e I - (3.41)
]
Lemma 3.10. Let f = O+ f', where f = 3 ycq bos, 7 = Y pcoUipe (7 = 0,1) with
be = by + b (all 0) and let

. 1/7;
Ny = (o (Elernm) T < oo, (5=0,1)

0coO

with a; > % —% (0 <po<p)and 1 :=1/(co;j + ;1))*1, j = 0,1. Furthermore, suppose the
“Trim & Cut” algorithm has been applied to f, using the above representation of f in place
of Step 1, with 0 < o < p as above and € = €y + €1 for some €y,e1 > 0. Then we have

1/p
AZ(60+61 ( ) < c (60 + 61) (gaTON(;FO + g;TlNlﬁ) ’ (342)
n(eg +¢e1) < (65”’/\/’7" +e ™ Tl), (3.43)
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and, therefore,
ATC(f), < ¢ (n*aoNo v n*“wl), n=1,2..., (3.44)

where ¢ depends only on p, 0, ag, a1, and the parameters of T .

Proof. The proof is very similar to the proof of Theorem 3.9 and we shall only indicate
the differences using the notation and ideas from there. Those differences are in estimating
#I, #X” and L” (see (3.35) and (3.38)). From the stopping criteria (converse inequality
to (3.28)) in Step 3, it follows that, for 6° € I'¥,

cote < <Z(|b0||0|1/;ﬂ)g)1/g

0Co°
1/ 1/
< (S UBIIEI)) Mo (S hllor )
0Co° 0Ceo°
1/7 1/7
< oSS lor ) e (3 (eblier )
0Co° 0Co°

where c, := max{1,2/¢7} and we used the fact that 79, 7; < o. Therefore, for each §° € T,
at least one of

1/70 1/m1
g0 < co( DO(BGIOIT™) T or e < o3 (IbhlI01)™)
0CH® 0Co°

must hold. Denoting by I/, and I'}, the sets of all §° € I'} for which the first or second
inequality, respectively, holds, we obtain

NP >c Y S (le]r)7 > e#T% 7 (j=0,1)

0° EI‘;]. 0Co°

and hence
TG < H#T + #T% < c (5PN +2 "N (3.45)

We obtain similar estimates (with the same right-hand-side quantity) for #3* and L” by
using the same argument. The estimate for #X" gives the desired estimate for n(gy + ¢1).

We may use estimate (3.37) and (3.40) in the proof of Theorem 3.9, with ¢ = g9 + ¢4,
together with the above estimates for #%” and L” to obtain

ALC (N < cleo+e1) (#X)'7, (3.46)

from which the desired estimate (3.42) follows. The final estimate (3.44) is proved by selecting
gj = (2¢/n)Y7 Nj, which by our result (3.43), gives that n(go +&1) < n and so

ATC(f)p <AL ey (N)p < en'P (e + 1) <c (TFO‘O/\/O + nf"‘lj\/’1>

n(é‘o “+e€1

where we have used estimate (3.46) in the second inequality. O
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3.3 “Push the Error” algorithm

The idea of this algorithm to our knowledge first appeared in [5]. Our goal is to adapt
this algorithm for nonlinear n-term Courant element approximation in the uniform norm
and perfect it so that the resulting algorithm achieves the rate of convergence of the best
approximation.

In §3.3.1, we describe the “Push the Error” algorithm in its most simple and naive form.
We follow with three examples which illustrate deficiencies of the simple algorithm and the
types of traps to which it may fall prey. In §3.3.2, we give our refined version of that
algorithm. Throughout this section, we assume that 7 = (J-_, 7y, is an LR-triangulation of
some compact polygonal domain E in R?, where the approximation takes place (see §2.1),
and f € C(E).

3.3.1 A naive “Push the Error” algorithm (p = o0)
We begin by outlining the basic elements of the algorithm.

Step 1. (Decompose) In this subsection we denote by Q;(f) the piecewise linear continuous
function which interpolates f at the vertices V; of all triangles from 7;. Clearly f &
C(FE) can be represented as follows

o9}

F=Q(f)+D_(Qi(f) = Qia(f) =) covn, (3.47)

j=1 6€O

where the series converges uniformly. In practice the series terminates at some finest
level ©; (J > 1), so that

J
F=Y_Y cops
=0 6ee,

Assuming that initially f = de@J copy, there exists a fast and efficient procedure for
obtaining (3.47).

Step 2. (Threshold € “Push the Error”) Fix e > 0. We shall begin at the coarsest level
O and proceed consecutively through to higher resolution levels ©,,0,,...,0;. We
define Ay as the set of all cells § € O such that |cg| > € (||pp]| = 1) and set

Next we rewrite all remaining terms cppp (0 € Oy \ Ag) at the next finer level and
add the resulting terms to the corresponding terms from (cyppp)yee,- Thus we obtain
a representation of f in the form

J
f:A0+Zb9(p9+Z ZC@()OQ.

0cO, j=2 6€0O;
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We next process the Courant elements at level ©;. We define A; as the set of all § € ©,
such that [by| > & and set Ay := ) 5., bowg. All remaining terms by, 6 € O1 \ Ay,
we rewrite at the finer level ©, and add the resulting terms to the corresponding terms
(co0)geco,- The representation of f at this stage is written as

J
f=A0+ A+ Z boe + Z Z Copo- (3.48)

6cO2 j=3 0€0O;

We continue in this way until we reach the finest (i.e., highest resolution) level 0.
The only modification at this finest level is that we discard all terms whose coefficients
in absolute value do not exceed our threshold parameter €. In this way we obtain our
approximation

J J
A= A(f) =) _A; = bpps, A:=[]JA,
=0 =0

0cA

Since only small terms (|bg| < €) at a single (in this case, finest) level are discarded,
they cannot stack up and we have

||f - As(f)“oo <e.

Some modifications must be made however to insure that this simple and efficient
algorithm will achieve sparse representations in an asymptotically optimal sense and
avoid hidden traps that will result in using too many terms in the approximation.

We indicate briefly each of the possible pitfalls to keep in mind before developing the
algorithm in full in the next section.

Trap 1. The interpolation scheme we used to represent f in (3.47) leads to difficulties since
it does not always lead to sparse representations. We give here a univariate example
which may be easily extended to two dimensions.

Let E := [—1,1] and f be the hat function on [—;—N, 21—N] for N sufficiently large, i.e.,
f(z) = p(2Nz) with p(z) := (1 — |z])1j_11)(z), # € R. We assume that T consists of
all dyadic subintervals of [—1,1]. Using the interpolation scheme described in Step 1
at the coarsest level, we must interpolate the extremes at —1,0, 1 in order to decrease
the L* error. The resulting error after this stage however is 1 — 21—N Proceeding with
the “naive” Push-the-Error algorithm with any ¢ < % results in an index set A with
#A ~ N. However, the best approximation is achieved using the single fine scale
element o(2Vz). Therefore, any reasonable algorithm which retains n terms in the
approximant should give a rate of convergence O(n~7) for any v > 0.

Trap 2. For a given € > 0 the algorithm as currently described may produce a great number
of undesired terms due to the superposition of a large number of fine level noninter-
secting terms (cgipy) with a single coarse level term (g, )

f=¢ (90[—1,1] + Z 5900) . (3.49)

0eM

31



We set M as a set of disjoint cells 6 from level 22V with § C (-6, ), where § = 27V, Tt
is clear that we can choose these cells for M so that #M = 2¥. At the central vertex
zg of each cell 6 we have f(zg) > (1 — §) + de = ¢. The “Push-the-Error algorithm”
will produce an inefficient approximation since it will not select the coarse first term in
(3.49) as one might hope. Instead, no such element will be chosen at the coarsest level
and the error will be pushed. At each successive stage the coefficients of the rewritten
descendant Courant elements for 6, will all again lie beneath the threshold and be
further rewritten until all cells are on level 22V, At that stage they will be combined
with the remaining terms in (3.49). The corresponding cells will now have coefficients
that exceed the threshold and must be selected producing at least 2V terms in the
approximant. As indicated above, a desirable algorithm should have anticipated the
trap of many small, finely supported elements that may come at a late stage, and would
have chosen for this function the approximation (with threshold ) which consists of a
single element, namely € ¢[_1,1).

Trap 3. The final example is one that outmaneuvers a quick remedy to Trap 2, i.e., merely
thresholding all small terms at the finest level. For a given € > 0, we define

N
f=epray+ Z 0; Pro,2-mi) T EPp2-M)

j=1
where m; = j2, §; = 277, and M = 2" In this example, elements are again building
near the origin, but now appear at many levels with small amplitudes. The “Push-the-
Error” algorithm will again take no elements at the coarsest level and push the error
to the next level. Continuing with the algorithm, we are forced to take essentially all

terms as the approximation to the given function when, optimally, only two terms need
be taken.

It is obvious that we can take each of these template examples as building blocks and build
functions to cause these problems for all €, at all locations and scales.
3.3.2 “Push the Error” algorithm in the uniform norm (p = oco)

In this section we indicate the refinements needed in order to guarantee that the “Push the
Error” algorithm will achieve optimal rates of approximation. As with the “Trim and Cut”
algorithm we break it down into manageable steps.

e Description of the algorithm.

Step 1. (Decompose) For f € C(FE) initially represented by (3.1), we may assume without
loss of generality that there exists a finest level ©; (J > 0) such that f is written as

F=2_> bops. (3.50)

7=0 oeej

Step 2. (“Prune the shrubs”) In the current algorithm we are not able to organize the
cells of © into trees as we did in the “Trim and Cut” method, since, once we rewrite the
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error on a finer level, adjacent trees are immediately affected and we lose their intended
organization properties. This step of our algorithm, however, is analogous to Step 3 of the
“Trim and Cut” algorithm. We fix ¢ > 0 and let ¢* := £/2. Our goal is, by discarding
small insignificant terms by in the representation of f from (3.50), to prevent our refined
algorithm from being trapped by a situation such as that described in “Trap 2” (see the
naive “Push the Error” algorithm of §3.3.1). We shall remove such terms but insuring that
the resulting uniform error is at most £* and denote by I' the set of all retained cells. In
addition, we shall construct a set I'y C I', consisting of “final cells” in I'.

First, we need to introduce a organizational concept as a replacement for the tree struc-
tures of §3.2. We shall say (figuratively) that a cell § € © sits on another cell 8° € O, if 6 is at
least as fine as 6° and its interior (denoted by 6°) intersects the interior of §°. Furthermore,
for 6° € ©, we denote the collection of all cells which sit on 6° by

Voo :={0€0©:0°N0°#0 and level (9) > level (6°)}. (3.51)

The procedure of Step 2 will begin at the finest level and proceed to the coarsest, level
by level, constructing sets I'y and I

To initialize the procedure we put into I'y all significant cells § € O, i.e. such that
|bg| > €*. We place in ' any cell from ©, which sits on a cell from I';.

The inductive step proceeds as follows. Suppose that all cells from ©; with levels j > m
(0 < m < J), have already been processed. We now describe how to process ©,,. We place
into I'y all cells §° € ©,,, which satisfy

> |bol > €7, (3.52)

0cYgo

and for which there is no # € I'y from a higher level (i.e. > m) which sits on 6°. A cell 6°
from ©,, is placed in I" if there is a cell § in the current I'; which sits on 6°. We may consider
the current version of I'; as an intermediate (m-th) version of a final set for I'. Obviously, a
cell #° from ©,, is discarded and not placed in I' if

3 el < €, (3.53)

0€)yo

and there is no ¢ € I'y from level m or finer which sits on 6°.
The procedure is terminated after ©g is processed and Step 2 of the algorithm is com-
pleted.

The two sets of cells I and I'y (I'y C I' C ©) produced by Step 2 have the following
properties which follow directly from their construction:

(i) if 61,05 € Ty and level (6,) # level (6), then 67 N 65 = 0;
(ii) for each 6° € I'y, the inequality (3.52) holds;

(iii) for each 6° € I, there exists § € I'y which sits on 6°.
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We set fr := ), bos and define

L by, if 0 €T,
a0 = { 0, ifeO\T, (3.54)
then obviously
fr= Zaewa- (3.55)
0O
It follows from the construction that
1f = frllo < €. (3.56)

Indeed, to see that this estimate holds, we let D denote the set of all cells § € © that were
discarded during the implementation of Step 2, i.e., D = © \ I'. Let x € F be arbitrary. If
T ¢ Upep 0, then = does not belong to any cell which was discarded and so fr(z) = f(z).
On the other hand, if z € (J,cp 0, then there exists a cell #° € D which contains z and has
coarsest level. Since §° was discarded, the inequality (3.53) must hold. It follows that

f(z) = fr(@)] =) bego(x)| < > |bg| <7,
6cD 0 Vgo

where we have normalized our elements so that ||ps||c = 1. This verifies the desired inequal-
ity (3.56).

Step 3. (Push the Error) We now process cells of fr with ¢*, starting from the coarsest
level ©y and continuing to finer levels. The outcome of this step will be an approximant

A = AP (f) of the form
J J
.A = ZAJ = Z Z dg(pg, (357)

where A; C ©; and A; will depend on f.
We use the notation

Xpo :={0€©:0°N60°#0 and level (9) = level (0°)}

for cells from the same level as #° which are adjacent to it. .
We start from the representation of fr in (3.55). We define Ag as the set of all § € ©
such that |as| > ¢* (||wpllc = 1) and set Ag := [y, Xo. We denote

Ao = Z APy =: Z dgng.
0cAo fcAo

For each 0° € ©;, ¢y can be represented as a linear combination of yy’s with 6 € ©,,.
We use this to rewrite (represent) all remaining terms agpy, 6 € Oy \ Ay, at the next level
and add the resulting terms to the corresponding terms agypy, 8 € ©1. We denote by dyypy,
f € O, the new terms and therefore obtain a representation of f in the form

J
f:Ao—l—nggOg-i-ZZaggOg.

0cO, Jj=2 0€0;
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Continuing with the next level, we define A; as the set of all § € ©; such that |dg| > €%,
set Ay = Upe i, Yo , and define A, := Y oc A, dope. As for the previous level, we rewrite the
remaining terms dypy, § € O1 \ Aj, at the next level and add the resulting terms to the
corresponding terms agpy, 0 € O5. We obtain the following representation of f:

J
f:A0+A1+Zd9(,00+ZZa9(pg.

0cO, j=3 60

We continue in this way until we reach the highest level of cells ©;. At level ©;, we define
Ay, Ay, and Ay as above and discard all terms dows, 8 € ©;\ A;. We finally obtain
our approximant A = AF(f) in the form (3.57). We denote A := A, := U}]:o Aj and
A=A, = U;-]:o 1~\j and so A =y, dops.

Since we throw away only elements dgpg with |dp| < £* at the finest level ©,, we have
the estimate

Ifr = Al <11 Y dowalloc <&

96@]\/\]

and hence, using (3.56),
If — Alloo < 26" =¢. (3.58)

This completes Step 3 and with that the description of the algorithm.

We want to point out an important distinction between the “Push the Error” steps in
the above algorithm and the “naive” algorithm described in § 3.3.1. The difference is that
each time we put a significant term dypy (|dg| > €*) into A we also include the neighboring
terms (i.e., from the index collection Xp). This prevents our algorithm from being defeated
by a situation as that described in “Trap 3” in § 3.3.1.

e Error estimation for the “Push the Error” algorithm. Suppose “Push the Error”
is applied to a function f with ¢ > 0 and AF(f) is the approximant obtained: AF(f) :=
Y oc A. dowpe- As in the “Trim & Cut” method, we use the corresponding notation

n(e) = #Ae, AL (Noo = AL (f, Too = I1f = AL (f) o,

and
A (Foo = AL (f, T)oo = inf{Al) (f)oo : 2(€) <}

We remark that if f € B¥(7), then by the Embedding Theorem 2.7 it follows that f is
continuous. Estimates (3.59) and (3.60), established in the following theorem, imply uniform
convergence of the “Push the Error” approximants to f and provide the necessary rates of
approximation by the method. As is well known, the embedding is actually compact and
these inequalities may be regarded as the quantification of the total boundedness of bounded

subsets of BX(T) in C(E).
Theorem 3.11. If f € B*(T), a > 1, 7 :=1/a, then for each ¢ > 0

Ao (Nl <€ and n(e) < ce77 || fllGe(r, (3.59)
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where ¢ = 6NJ. Furthermore, we have

AL (Foo < en (I fllBeery, n=1,2,... (3.60)
with ¢ = (6Ng)«.

Proof. In order to prove (3.59), we first observe that the direct approximation estimate
Af(s) (f)oo < € follows from inequality (3.58) in the construction of the algorithm. Therefore
it only remains to show that #A. < ce™"|| f[[a(r)- Clearly,

#A. < (No+ 1)(#A.) (3.61)

and we need only estimate the cardinality of A := A.. We split A into two disjoint sets Af
and A,. We define A 7 as the set of all final cells in A, that is, the set of all @ € A for which
there is no 6 € A of a higher level sitting on 8. We set A, := A \ Af

We shall make repeated use of the following simple lemma.

Lemma 3.12. Suppose M C O satisfies the condition that cells from different levels do not
have interiors that intersect. Then each 8 € © may sit on at most No + 1 cells from M.

Proof. The simple hypothesis of the lemma just states that for a cell 85 to sit on a cell 6y,
it must be on the same level, but there can be at most Ny + 1 such cells. [

We first estimate the number of elements #I'; which arise as final cells in Step 2. For
each §° € I'y, we have, by (3.52),

e < > bl < (D b)Y (r <), (3.62)

0eYyo 0€)yo

Clearly, I'; satisfies the hypothesis of Lemma 3.12 (see Property (i) of I'y which is stated
following (3.52)) and hence each 6 € © may sit on at most Ny + 1 cells from I';. Using this
together with (3.62), we obtain

£ Beery =D bol = (No+1)7H Y0 > (bl > (No + 1) (#T) (")

0cO 0°€l'y 6€Yyo

which, since 7 < 1, implies
#Lp < 2(No + 1)e™ || flBecry- (3.63)

We next estimate #A #, the number of final cells for the index set A constructed in Step 3.
Clearly from that construction, a cell § € A may occur only if @ € I and hence A C I'. On
the other hand, from Step 2, for each 6 € I' there exists ' € I'; sitting on §. Therefore, for
each 6 € /~\f there exists ' € 'y sitting on #. But ]\f satisfies the hypothesis of Lemma 3.12
(with M replaced by 1~\f) and hence a cell § € I'; may sit on at most Ny + 1 cells from /~\f.
From this and (3.63), we have

#A; < (No+ D)#Ts) < 2(No + 1% (| fll o7 (3.64)
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To complete the estimate for #A, we must estimate #A,. Suppose 6° € A, = A \ 1~\f
and let @ € A be a cell sitting on ° with level (§') > level (§°) and such that level (#') is the
minimum of the levels of all cells in A sitting on 6°. Such a cell exists, by the definition of A,,
but it is possibly not unique. We denote by Zg. the set of all § € I' which, while “Pushing
the Error” from 6° in Step 3, have contributed to the term dg pg. Due to the minimality of
0', we see that

dgl = dngOgl Ugl Z ngOg Ugl (365)

96290

where vy is the “central vertex” of #'. Since ' € A, then |dy| > ¢* and hence, using (3.65),

e < dy| < || Y bogolle < D Ibol < (Z |b0|f)1/T (r <1). (3.66)

GEZQO 06290 GEZQO
It is easily seen that each 6 € Zy. satisfies the following properties:

(a) 0 D¢,
(b) level (6°) < level (9) < level (¢'),
(c) the “central vertex” of 6 lies on #° and hence 6 sits on 6°.

Property (a) follows by observing that the support of an element which is rewritten at a
finer level always contains the supports of the contributing finer elements. Property (b)
holds since Xy C A and hence no terms bgpy with level (f) < level (§°) may contribute to
dg:per. Note that it is possible that there are § which satisfy properties (a)-(c) above but do
not belong to Zg..

Next, we show that each § € T may belong to at most Ny + 1 sets Zy with 8* € A,.
Indeed, let € I and suppose 6° € A, is such that § € Zg. In the following, we shall use
the notation from above which involves 6°, but we will consider such 6° as arbitrary in A.
Let My denote the set of all #% € A such that # € Zp. In particular 8° € My. We fix
My, and show that it satisfies the hypothesis of Lemma 3.12. Indeed, let 6,0, € My from
different levels. But this implies § € 2y, (j = 1,2) and we may as well consider 6, = §° and
say 6, = 0% where level (8*) # level (§°). Evidently, level (8*) < level (¢') from property (b)
applied to 6% and 4.

By symmetry, we may assume level (6%) < level (8°). If (6*)° N (6°)° # 0, then 6° sits
on ¢ and hence, since level (§) > level (6°), § cannot be in Z,, which is a contradiction.
Therefore, (6*)° N (6°)° = () which verifies the hypothesis of Lemma 3.12.

Now that Lemma 3.12 can be applied to My, then 6 (as any other cell from ©) may sit
on at most Ny + 1 cells % € My. Therefore, # may belong to at most Ny + 1 such sets Zy«
with 8* € A,. Using this and (3.66), we obtain

1 IBer = Do 10" = (No+1)70 Y > ool = (No + 1) #A) ()"

el 0<>€A 0cZyo
Therefore, it follows (recall that 7 < 1) that

#A, < 2(No+ De 7| fllpecr.
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We combine this estimate with (3.61) and (3.64) to obtain the desired estimate of #A. in
(3.59). Estimate (3.60) follows immediately from (3.59). [

The following lemma will be needed in §5.

Lemma 3.13. Let f = fO+ f1, where f = Y0 b, 7 = Y peobhe (7 = 0,1), and
b =03+ by (all 0 € ©), and suppose

M= (D) <0 G=0.),

0cO

where ag,cp > 1 and 19 := 1/ag, 71 := 1/aq. Furthermore, suppose that “Push the Error”
1s applied using the above representation of f, with € := ¢y + €1, where 9,61 > 0, then we
have

Af(50+51)(f)oo <e+e and (3.67)
n(eo +e1) < cgg °NG°® + ceg "N, (3.68)

where ¢ = 6NJ. Consequently, the estimate
AP(fso < con Ny +cin Ny, n=12,... (3.69)

holds, with c; = (12N3)%.

Proof. We follow in the foot steps of the proof of Theorem 3.11. We shall use the notation
from there and only indicate the differences as they arise. We denote £* := ¢ + ¢] with
e; :=¢;/2,j =0,1. Estimate (3.67) is immediate from the description of the algorithm.
It remains to provide estimate (3.68) for the number of terms used in the approximation.
As in (3.61), we have 3
n(60 + 61) = #AE < (NO + 1)(#A5), (370)

where we denote A := A, and A 7 and A, have the same definitions, proceeding exactly as in
the proof of Theorem 3.11. Continuing as there, we have to estimate #I's. For each 0° € T,
we have, by (3.52) and the fact that 0 < 7; <1 (5 =0,1), that

spter=em < D bl < D BRI+ > |yl

GEygo 963790 Geygo
< OSBRI
063}90 oeygo

From this, it follows that, for each §° € I'f, at least one of
e < (D [0pI™) ™ or e < (> |pgl™)M (3.71)
0€Yyo 0cYgo

must hold. We denote by I‘? and I‘} the sets of all §° € I'y such that the respective condition
from (3.71) holds for either j = 0 or j = 1. For j = 0, 1, we have similarly, as in the proof
of Theorem 3.11,

N7 =3 0P = (No+ )78 D D [Bg17 > (No + 1) (#17)(55)™

6cO goepff' 0€Vpo
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and hence (7; < 1)
HT9 < 2Ny + 1)e; "N

Therefore,

#A; < (No+1)(#Ly) < (No+1)(#L7 + #1))
< 2Ny +1)? (ngng + e;ﬁ/\/{l). (3.72)

To complete the proof, we must next estimate #A,. For each #° € A,, we define 8’ € A
and Zp. exactly as in the proof of Theorem 3.11. Similarly as in (3.66), we have

etei=c < D Ibel< Y hl+ D bl

HEZQO 06290 06290
< (DI (3 I
06290 06200

From this, it follows that, for each 8° € A,, at least one of

o < (D [pgI™)H/™ (3.73)

96290

or

et < () Iy (3.74)

96290

must hold. We denote by A% and Al the sets of all §° € A, for which (3.73) and (3.74) hold,
respectively. As in the proof of Theorem 3.11, each § € © may belong to at most Ny + 1
sets Zgo, 8° € A,. Therefore, for j = 0,1,

N7 2D 5= N+ )70 Y Y Il = (No+ 1) (#A) ()™

el 0ochi 0€Zgo

and hence _
#A <2(No+1)e;, "N, j=0,1.

Therefore,
#h, < HRD+ #AL <N+ 1) (5N + 57N,
This estimate, together with (3.70), and (3.72) imply (3.68) (since Ny > 3). Estimate (3.69)

follows by using ¢; := (2¢)*n % N; (j = 0,1) in (3.67) and (3.68) to obtain n(gg +¢1) < n
and so AL (f)e < AP (oo < &0+ 1. O

n(eo+e1)
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4 Best n-term Courant element approximation

In this section, we assume that 7 is a locally regular triangulation of a bounded polygonal
domain E with parameters Ny, My, r, p, §, and #7Ty (see §2.1). We denote by ®(7) the
collection of all Courant elements ¢y generated by 7. Notice that ®(7) is not a basis; ®(7) is
redundant. We consider nonlinear n-term approximation in L,(E) (0 < p < oo) from &(7),
where we identify L..(E) as C(E). Our main goal is to characterize the approximation
spaces generated by this approximation with emphasis on the case p = co. We let X,(7)
denote the nonlinear set consisting of all continuous piecewise linear functions S of the form

S = Z agPe,

where M C O(T), #M < n, and M may vary with S. We denote by o, (f, T), the best
L,-approximation of f € L,(E) from %, (7):
n ,T - 1 f — S .
onlf, Thp = o dnf IF =Sl
In order to characterize the approximation spaces generated by (o, (f,7),), we begin in this
section by first proving a companion pair of Jackson and Bernstein inequalities and then
follow with the usual techniques of interpolation of operators (see for example [6, 15, 13]).

In the following, we assume in general that 0 < p < oo and that a > 1 for p = oo and
a > 01if p < oco; in either case we set 1/7:= a + 1/p.

Theorem 4.1. [Jackson estimate] If f € B*(T), then

on(f, T)p < en™ | fllsz(m) (4.1)

where ¢ depends only on «, p and the parameters of T .

Proof. Estimate (4.1) follows from any of our constructive algorithms as formulated in the
corresponding Theorems 3.1, 3.7, 3.9, or 3.11. [

Theorem 4.2. [Bernstein estimate] If S € X,(7), then
151l Bg(1) < en®[IS]lp (4.2)
where ¢ depends only on «, p, and the parameters of T .

Proof. We shall prove estimate (4.2) only in the case p = co. For the proof when p < oo,
see [11]. Suppose S € X5(T) and S =: Yy, Cope, where M C O(T) and #M < n. Let A
be the set of all triangles A € 7 which are involved in all cells # € M. Then S =} ., Sa,
where SA =: 1A - Pa, Pa a linear polynomial. Evidently, #A < Ny #M < cn.

We shall utilize the natural tree structure in 7 induced by the inclusion relation: Each
triangle A € 7, has (contains) < Mj children in 7,,,1 and one parent in 7,,_1, if m > 1.
Let 'y be the set of all A € T such that A D A’ for some A’ € A. We denote by I', the set
of all branching triangles in Iy (triangles with more than one child in I'y) and by I'} the set
of all children of branching triangles in T (which may or may not belong to I'y). Now, we
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extend I'g to I' := 'y UT",. We also extend A to A:=AUT, U I'}. In addition, we introduce
the following subsets of I': T' the set of all final triangles in I' (triangles in I' containing no
other triangles in I'), (I'p); the final triangles in Ty, and I, := I'\ A the set of all chain
triangles. Note that each triangle A € I'y, has exactly one child in I'. We may argue as
we did for trees of cells in (3.9) that the number of branching triangles does not exceed the
number of final triangles, #I'y < #(I'0)s, and since (I'g); C A, then #I', < cn. Using this,
we have #I') < My #I'y, < cn, #I'y < #A 4+ #I'y) < cn, and H#A < #A + #Ty + #I', < cn.
Keep in mind, however, that #I'., can be much larger than n.

We next estimate [S|ga(r) = Yoacr |ATISA(S)T, where 7 := 1/a (see (2.5) for the

notation). We denote, for m > 0, S, := EoeM,level(o)gm cog. We shall use that, for
A€ T,
SA(S)r =Sa(S = Sm)r < IS — Smllr. (a) (4.3)

and, also, SA(S)r < [|S]|L,(@a)- Recall that Qa is the collection of triangles from the same
level as A and which share a vertex We denote

Ho = {A € Tn:ACQa for some A’ € AN T} and H = U H,.

m>0

Evidently, #H,, < 3No#A < cn (the valence of each vertex is < Ny). We consider two
possibilities for each A € T: (a) A € H, or (b) A € T \ H:

(a) If A € H,y,, then Qa D A’ for some A’ € AN T,,. Using (2.3), we obtain
[AITISA(S)] < [AITHISII ) < IAITHQAIISIE < cllSI%.
Therefore, by summing over all m > 0, we obtain in this case

doIATSAS); = Y Y IA[TSa(S)

AcH m>0 A€Hm,

< cSIL D #Hm

m>0

= c|lS|% #H < en|| S5 (4.4)

(b) Let A € Tou\Hu. Then Qa =: J;2, A for some A; € (TepnNT)U(T\I), j =1, ,na,

with na < 3Np. We have, using (4. 3)
Sa(5)7 =Sa(S — Sm) <Z||S SmllL.(a,

Note that if Aj € 7, \ T, then S|a; = Sp[a,; and hence ||S — S ||z, (a,) = 0. Suppose
Aj € Tep N T For each A € Ty, we shall denote by A (A # A) the unique largest
triangle of A contained in A. Clearly, we have S[5 \a;, = Smla;\a;, = Laj\4, * Pa,; and
Smla; = 1, - Pa,;, where Py, is a linear polynomial. Therefore,

HS - SquL-T(A]-) = HS - SmHZT(Aj)
< AR + 1P 117 a,) < el A5lISIE,
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where we used that | P, |, 5., < [Pa, latay) < ellPa s aa,) < €S applying
Lemma 2.1. From above, it follows that

|A78a(8)7 < clISIIZ > 185171451

1<j<na, A€l chNTm

and hence

Y. lAsaS)r<esln Yo IAl/AL

Summing over m > 0 in this case as well, we find

D IATSAS) < Sl Y 1Al/|A]

AET\H Aerch

< dSin Y D, 1AY/IAl

AlcR AET, ADA!

cdlSIL D Y ¢ <clSle#A <enllSlz,  (4.5)

A’eA J=0

IN

where we have once switched the order of summation and used that |A'| < p|A] if A/
is a child of A (see (2.2)).

Combining inequalities (4.4) and (4.5), we obtain |S|pay < cn||S||%, which is equivalent
to (4.2). O

We define the approximation space AY(Ly) := AY(Ly, T') generated by the n-term Courant
element approximation to be the set of all functions f € L,(E) such that

o0

1/q
i = 1Al + (X007, 7)) < oo (4.6)

n=1

with the usual modification when ¢ = oc.

For a fixed LR-triangulation 7, we denote by K(f,t) := K(f,t;L,, B*(T)) the K-
functional as defined in (2.30). The Jackson and Bernstein estimates from Theorem 4.1
and Theorem 4.2 yield (see, e.g., Theorem 3.16 of [15] and its proof) the following direct and
inverse estimates:

on(f, T)p < cK(f;n"%) (4.7)

and

3

K(fn) < en (Il + (307

k=1

N\ /P
(kon(£,THF) ), p=min{p1},  (48)

where ¢ depends only on «, p, and the parameters of T .
The following characterization of the approximation spaces AJ(L,,T) is immediate from
the inequalities (4.7) and (4.8), using the observation (2.31):
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Theorem 4.3. If 0 < v < a, and 0 < g < o0, then
AJ(Ly, T) = (Lp, BZ(T)) 24
with equivalent norms.

The next result establishes an important (continuous) embedding which will be needed
in §5 in order to identify the approximation spaces (the ones determined by the algorithms,
as well as best n-term Courant element approximation) as B-spaces.

Theorem 4.4. Suppose our standing assumptions hold, i.e., « > 1 if p = 0o and a > 0 if
p <oo. If welet 1/7:=a+ 1/p, then A%(L,,T) C BX(T) and

1fllBg () < el fllagz,m (4.9)

where ¢ depends only on «, p, and the parameters of T .

Proof. We shall prove (4.9) only in the case p = oo, proceeding similarly as in [7]. For a
proof in the case 0 < p < 0o, see [4]. Suppose f € A%(Lo,T) and let S, € ¥,,(T) be such
that

1f = Simlloo < 20m(f, T)eo- (4.10)

Since 0. (f, T)oo — 0, we have f = Sy 4+ > 2 (Sow — Sp-1) with the series converging
uniformly and hence (7 < 1)

|1 Bery) < NSt Bacr) + Z |S2 — Sav-1|Ba(r)- (4.11)
v=1

We apply the Bernstein estimate from Theorem 4.2 to Sov — Sav-1 € 3gut1(T) to obtain
||S2u — S2V—1 ||B$.‘(T)) S CQVaHSQu — 521/—1 ||oo S CQVa(O'Qu(f, T)oo + O9v—1 (f, T)oo)

and similarly
1512y < el flloo + 1(f, T)oo)-
Substituting the above in (4.11), we find

o0

1 1Becr) < ellFllz + ¢ Y200 (£, T)eo)” < €l f g 10 U

v=1

5 Approximation spaces for algorithms

Our goal in this section is to show that the algorithms that we developed and explored in
§3 achieve (in a certain sense) the rate of convergence of the best n-term Courant element
approximation. We shall utilize the characterization of the approximation spaces

AY(L,y, T;0) = AY(L,, T).
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from the previous section (see Theorems 4.3-4.4). We shall denote by AY(L,,T; AT),
AY(Ly, T;AT), and A}(L,, T;A") the approximation spaces generated by the “Threshold”,
“Irim & Cut”, and “Push the Error” algorithms, respectively. Namely, f € AJ(L,, T;A),
where A is AT ATC or AT if f € L,(E) and

© 1\ Ya
||f||Ag(Lp,T;A) = fll, + (Z(n’yAn(fa T)p)qﬁ> < 00

n=1
with the usual modification when ¢ = oo (it is not quite a norm).

Theorem 5.1. Let T be an LR-triangulation of a bounded polygonal domain E C R?.
(a) If p=o00, a>1, and 7 := 1/, then
A (Lo, T3 A7) = A2 (Loo, T5 AT) = A2 (Lo, T3 0) = BX(T) (5.1)
with equivalent “norms”.
(b) If0<p < oo, a>0, and 7 := (a+ 1/p)~", then
A%(Ly, T; ATC) = A%(Ly, T; A7) = A%(L,, T 0) = B(T) (5.2)
with equivalent “norms”, where “Trim & Cut” is applied with parameter T < o < p.

Proof. (a) Let p = co. We let A, (f)o denote AL (f), or ATC(f),, and A%(Ly;A) denote
the approximation space generated by the corresponding algorithm. Suppose || f|| e (r.;8) <
oo. Evidently, 0, (f)oo < A, (f)o and hence, using Theorem 4.4,

[fllBe < cll Fllaa(ioio) < cll Fllaz(zociy-

It remains to show that if || f|| g < 00, then

11|42 (zocsay < €llfBe- (5.3)

For the proof of this estimate, we shall employ Lemma 3.8 and Lemma 3.13. Since they are
identical, it does not matter if we prove (5.3) for “Push the Error” or for “Trim & Cut”.

Suppose f = >y bows is the representation of f which is used while “Push the Error”
or “Trim & Cut” is applied. We have

£l == (Z be|)7, Ti=1/a, a> 1.
6o

Next, we use a well known interpolation technique. We choose oy, a1, 79, and 7, as follows:
l=a; <a<agand 79 :=1/ag, 71 := 1/ay. Hence 0 < 79 <7 < 7 = 1. Let now (|by,|)52,
be the decreasing rearrangement of the sequence (|bg|)oco, i.¢€., indexed so that

[bo,| = [bo,| = -+ (5:4)

We fix v > 0 and denote f° := Z?;l by, e, and f':= 37", | bs,pp,. In going further, we
apply Lemma 3.8 or Lemma 3.13, to f = f° + f!, from above, to obtain

v

Ay (f)ow <c27 (3 |b9j|T°)l/T0 +e2 S by

j=1 j=2"+1
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Using property (5.4), the facts that 7 = 1/a, 1 < a < ap, and 79 = 1/, we infer

o)

Z(2VQA2V(f)OO)T < CZ[ —v(ag— a7022k|b92k|70:|
v=0
n cZ[ZV(a_l) Z2k|be2kl]T
SO TNED Sl

0cO

where we used the well known Hardy inequalities, namely, we applied the inequality from
Lemma 3.10 in [15] to estimate the first sum and Lemma 3.4 from [6] to the second term.

(b) For 0 < p < o0, the proof of (5.2) is similar to the proof of (5.1). The only difference
is that the appropriate roles of Lemma 3.8 or Lemma 3.13 are now played by Lemma 3.2 or
Lemma 3.10. We omit the details. [

6 Concluding remarks

Our primary goal in the present article is to quantify the nonlinear n-term approximation
from Courant elements and use it to develop algorithms capable of achieving the rate of
the best approximation. This is closely related to the fundamental question in nonlinear
approximation of how to measure the smoothness of the functions. As we show in this
article, for n-term Courant element approximation when the triangulation 7 is fixed, it is
natural to measure the smoothness via the scale of the B-spaces BS(7T). The use of these
spaces allows one to characterize the approximation spaces for any rate of convergence o > 0.
It also enables us to develop algorithms which attain the rate of the best approximation.

It is natural to add another degree of nonlinearity to the approximation by allowing the
triangulation 7 to vary. Thus a function f should be considered smooth of order v > 0
if inf7 || f|| B2(7) < 0o, where the infimum is taken over all LR-triangulations 7 (with fixed
parameters) Therefore the rate of n-term Courant element approximation to f is roughly
O(n~%). Summarizing, our approximation scheme proceeds as follows: (i) for a given function
f, find a triangulation 77 and a B-space B%(7;) in which f exhibits the most smoothness,
(ii) find an optimal representation of f in terms of Courant elements from @+, (iii) run an
algorithm which achieves the rate of the best n-term Courant element approximation. The
first step in this scheme is the most complicated one. We do not have an efficient solution
for this as yet. In the simpler case of nonlinear approximation from piecewise polynomial
over dyadic partitions, this problem, however, has a complete and efficient solution [14].
As we show, once the triangulation 7 is determined, the remaining two steps are now well
understood and have efficient solutions in both theoretical and practical senses.

The three algorithms that we develop and explore in this article provide solutions of the
problem under appropriate conditions. A common feature of these algorithms is the first step,
a nontrivial decomposition from the redundant collection of all Courant elements from ®+.
After this initial step, however, they take three different routes. The “Threshold” algorithm
is completely unstructured but easy to implement. The drawback of this procedure is that

45



it is not valid in the case of the uniform norm and as a consequence it does not perform well
in L, for p large. The “Trim & Cut” algorithm is valid for L,, 0 < p < oo, but it is over
structured and as a result the performance suffers. The “Push the error” algorithm appears
to be the preferred approximation method.

The algorithms that we develop in this article are not restricted to n-term Courant
element approximation. They can be applied immediately to the approximation from (dis-
continuous) piecewise approximation over multilevel triangulations (for the precise setting,
see [11]). In this case the role of the B-spaces B&(T) should be played by the skinny B-spaces
B2(T), introduced in (2.37). The results are similar, but simplify considerably and we omit
the details. Upon simplifying the ideas to the one dimensional case, the spaces (fat, thin,
and skinny) all coincide with the B spaces and the algorithms studied here provide effective
and efficient approximation schemes.

Furthermore, these algorithms can easily be adapted to nonlinear n-term approximation
from smooth piecewise polynomial basis functions such as these considered in [4] and, in
particular, from box splines. The main difference would be that one should use the corre-
sponding B-spaces, developed in [4], but proceeding in a similar manner to this paper.

It is natural to use (wavelet or prewavelet) bases in nonlinear approximation, and specif-
ically for approximation in L, (1 < p < oo0). We are not aware of compactly supported
wavelets (prewavelets) generated by Courant elements or smoother piecewise polynomials
on general multilevel triangulations. It is clear to us that such wavelet bases would be very
“expensive” to construct and hence are of limited practical value. However, in the case of
uniform triangulations, compactly supported prewavelets and wavelet frames generated by
Courant elements, or box splines, do exist and have been implemented in practice. Obvi-
ously, the n-term approximation from such bases or frames cannot surpass the rate of the
best n-term Courant (or box spline) approximation, but they may give better constants and
hence better performance results in practical situations.

It is also an important observation that, even in the case of uniform triangulations, the
B-spaces used here are different from the Besov spaces used in nonlinear approximation. For
more complete discussion of this issue, see [11] and [4].

Finally, we remark that in a related paper [12] we extend the arguments of this paper to
develop a corresponding approach in the Hausdorff metric which is natural for approximating
surfaces. There we also consider various practical aspects for decompositions, numerical
approximation, and data structures.
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Appendix. Coloring Lemma

In order to keep focus on the main analytical results of the paper, we have postponed
the proof of the coloring lemma used in Section 3.2 to this appendix. This decomposition
result was used to create a manageable collection of tree structures for both estimating the
error and the number of elements used in our constructed approximant. Since this is a
general purpose result which may prove useful in similar settings we give its proof in full in
this appendix. For clarity we have broken down the proof into a series of lemmas. Since
the coloring is done in several refinement stages, it is helpful to think of the coloring as an
ordered triple of primary, secondary, and shade colors. The primary coloring will sort the
elements periodically by resolution level, the secondary coloring will insure there is spatial
color separation, and the third coloring (shading) is a more delicate adjustment to insure
that tree structures are formed. We begin by repeating the statement of the coloring lemma
for the reader’s convenience.

Coloring Lemma [see Lemma 3.2.] For any LR-triangulation T of E, the set © := O(T)
of all cells generated by T can be represented as a finite disjoint union of its subsets (©*)K_
with K = K(Ny, My) (Ng is the mazimal valence and My is the maximal number of children

of a triangle in T ), such that each ©" has a tree structure with respect to the inclusion
relation, i.e., if @', 0" € O then (6')° N (0")° #0, or§ C 0", or 0" C .

To begin the proof, we show, without loss of generality, that for the purposes of coloring
we may assume that the multiresolution triangulation provides sufficient resolution with
each refinement step. We argue below that after a certain fixed number of increments of the
level there will be a guaranteed refinement of each edge and triangle, which by hypothesis is
controlled from above, i.e. uniformly bounded valences and max number of sub-triangles for
each refinement. Consequently, we may separate the levels of © into L (L := [12Ng Iny My])
disjoint classes (primary colors) by placing two levels in the same class iff their indices are
the same (mod L). Thus a class © is of the form © = U;‘io(:)j, where 0y := ©j, for some

0 < jo < L and éj = ©j,4+jr. Since each such class O has a different primary color,
it will suffice to show how to designate the secondary colors of the members of a single
©. Therefore to simplify the notation and wording of arguments, we will simply refer to
(secondary) coloring the classes © instead of ©. In Lemma A.1 below we show however that
these classes have additional useful properties. Loosely speaking, part (a) shows that the
old vertices on a given level are far apart in terms of the graph metric. In part (b) a similar
statement is given for the “central parts” of non-overlapping edges of Courant elements from
different levels of ©.

For D C R? and m > 0, we define the star St* (D) inductively by St° (D) := D and
StF (D) := U{f € © : leveld = m, 6° N St*1(D) # (}. For the vertices in resolution
level m, this is just the neighborhood of radius k£ in the graph metric. For an edge e with
vertices v’ and v” and an integer m > levele, we define the “central part” of the edge to be
st(e,m) := St2, (e \ StE1({v',v"})), where R := MgNg + 4. This selection for R has been
made sufficiently large so that part (b) of the following lemma holds.

Lemma A.1l. The Courant collection ©, which is based on the multilevel triangulation de-
scribed above, satisfies:
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(a) for each edge [v,v'] the distance between v and v', measured in the graph metric on the
next finer level of ©, is at least 4R.

(b) if e and €' are edges from cells in (:), m is an integer with m — L > levele > level €,
and e Z €', then st(e,m) Ne = 0.

Proof. (a) Note that each edge in O gets subdivided at least once after 2Ny levels. Further,
observe that after Ny := 2N¢Z refinements of any triangle, none of its vertices can be connected
to their opposite edge by a single edge at the finer level. Using this observation repeatedly,
one can verify that after L refinements, the graph metric distance between v and v" will be
at least 25/No = M(?Ng > 4R.

(b) Let v and v' be the vertices of e. Using twice the observation from the proof of
part (a), we conclude that the distance from each of the vertices in e\ St! 5, {v,v'}) to
¢’ is at least 4 when measured in the graph metric on level m. Therefore, on the m-th
level e\ St:n_2N0({v,v’ }) has a buffer of at least three layers of triangles that separates
it from ¢’. On the other hand, the existence of M, and the choice of R guarantee that

Stﬁfl({v,v’}) ») StiniZNO({v,v'}) and establishes the claim. O

This completes the primary coloring and from this point on we only need work with a
particular © (i.e., a fixed primary color). In this case ‘level @’ will now refer to the level of §
in © rather than in © as will the star St* () and st(e, m). Also, when referring to the color
of a cell we will now mean the secondary color, unless otherwise specified. For 6 € O we
denote by 06 the boundary of 6, and by xy the central point of . We say that the cells in
@' C O,, are R-disjoint (R > 1) if 6° N StE(#') =0 for any 6, §' € ©'.

The next result is used for the (secondary) coloring of cells of O, proceeding from coarse
to fine levels, and uses M colors so that same color cells are R-disjoint.

Lemma A.2. Suppose some of the cells on a given level are colored in M = N + 1
(R > 1) colors so that the same color cells are R-disjoint. Then the rest of the cells on that
level can be colored in the same M colors so that the same color cells are R-disjoint.

Proof. To complete the coloring on the given level, we first use the Color #1 to paint as
many cells as possible so that the same color cells are R-disjoint. Next, we use the Color #2
as much as possible, followed by the third and so on until either all cells get painted or we
run out of colors. The latter case, however, never occurs. Indeed, assume to the contrary
and let 6 be the first cell which can not be colored by this algorithm with the M colors. The
cell § has the property that within its R + 1 star Stf+1(#) there must be at least one cell
painted with each of the M colors. But this contradicts the fact that M was selected to be
at least as large as the number of cells within St&+(9). O

For the secondary coloring we proceed inductively, beginning at the coarsest level Oy,
and color cells in M colors so that same color cells are R-disjoint. Suppose then that all
levels up to ©y (k > 0) have been colored. We color 0, as follows.

Step a) (Color corner cells.) First we define the notion of corner cell. A cell 6 of level k is
called a corner cell for a coarser cell ¢ if ' has an adjacent cell 8" (at the same level
of course) so that xy lies on edge [zg, zgr| and x4 is adjacent to zgr on the level k (see
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Figure 2). Given a cell ' € (:)k,l, we color each of its corner cells # € ©, the same
color as #'. This insures that a cell’s color is propagated through all finer levels to its
corner cells.

(b) (b)

(b) (b)

(b) (b)

<

Figure 2: Corner cells from Step a).

Step b) (Extend the coloring to R-Stars of the vertices on level (k—1).) For each vertex
v on level (k — 1), we paint the cells contained in Stf%(v) using M colors so that
the coloring done in Step a) is preserved and each color is used at most once. This is
always possible since M was selected sufficiently large. Note that after this step the
same color cells are R-disjoint since part (a) of Lemma A.1 guarantees that the stars
are sufficiently separated.

Step c) (Complete the secondary coloring of ék) Accounting for the cells previously
painted in Steps a) and b), we color the remaining cells from ©, as described in
Lemma A.2.

This procedure specifies the secondary coloring of © and we have thus represented it
as a finite disjoint union UM, 6", where ©” are all cells (secondarily) colored in the v-th
color. Thus the primary color skips levels until sufficient refinement is guaranteed, while
the secondary color insures sufficient spatial separation on each level to control cell overlaps.
Unfortunately, the collection of same primary-secondary colored cells ((:)”) might not form a
tree structure, i.e., there might be two cells in ©¥ whose interiors meet but neither of them
contains the other. This may only happen when a finer cell lies on the edge of a given cell.
To fix this defect we will set for each fixed © the third coloring component, the Shade of
the cells, from two possible choices. First, we say that ¢’ and 6" (6, 8" € O) touch if an edge
of the finer of the cells is contained in an edge of the coarser.

We now restrict our cells to be of fixed primary and secondary colors (i.e., fix ©¥) and
inductively determine the Shade of these cells. On the coarsest level ©F of ©” all cells are
disjoint and we assign them Shade #1. For the induction step, we suppose cells of all levels
of © up to level k have been shaded and each shaded collection satisfies the desired tree
properties. We say that a cell 6 is Shade-consistent with @ if zo does not lie on an edge
of any cell which has the same Shade as 6. Hence it is possible to place # in this Shade
collection and preserve the tree structure. In this case we will also use the terminology that
6 is consistent with that particular Shade. We now proceed to shade the cells belonging to
level k, ie., 6 € éz, according to:

Case i. If § both touches and is Shade-consistent with some coarser cell 0, then we assign
to 6 the same Shade as that of the finest such 6. Recall that this finest cell is unique
by the construction of ©".
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Case ii. Otherwise, we assign to 6 the first numbered Shade for which 6 is consistent. If
no such shade exists, we introduce a new shade for 6.

By the construction in the induction step, it is obvious that each Shade sub-collection has
the desired tree structure. We will show that these criteria introduce at most two Shades.
For this we need a couple of technical facts, reminding the reader that all cells belong to a
fixed ©, i.e., they have a fixed primary and secondary color.

Lemma A.3. If 6 intersects an edge €' of a coarser cell 8" but is not one of its corner cells,
then 6 C st(e’,m), where m := level .

Proof. Let ¢’ be an edge of § which intersects 6, and let v be a vertex of ¢’. By Step b) of
our coloring procedure (for secondary colors), St! (v) contains a corner cell ” in ©, which
is shaded the same as 6’ . By Step c) in the construction of e, St (v) does not contain any
other cells from ©Y,. Since 6 is not a corner cell of @', then 8 # 6". Therefore NSt~ (v) =0
and so # must meet ¢’ \ Stf'({v,v'}), where ¢ is the remaining vertex of ¢'. Therefore,
6 C st(e/;m). O

Lemma A.4. Cells of ©¥ with different shades do not touch.

Proof. Suppose to the contrary that cells 6;,0, € ©” of different shades (Shade #j,
Shade #k, respectively) do touch. We may first assume that 6; is a maximal (i.e., coarsest
level) cell of Shade #j that touches 0y, and conversely, that ) is a maximal cell in Shade #k
that touches ;. This follows by iteration and the fact that there are only finitely many
coarser levels so the iteration must terminate.

We may assume without loss of generality that leveld; < level8, =: m; and let e;, e
denote the edges of 6;,0; respectively, such that e, C e;. We consider the two cases under
which the finer cell 6;, could have been shaded and show that each one leads to a contradiction.

For Case i B ~
In this event there would be a coarser cell 8, € ©¥ of Shade #k which touches 6;, and
to which 8, would be Shade-consistent. Let €5 be an edge of 0, where it is touched by

0r. We consider two possible subcases depending upon the relative level of 6, to that

sub-Case i.a 0~k is finer than 6,

Since level§; < level 0), < level @y, then by part (b) of Lemma A.1 either &, C e;
or st(ég,mg) Ne; = 0. The first possibility may be ruled out since it would
imply that the coarser cell 0~k would touch 6;, but 6, is the maximal such cell of
Shade #Fk. Hence st(éj, m;) must be disjoint from e;. Note that 6, is not a corner
cell of ;. If that were the case, then 6, would be disjoint from the interiors of all
edges on level 0, except the edge on which zy, lies and the edges (at most two,
possibly one) where 6, is touched by 0. Hence, e; must overlie one of the these
edges since it contains ej. This, however, contradicts the fact that 6; touches 6,
in the former case and contradicts the maximality of 6, in the later. Therefore
0 cannot be a corner cell of 9~k and so by Lemma A.3, 0 C st(é, my). But we
already have proved that st(é,my) Ne; = 0 which is impossible since ) touches
g; on e;.
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sub-Case i.b 0y is coarser than 6

Since level 6, < leveld; < level §; then again by Part (b) of Lemma A.1 either
e; C & or st(ej,mg) Né, = 0. The former case contradicts maximality of 6
relative to 6;. For the latter case, note that 8, cannot be a corner cell of 6; because
6 and 6; have different Shades. Therefore, by Lemma A.3, 6, C st(e;, my) and
so we obtain 6 N €&, = () which is impossible since ), touches 0, on é.

For Case ii
If this case occurred for the shading of 6y, then since 6; is both coarser than and touches
0k, 0 must not have been Shade #j consistent. Hence there must be a éj € O of
Shade #j which is coarser than 6 and zg, belongs to some edge €; of GNJ-. We consider
two possible subcases depending upon the relative level of éj to that of 6;.

sub-Case 11.a  0; is coarser than 0;

Since level §; < 1eve1§j < level 0y, then compare edges e;,€é; using Part (b) of
Lemma A.1 to infer either st(é;,my) Ne; = 0 or é; C e;. In the latter case,
it follows that both the edge ey (recall ) touches the coarser 6; on e;) and the
opposite vertex zg, (since zg, € €;) of a triangle in 7 are contained in e;, which
is clearly impossible. If the former case holds, i.e., st(é;,my) Ne; = 0, then a
contradiction also results. To see this observe that 6, cannot be a corner cell for
0~j due to the fact that they have different shades. But Lemma A.3 implies that
6r, C st(é;, my) holds which contradicts the fact that 6, Ne; # 0.

sub-Case 11.b 6, is finer than éj

Since level 67]- < level§; < levelfy, we again compare edges €;,e; using Part (b)
of Lemma A.1 to imply either st(e;,mg) Né; = 0 or e; C €;. By quite simi-
lar arguments to the previous subcase we can prove contradictions are reached.
Specifically, the latter statement implies that both the central vertex zy, and its
opposite edge e;, belong to the edge €;. On the other hand, the fact that 6 cannot
be a corner cell for §; will imply that 6, C st(e;,my) which will show that zq,
belongs to the intersection st(ej,my) N €; and contradict the former statement
above.

By our assumption that different shaded cells could touch we are led in all cases to contra-
dictions, thereby completing our contrapositive proof. [

By combining the previous results with the next lemma, it follows immediately that ©
can be colored with K := 2M L colors and the proof of the Coloring Lemma will be complete.

Lemma A.5. At most two shades are required.

Proof. Suppose in Case ii of the shading step above that a third shade were needed for
some cell 6. Then its central point zy € e; N ey for some edges e; of A, and ey of 6y, where
0:,05 € © are coarser than 6 and have Shade #1 and Shade #2, respectively. Now, if zg
were a vertex for ey, then there would be a corner cell of #; in o adjacent to # which is
clearly impossible since cells at the same level are R-disjoint. The same reasoning applies
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to es. Therefore xp cannot be a vertex for either e; or es and we conclude that e Ne3 # (.
Hence, 0; and 6 touch which contradicts Lemma A.4. [

References

[1] J. Bergh and J. Lofstrom, Interpolation spaces: An introduction, Grundlehren der Math-
ematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.

[2] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics
Vol. 129, Academic Press, Inc., Boston, MA, 1988.

[3] R. DeVore, A. Cohen, W. Dahmen, and I. Daubechies, Tree approximation and encod-
ing, 1999, preprint. (http://www.math.sc.edu/ imip/99.html).

[4] O. Davydov and P. Petrushev, Nonlinear approximation from differentiable piecewise
polynomials, 2002, preprint.

[5] R.A. DeVore, B. Jawerth, and B. Lucier, Surface compression, Computer Aided Geo-
metric Design 9 (1992), 219-239.

[6] R.A.DeVore and G.G. Lorentz, Constructive Approzimation, Springer Grundlehren Vol.
303, Heidelberg, 1993.

[7] R.A. DeVore, P. Petrushev, and X. Yu, Nonlinear wavelet approximation in the space
C(R%), Progress in Approzimation Theory (A. A. Gonchar, E. B. Saff, eds.), New York,
Springer-Verlag, 1992, pp. 261-283.

[8] R.A. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc.
305(1988), 397-414.

[9] R.A.DeVore and V. Popov, Interpolation spaces and non-linear approximation, in Func-
tion Spaces and Applications, M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin (eds.),
Springer Lecture Notes in Math. 1302, Springer-Verlag, Berlin, 1988, 191-205.

[10] M.A. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. Mineev-
Weinstein, ROAMing Terrain: Real-time Optimally Adapting Meshes, Proc. IEEE Vi-
sualization ‘97, October 1997, pp. 81-88.

[11] B. Karaivanov and P. Petrushev, Nonlinear piecewise polynomial approximation beyond
Besov spaces, 2001, preprint. (http://www.math.sc.edu/ imip/01.html).

[12] B. Karaivanov, P. Petrushev and R.C. Sharpley, Algorithms for nonlinear piecewise
polynomial approximation, 2002, preprint.

[13] P. Petrushev, Direct and converse theorems for spline and rational approximation and
Besov spaces, in Function Spaces and Applications, M. Cwikel et. al. (eds), Vol. 1302 of
Lecture Notes in Mathematics, Springer, Berlin, pp. 363-377.

92



[14] P. Petrushev, Multivariate piecewise polynomial and n-term rational approximation,
2001, preprint. (http://www.math.sc.edu/ imip/01.html)

[15] P. Petrushev and V. Popov, Rational approximation of real functions, Cambridge Uni-
versity Press, 1987.

Department of Mathematics
University of South Carolina
Columbia, SC 29208

E-mail: karaivan@math.sc.edu
pencho@math.sc.edu
sharpley@math.sc.edu

93



