‘l/ :\’ ‘
() :u/ ‘g\\“ﬁ‘

‘/',:,ﬁ.\ INDUSTRIAL
A MaTHEMATICS

\“"0',"

\e007 INSTITUTE

2003:16

The serieizﬁ, and a
problem of Chowla

K.l. Oskolkov

Department of Mathematics
University of South Carolina




1

We will say that a set 2 in the first quadrant Ri of the real plane R? is a coordinate-wise convex
domain, iff there exist a non-negative and monotonically decreasing function y = f(x), = > 0

The series > ) 627;# , and a problem of Chowla

K.I.Oskolkov

Abstract
The double trigonometric series with the hyperbolic phase

© 627rimna:

= 35

m=1n=1

is studied. Complete descriptions of the U-convergence (summability) sets of the sin-series
QU (x), and the cos-series RU (z) are established. The U-sum of a double series is defined as
the common value of the limits of the partial sums over expanding families of coordinate-
wise convex domains in N?. The latter incorporate convex domains in the usual sense,
such as rectangles, but also, say, the hyperbolic crosses $n = {(m,n): 1 < mn < N}.
In particular, let ¢j(«) denote the denominator of the j-th convergent of z, frac(x) — the
fractional part of z, and d(n) := de 1 — the divisor function. Then for every real z,
the series SU(z) is U-convergent, or divergent, simultaneously with each of the following
three series:

S Z Jlnq]+1( x) S(a) = i 1/2 —frac(nw Z d(n sm27m:13

n

Besides, the equality S = T is true for each & where = converges. These claims provide
the solution of a problem raised by S. D. Chowla in 1931 (see [3]).
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Introduction

such that

Q= J{(w,9): 0<y < f@)}.

>0



Let us call such a set G-domain, and use the notation U also for the whole class of all 5-domains.
For 2 € U denote M (Q2) the side-length of the biggest square [1, M| x [1, M| contained in €2, i.
e. M(Q) :=sup{M : [1,M]x[1,M] C Q}. We say that a (countable) family of U-domains
{Q.}22, is expanding ift M (Q,) — oo, r — oco. If; in addition, for each sufficiently large ¢ € R,
there exist such r = r(q) that 1 < M(Q,) < ¢, we say that this family is full. Further, we say
that a double-indexed numerical sequence © = {5 }(mn)ene is O-summable, iff the limit

(0) Z Uy = lim Uq,; Uq := Z Um,n

r—00
(m,n)EN2 (m,n)eq

exists for each expanding family {€,}>°, C U. It is easy to see that if u is U-summable, then
the value of the U-sum is unique, i. e., the limit is the same for all expanding families of O
domains.

Characteristic functions x = {Xmmn}@mmnyere of U domains obviously possess a uniformly
bounded coordinate-wise variation (notation: CBV), i. e. X, = x(m,n), where x : R% — C
and

Ix|lcBy = sup x| + sglg (varg, x(-, ) + varg, x(z,-)) < oo.
R% ©

CBV-sequences constitute a subclass of a wider class of coordinate-wise slow multipliers (nota-
tion: CS). A uni-variate function x : R, +— C is by definition slow, if it satisfies the Littlewood
— Paley condition (cf. [29], Ch. 15):

Ix()lles = sup (Ix(2)] 4 varg 2. x) < o0,

and uni-variate CS-sequences are simply restrictions of slow functions onto the set of natural
numbers. A bi-variate sequence x : N2 = C is called coordinate-wise slow, if Xm, = x(m,n)
where the function x : R? — C satisfies

IxClles := sup ([Ix(, 2)lles + [Ix(z, )les) < oo

It is easy to see that if Y, x®® € CS then the product sequence y := x - x? is also

coordinate-wise slow. Further, “zeta-like” multipliers x,,, = m"n"2, or x,,,, = (m? + n?)",
where t, t;, t, are fixed real numbers, are examples of coordinate-wise slow sequences, that do
not belong to CBV.

Our goal is to study the U-convergence of the double trigonometric series

2mimna 2mimna

e e
U(x) := , Ulgo) = Xm.n , x € CS.
(mZ) o (mZ) o




Given a (bounded) U-domain, a sequence x € CS, and = € R, denote:
eZ?rmnx
= m,n ) Ly, = )
Ua(x; x) > X, — Ua({l},2) = Un(x)

(m,n)eQ

frac(z) — the fractional part of x € R, and frac(0) := 0; Iz, Rz — respectively, the imaginary,
and the real part of a complex number z; signz := ﬁ, z # 0; |I| — the length of an interval
I C R; the constants in the symbols O, < are absolute;
Q — the set of all rational numbers;
d(n) :== > 4, 1, n € N — the divisor function;
1 aj .
J}:—:[kl,kQ,...], —2:[k1,k2,...,1€j], ]:1,2, (1)
1 q;
ki +

ko +---

— the simple continued fraction for € (0,1) (cf. e. g. [14], Chapter 10, or [28], Chapter 1);
the natural numbers k; = k;(z) are known as partial quotients of x, and the rational numbers
3= Z—](x) — the convergents of x; qo(z) := 1,

J

4j
00 2 ; 00
— In“qj1 . —1)Ing;44 Ing;q
Ste) 1= 3 gty LRI () ) B =g ()
2q] jZO q]
D(-) denotes the divergence (U-divergence) set of the series, or the sequence in ( );
F}; denotes the j-th Fibonacci number, i. e. Fy = Fy:=1, Fj.. = F;+Fj_, j=1,2,...

Theorem 1 A. The U-divergence sets of the imaginary and the real parts of the series U are
described by the relations

D(SU) =D(SZE), DRU) = QUD(RZ),
and point-wise U(x) = =(x) + f(x), where |Sf] < 1, |Rf| < T.
Further, for every full sequence of O domains {€2,}2°,
D(3Z) € D{SIVq, }), (D(R=Z) UQ) C D{RUq, }).
Ifx € CS, xlles € 1, Sx = 0, then DSU(y)) € D(T), DU()) C QUD®RE), and
point-wise |SU (x,x)| < Y(x), |RU(x, x)| < RE(x).

The divergence sets D in this theorem are rather “thin”. To quantify this property, e. g.
for the series Y, let us apply two following characteristics: 1) the estimates of the remainder
terms of T

= lng .
Tj(x)::ziﬂ, j=0,1,...;
ey

2) the estimates of the “logarithmic dimension” of D(T).



Theorem 2 A. The function Y is exponentially integrable:
1
/ exp(AT(x))dr < oo, 0< <L
0

If a sequence of positive numbers \; satisfies the condition \; = o(Fj/j), j — oo, then

/01 (exp(\T;(x) — 1) d — 0.

B. If a > 0 and € — an arbitrarily small positive number, then there exist a family of intervals
I =TI(a,e) = {I} covering D(Y), and such that

> | < e
IeZ(oe)
In particular, the Hausdorff dimension of D(Y) equals 0.

Remark. Unlike the function U, its trigonometric conjugate RU is not exponentially inte-
grable; moreover,

/01 exp ( |27r§RU(x)|> dx = +o0.

(The latter easily follows from theorems 1 and 2 and the consideration of the function In* ¢, (z)).
Therefore, U is not a function of bounded mean oscillation, see e. g. [24], Ch. 4.

Before turning to the proof of these statements, let us deduce some corollaries, and provide
comments. For (M, N) € N? let us consider the rectangles, infinite stripes, and the hyperbolic
crosses :

Ouy = [1, M] x [1,N], Oun :=[1,00) x [1,N], On :={(m,n) e N*: 1 <mn < N}

Obviously, the domains [J are convex in the usual sense, while the crosses ¢ are not convex
examples of O domains.
Also, recall that (cf. e. g. [29], Ch. 1)

2mwiny

e In2sin7y| . (1
L(y) := E = — +i == f
2 ™ m ' (2 racy) ’

n=1

and apply to U the following two different particular O-summation methods:

_ gmimne 2 In2sintmz| = 1/2 — frac(maz) ,
dmoo D =) T i T =S His),
(m,n)e0e, N m=1 m=1
g2mimna cos 2rma + i sin 2rma .
lim ) = lim [ > d(m) = T(2) +4T ().
N—oo (mm)edN mmn N—o0 mE[LN] ™

The next statement is a direct corollary from theorem 1.



Corollary 1 A. The convergence sets of the series S, T, = coincide, and S(x) = T (x) every-
where on the common convergence set.

B. The convergence sets of the series S, T coincide. The common convergence set consists of
those irrational x, for which the series RE(x) is convergent; for such x, S(x) = T(z).

The author’s interest to the convergence problem of the series U was motivated by the
recent papers [9], [20] —[22], and [16]. In [9] M. Z. Garaev studied the sequence {SUg, ,}, i.
e. the partial sums of the sin-series SU over squares. He proved that D({3SUqy  }) # 0: the

sequence diverges e. g. for
o0
Jpﬂ-l

where p; = 2, pj1 :=p;7 ", j=1,2,.... From a personal communication with Garaev,
the author learnt that the pointwise convergence problem of the series 1" was raised by S. D.
Chowla. [2] shows that Chowla indeed addressed the problem in his publications [3] — [6] (see
also [2], v. 1, pp. 230 — 249 and pp. 380 — 405; v. 2, pp. 489 — 491 and pp. 492 — 494).
Particularly, in [3] it was proven that

a) if the sequence of the partial quotients {k;(x)} (see (1)) is bounded, then the series S(z), T'(x)
converge, and the Chowla’s identity (cf. [4]) S(x) =T (z) is true;

1
1P

b) there exist irrational numbers x for which 7T'(x) is divergent;
¢) the divergence set of S is non-empty.
These results received further developments in [4] — [6]. However, the question whether or

not there exist points x where the series T'(z) diverges, seemingly remained open. Corollary

1 provides the solution: D(T") = D(S) = D(IZ) # 0. Corollary 1 also contains a complete

description of the sets where Chowla’s identities S(z) = T'(z), S(z) = T'(z) are valid.
Obviously, the sin-series SU can be written in the form

U= Y

4rimn
(n,m)€Z?, nm=#£0

2mimnx

Therefore, SU is the simplest version of the multiple discrete oscillatory Hilbert transforms,
with the multi-variate polynomial phase. (Here and in the sequel, we consider only algebraic
polynomials P with the real coefficients; deg P denotes the degree of a polynomial P; the factors
A(-) are finite numbers that depend only on the indicated parameters.)

The one-dimensional global boundedness result

r ez'P(n) —e
2

n=1

iP(—n)

< A(deg P),

including the convergence as r — oo, was proved in [1], and independently somewhat later
— by Stein and Wainger, see [23]. In connection with this result, let us note Chowla’s paper



[7] (see also [2], v. 1, pp. 426 —428), that discussed the unboundedness problem for the sums
1 ei"‘”zw. A footnote on the first page of [7] mentions that the formulation of the latter
problem is due to H. Davenport and H. Heilbronn. Secondly, it is remarked that the problem
has been solved in the negative by Dr. Spacek of Prague. The latter amounts to the statement
that the discrete Hilbert transforms with the polynomial phase of degree 2 are indeed uniformly
bounded. However, the author of the present paper did not succeed in locating the associated
publications.
One-dimensional trigonometric series with the polynomial phase

£ 2mi(nwg+etnwy)
fne

nezl

(x4, ..., are considered as real variables) have found applications in the study of the solutions
of the Cauchy initial value problem for Schrodinger type equations, with the periodic initial
data functions, cf. e. g. [17], [19].

Stein and Wainger [20] — [22] elaborated the operator properties of the multiple trigonomet-
ric series with the multi-variate polynomial phase. In [20] a fundamental theorem is established,
stating the [?(Z*) — [?(Z*) boundedness of the discrete oscillatory transforms with the multi-
variate polynomial phase

r(Hm= 3 VK@ -m)f(m), nezt

meZk, m#n

where P(n, m) is an algebraic polynomial on ZF x Z¥, K - a Calderén — Zygmund kernel. The
norm of the operator T : [?(Z*) — [2(ZF) does not exceed a number A = A(deg P, k). The
proof of this result in [20] required elaboration of the estimates of the multivariate exponential
sums of H. Weyl with the slow multipliers over convex domains 2 C R*

wQ(X; P) — Z Xn€27m'P(n) )

nef)

As a particular case, the following results are mentioned in [20] (see (9.4) on p. 1334): if K is
a Calderon — Zygmund kernel, then

> K(n)e*™"™| < A(deg P),

In|<r

and the limit of the sums exists, as r — oo, if at least one of the coefficients of P is irrational.
It is also noted that if e. g. K(x) = |[x|7*"" ~ real, v # 0, then the limit does not exist for
infinitely many values of the coefficients of P.



Let us mention that slowness of a multiplier is understood in [20] (see p. 1305) in the
following sense: x(x), x € R¥ is slow if it is a C! function bounded on R* satisfying

Ix(x)] + |x||Vx(x)| < 1.

Apparently, this definition is not too distant from our definition of a CS-function. However,
we demand the property of slowness coordinate-wise, which is a somewhat lighter restriction,
and we also consider the summation over U-domains, such as hyperbolic crosses, that are not
convex in the usual sense, and also the U-domains “with diadic gaps”. The latter feature allows
to derive from theorem 1 corollaries concerning the divisor function, and simultaneously, the
distribution of the fractional parts. The following statement is an example.

Corollary 2 If x : Ry +— C is a slow function, ||x||cs < 1, then

2 F Z x(m)d(m)e*™*| <« R=(z), v € R\ Q;

27k Z x(m) (1/2 — frac(mx))| < T(x), x € R

k=0 me[2k 2k+1)

Indeed, if {6}, is a sequence of complex numbers satisfying |6;| < 1, then the function
O : Ry — C defined by

Oy) =0, y € (0,1), O(y) :=02"y, ye2*:2""), k=0,1,...

is slow, and [|©||cs < 1. To deduce corollary 2 from theorem 1, we take, for a fixed z € R,

0) := sign Z x(m)d(m)e?™™e ), = sign Z x(m) (1/2 — frac(mzx)) ,

me([2k,2k+1) me[2k 2k+1)

and apply the following general property of the class CS: if x : R, — C is a slow uni-variate
function, then ©(mn)x(mn), ©(m)x(m), (m,n) € R% are slow bi-variate functions with the
CS-norm < 1.

The summation of trigonometric Fourier series over U domains was considered by S.A.
Telyakovskii in [25]-[26] where the following global boundedness result was established for the
multiple sin-sums with the linear phases:

sin 27n, 2 sin 27n,

sup sup
QEV xeRF | 20 ny Ng



This result, and its subsequent generalizations, cf. e. g. [27], have found numerous applications:
estimations of Kolmogorov’s diameters of the functional classes with bounded mixed derivative,
hyperbolic cross approximations, the convergence theory of multiple Fourier series of bounded
variation in the sense of Hardy, etc.

The paper [16] contains a unification of Telyakoskii’s result and Arkhipov — Oskolkov’s
[1]. The multiple discrete Hilbert transforms with the additive polynomial phase P, and CS-
multipliers are considered. It is proved that

eiP1(n1) _ iP1(-n1) etPr(ng) _ oiPr(—ng)
Z Xn Ce S A(d)HXHCS) d .= ml?xdeg Pk,

n
neNk ™ k

and the multiple series is O-summable. In particular, for the real ¢;, t, one has

6iP(m) o eiP(—m) eiQ(n) o 6iQ(—n)
m1+it1 n1+it2

sup < A(d, t1,t3), d:=max(deg P, deg ().

2eb (m,n)eN

In view of this result, and also theorem 1, it seems interesting to study the double sums of
the type

627rzmna:

Wﬂ(l‘azbZQ) = Z

(m,n)eN

TImrLn?2

where 2, = 0y + ity, 29 = 09 + ity are fixed complex numbers. For z; = 1, the imaginary part
of the full sum W (x, 1, 2) coincides (see also Corollary 2) with the Dirichlet’s series

Hzz) = Z 1/2 — frac(n:r))

n?
n=1

which was introduced by E. Hecke. Hecke [13], G.H. Hardy and J.E. Littlewood in [11], [12],
see also [10], pp. 197 — 252, studied H(z, ) as a function of the complex variable z for fized x.

Recently, the author [18] studied a modification of the series U with “a somewhat bigger
denominator” and CS-multipliers

Z sin 2mrmnx
Xm,n ISR
(m,n)eN2 T

Unlike U, the series V' converge for all real x, and the sums are bounded functions of x.
Let us also note that the double oscillatory sums with the hyperbolic phase, of the type

§ : 2mi(mnt+ma1 +na
amyn e ( )



(t, 21,z — real variables) naturally appear in the study of the probabilistic density functions
generated by the solutions of the Schrodinger equation with the periodic initial data, and also
the boundary value problem posed for Helmholtz equation. Some results in this direction have
been recently obtained in [19].

2 The proof

Proof of Theorem 1. Let 2 be a U domain. As above, denote M () := M the side-length of
the largest square [1, M| x [1, M| contained in Q. For an expanding family {€2,} C U we have
M(Q,) — o0, so that without loss of generality we can assume that M > 1. Everywhere below
we assume that the multiplier y is a real-valued CS- sequence, and ||x||cs < 1. For z € R, ||z]]
denotes the distance from x to the nearest integer. As above, we drop x as the argument of
the sums, if x = 1.

Let us split the sum

2mmnx

= > Xmn —

(m,n)eN

along the main diagonal m = n, and write, using our definitions of a U domain and the number
M = M():

D S LTy
me(l,M] n=m+1
where N,,, > M, M,, > M, m € [1, M]. For m € N, let us denote
(X, y) := sup i (Xomn + X )’emny (X y) i (Xmn + X )’€2my
O (009) 3= 80D |0, O+ Xom) =5 Oma008) = 2 O+ ) =2

where " denotes that the term with n = m has to be taken with the factor 1/2. For all m € N
the series 0., 5 (X, y) are convergent, unless y is an integer; S0y, o (X, y) converge for all real y
(see also lemma 1 below).

Let us temporarily assume that x € (0,1) is an irrational number, denote ¢, := 1, and
subdivide the summation domain [1, M] into the intervals of the form [g;, ¢;1+1), where ¢; = ¢;(x)
are the denominators of the continued fraction (1), J = J(z, Q) :=max{j : ¢; < M}:

J
om(x, L mz)
ZAJ X, 2, ), Ai(x, Q)= Z — j=0,....,J—1,
7=0 me(g;,qj+1)
om(x, 2, mx
Ay, Qo) = ) %

me[anM]



Let us introduce the following upper bounds for A;(x, 2, z):

1 Om (X, MX
Ajupr) =) o Sup om( Q) = D T 06 1),
me(g;,q;+1) me[g;,q;+1)

Lemma 1 Form € N, y € R, the following estimates are true

1

. 1 ,
() Ron($2) = 21 40 (1 (i + 1)l <

Lemma 2 Forz € (0,1)\ Q

In2a. Inag.
0 A0 =0 (BB (i) a0 =0 (M) ez,
J J

In? g4 ngj
i) A;(Q,2) = —2 4 i(—1) == 4 2,(Q,2),
(iii) A;(%2,2) omq, (1) 2, (2, 2)

Se, (2, 2) = O (%)  Res(Q ) :O<an“qJr 1 qf) 0<j<J-1,
j j

and if M(Q) > 52 then the estimates (3,iii) remain true for j = J.
Proof of the lemmas. For m, N € N, y € R and a CS-sequence {x;, }nen let

m 2mny

1
2min
m = E € Y ) m N X; E Xn )
wm mn

Fr (X, y) := sup IFm,N(x,y)I, Fm,oo(x,y) = lim Fo,n(X,y)-
sz N—0

We have, applying the Abel’s transformation,

Fan(xy) = i Xn (Dn(y) - (1 = %) Dn—l(y)>

n=m

= Z Xn Dnily) _ XmDm-1(y) + Z (Xn = Xn+1)Dn(y) + xn+1Dn(y),



and therefore

Funoy) <) <M + (O — Xn+1)Dn(y)|> + 2sup [XnDp-1(y)]-

— n n>m
n=m 2

From here and the well-known estimate of the Dirichlet’s kernel

1
D,(y) =0 (min (1, —>>
n|lyll
we conclude that

,im%l(y <<S“p'x”'z m( ||1y||>20<1“<”m|1|yn>>

o0

| — Xn+1)Dn(y)] < max [Dn(y)] Val|gkm,2k+1m) X
[
k=0

n€2km,2k+1m)

< Z win ( zkniuyu) o (1“ (1 * mﬁml))

. 1
sup |xn+1Dn(y)| = O <m1n <1, —>> .
Nzm ml|yl]

Summarizing these estimates we see that

Fus(x:9) = O (ln (1 i m|1|y||>>

This relation implies the convergence of the series Fi, (X, ¥), Omoo(X,y) for y € R\ Z, and
also the validity of the estimates (2,i).

The proof of (2,ii) follows a completely analogous path, with some modifications due to a
better estimate of the imaginary part of the Dirichlet’s kernel D,,:

SD,(y) = 0 (min (sl ﬁ)) ,

< sup Xv —mm nl|ly =0 |min(1,—— ]|,
P 1 > ol lly]

n=m
o0

Z |(Xn — Xna1)SDp(y)| < ( : max |%Dn(y)|> Var[gkpm 2k+1m) X
k=0

n€2km,2k+1m)

1 1
< min | 28|y ,7> =0 (min (1,—)) .
Z (2 ey llg]



To prove (2,iii), we write

% sin27rny 1 frac(y) <m21 L i ) sin 27ny
—— = — —frac(y) — _—
n=m n 2 n=1 n=Np,+1 m

and for |y| <1/2, N,,, > M apply the following simple estimates

1 sign “— sin27mn
5 —frac(y) = 2L+ 0(lyl), Y T = O(mly),

n=1

> sin 27ny X 1
= 7 = 1, —— .
2 . O<mm< ’M|y|>>

n=Np,+1

The proof of (2,iv) is analogous:

N cos 2mm 1 i > cos 2mn
Ziy:——ln|2sin7ry|—< + Z ) 7(7;,
™ T ™

n=m n=1 n=Np,+1
m—1

1 1 1 2 1
——In|2sinmy| = —In — + O(1), ORI 2 O(1) + O(m?y?),

T T |yl c~ T

o

cos 2mny 1 1
Sy el
™ Myl 2

n=Np,+1

In the proof of lemma 2, we will make use of the following properties of the partial quotients
and the convergents, cf.[14], Chapter 10, or [28], Chapter 1:
) 1 1 )
r=" 1o, —— <5 < , signd; = (=1)%
qj 24;¢j+1 4jqj+1

a4 GO (4)

Qi1 =kjnq; +qi—1;  (a4,q) = 1; =
J J J J ) 701 ) qj—l—l q] q]q]+1

where ay := 0.
Fix an integer j > 0, for brevity denote

a; a
CI_J' =g b= K= Q10 =0, 44,00 w) = A
J

and represent the sum A, as follows:

A=B,+C,, Bo=Y Tl g 5 ona(xma)

m
meB meC



where

B=%ﬁ@@”m&%}¢z%ﬁ@@”mM%}

Since (a, q) = 1, for each fixed k € N the set of numbers ma = (kg +1)a, [ =0,1,...,¢—1
represents all residues modq. Therefore,

-1 71!
> =) -2 5] -oumen.
kg<m<(k+1)q q 0<i<q q
Moreover, if ¢ < m < @, then by (4) we also have
‘ < m < 1
mr— —| < — < -,
q 9@ " ¢
and since m||mz|| > 1 for m € B, we obtain using (2,i):

o0

B.<Y > o <2 T < )

k=1 me(kq,(k+1)q), [mal[>1/(3q) q

Turn to the estimate of the sum C. Keeping in mind (see (4)) that ¢ satisfies the two-sided

estimate ﬁ <0< Q, we see that the set C is contained in the union of the two following

(finite, or possibly empty) progressions
K k
CCCUly, C:= {m:k‘q, 1<k< Z}, Cy = {m:kq+l ,
[* — the (mod g)-residue of the number (—1)/*1 ie. (cf. (4)) I* = gfrac (%); we have

1
lmaz|| = md, m € Cy; ||mz|| = e md, m € Cy.

We further subdivide the progression C; into two parts:
K K K
Ci::{m:kq,1§k<§}, Ci’::{m:kq,ggkgz}.

Applying the two-sided estimate of § once again, we obtain

m||maz|| = k*¢*0 < <1, mecC; m|mz|=Fkqs

v



so that it follows by application of (2,i) that
(oma) =0 (——) =0 ecr,
Um,* X7 mx) — mmeH - k2q25 ) m 1>
1
meH > q_QJ m||ma;|| > . UM,*(Xme) = O(lneQ)J m e CQ-

From here we obtain the estimate similar to (5):

= N

k
meCyUCy k>VE |2 K/4<k<K q q

For the sums over the remaining progression Cj, the following estimates are valid, according
to (2,i) and (2,ii) with m = kq, ||mz|| = kqd, 1 < k < VK/2:

. |0 (X, M) 1 1 _ 1 1
() Z m < Z mlIl m||mzx| Z k I (kq)26

mec) mec) 1<k<VK/2 q
1 1 1 Ink In?Q In¢+1nQ
=~ | In — B = O| ——
\re T X et
1<k<VK/2 1<k<VK/2
.. |S 0. (X, mx)| 1 1 IneQ In eq
: — = — = O . 7
(ii) Z - < Z - Z ka 2% + p (7)
mec; mec; 1<k<VEK/2

Summarizing the estimates (5) — (7), we see that

2
A*:O<ln eQ) | %A*:()(lneQ) '
q q

This completes the proof of (3,i) and (3,ii), because ¢ = ¢;, @ = g;41.
To prove the asymptotic relations (3,iii), we first take care of the “remainder terms” in
(2,iii) and (2,iv) for m € C{ N [1,M] and y = ||mz||, where again we keep in mind that



q = gy, Q = {qj+1, K = kj—l—l) see (4)

0 2w (et e ()

meCiN[1,M]
1 1 1 1
= kgd + —min (1, —— “ |1 2
2 <q +kqmm<’qu6>><<q Y i
1<k<min(v/K/2,M/q) 1<k <min(M/q,2Q/M)

o3 reemn (.2)).

i Y % (1 + (m|ma])? + m> =0 G <lnemin <%Q> + %)) (8)

meC)N[1,M]

If j=0,1,...,J — 1, then by the definition of the number M = M (Q) we have ¢;11 < M, so
that the above quantities are incorporated into the remainder terms of the relations (3,iii). We
also have

%

C{,j:{m: m=kq;, 1 <k< ;“}c[l,M], J=0,1,...,J -1,

and it is easy to see that the same conclusions remain true for j = J, if we additionally assume
that M(Q) > 95

Thus, summarizing (2, iii) and (2, iv) over the progression C7 ; = C ;N [1, M], and making
use of (4) and the estimates (5)— (7), we obtain that for all j =0,1,...,.J

S0, (§2, mx) L0 <ln eqj)
m Qj

34;(Qe)= Y

meC ;

. _1V , '

=signd; Y. %JFO <1n§qj> _( 1)211.1q‘,+1 L0 <1n§qj> |
1<k fhrr/2 5 qj qj qj

Ro,, (2, mx) Ingj;; + In®g; 2 1 1

m T k
mecy 4 1<k<y/k;11/2 €
‘O <lnqj+1 + In? qj> _ In® gj 1 Lo <lnqj+1 + In? qj>
q; 2mq; 4qj

(for j = J we also made use of the additional assumption M (Q) > 45=). The relations (3,iii)
follow, and the proof of lemma 2 is complete.



Let us finish the proof of theorem 1. Let us first keep our original assumption, that x
is an irrational number, and consider an expanding sequence of U-domains {2, }. Recall the
representation

J
Z AJ X: Qrax (9)
7=0

for Q =Q,, J =J(Q,,x). Then J(Q,,x) = 0o, r — 00, and according to lemma 1 and lemma
2, for each fixed j the following limits exist, and satisfy the indicated estimates:

m,00 3 l 24,
Ajoe (6 2) = lim A (x, Qy2) = Y w:()(m),

melgaiv) &
Ingj In* g1 (=1 Ingjn
SA 00X, @ :O<7J >; Eico() = Ajool( —( Iy d ,
pel) =0 (FER) 5 o) = dpalo) - (2 5
Ing; Ingjy1 + In? g
St joo() = O <—“qf> L Rejuol) =0 < R T 0 qﬂ) . (10)
qj 495
The denominators {¢;(x)} grow at least exponentially, so that

w) bW

From here, applying also the estimates of the bounds Aj;, in lemma 2, we infer that for an
irrational x:

if R=(z) converges, then U(x, z) is O-summabale, and |U(y, z)| < RE(z);

if T(x) converges, then SU(x, z) is U-summabale, and |SU (x, z)| < Y(z);

if I=(z) converges, then SU(x) is U-summable, and |I(U(x) — Z(2))| < 1;

if R=(z) converges, then RU(x) is U-summable, and |R(U(z) — Z(z))| < T( ).

Now consider a full sequence of U-domains {€2,}. Then for an irrational x and each
sufficiently large J one can find such r = r(J) that q;41 > M(Q,) > 252, There are
two possibilities: either a) M(.(5) < gy, or b) M(Q,5)) > ¢s. In the case a) we have
M (1) > 2L > gyq, and gy < 2gy, so that g7y < M(Q)) < gy,

1]

where the estimates (3,iii) are true for all j = 0,1,...,J — 1. In addition, in this case we
obviously have

n*qr | (1) Ingr (1112 QU)
+1 =0 .
2mqy 2q



where the estimates (3,iii) hold for all j = 0,1,...,J, because M(£,) >

each case we have

J .
In® g; 1, ( 1)/ In g4,
r(J) Z ( . : + gj(Qr(J)al‘) )

o 27rq] 2qj

n2a: + 1n g Ing;
%sj(Qr(J),x) =0 < =9 4q_ nq3+1> ) %51'(91"(1)7@ =0 <%> ’
b J

Therefore, in

Thus, for each full sequence of U-domains {€2,}, the following implications are true:

if 3=(z) diverges, then the sequence {SUg, (x)} is divergent;
if R=(x) diverges, then the sequence {RUg, (z)} is divergent.

To finish the proof of theorem 1, we need to consider the remaining case of a rational

a

T =%, (a,q) = 1. In this case, the continued fraction (1) is finite, and there exists a finite
J = J(z) (J = the smallest number of “floors” in the representation (1)) such that if M =

M () > q; = g, then

J
= A;(x, Q1)
Jj=0

It is easy to see that for j < J the estimates of lemma 2 remain true; the relations (5), (6)
remain valid also for 7 = J, and a modification is needed only in the consideration of the sums

over the progression

M
CiJ(Q)={m:kq,1§k§—},
q

see (7), where ||mz|| = 0. Here, we obviously have

R

O me) = 0, Roy,(x,ma) = Y A g Y7 X

and consequently, in the particular case of x =1,

an Xn,m 2 M 1



so that

2 1 M 1 1 M
RA;(Qz) > — Z —ln——l—O(ﬂ):—(an——kO(lnM))—>oo, M — oo.
W <herla kq  kq q Tq q

Thus, for x € Q the sin-series SUy, x) with a general real CS-sequence x is O-summable; for
X = 1, the cos-series RU (z) is U-divergent, and moreover,

lim RUg, (x) = +o0

7 —00

for each expanding sequence of U domains {2, }. This completes the proof of theorem 1.

Proof of Theorem 2. For a collection of natural numbers k = (ky,..., k;j_1,k;) € N, let (see
(1) )

by k] = 2221

[ 1 J 1] 41

and consider an interval w = w(k) with the end-points
a; a;
[kl,...,kj,]_,kj] = [/{]_,...,kj,l,kj-f—]_] - - - (]_2)
45 4,

By the basic property of the continued fraction, see (4), we have

aj—1 a; . 1
qdj—1 g q;qj—1 ’
and further,
a; a 1
() gi@) = ¢j, € w; (i) o] = |2 = | = —, (i) J wk)=(01). (13)
G Gl 4 et
Consider the partitioning of w by the points
a; a;k+a;_
Llyk;:[kl,...,kjfl,/{j,k]zjijl, /{:1,2,
41,k gk + g1
Denote wy, the sub-interval of w whose endpoints are two consecutive fractions ij:: and Z]ii:ii )
J > J >
Then
Ingq; In(q;k -
() (o) = 2dimae _IMGREG) e,
4d; 4q;
a,; a; 1 >
(if) Jop| = | B8 — 2L (i) | we=w. (14)
qj+1,k qj+1,k+1 qj+1,k9541,k+1 b1

'Here and in the similar partitions below, we disregard all rational points



Let
Eu(2) i ={z: v ew, pjx) >z}, plw,z):=meas&,(2). (15)

Then using (14) and (13, ii) we conclude that

a; a;
Eu(z) C U Wi, p(w,z) = Z lw| = Z J+LE @41kl

qj+1,k dj+1,k+1

k: g1 p>e%” k:qjqq p>eb” k:qjqq p>e%”
1

= equqj

= gje” " |w| < 2q;e” V7 |wl; p(w,z) < min (1, 2¢e”%7) |w]. 16)

Since ¢; > F}; and
{r:2€(0,1), ;> 2} = | Eur(?)

keEN
it follows that

p(w, z) < min (1, 2F}€7sz) |wl,

1tj(z) < min (1, 2Fje”"5%) Z lw(k)| = min (1, 2F;e"5%) . (17)
keN/

In particular, ¢; is exponentially integrable, and for A < F}

1 00 [ee]
/ i (@) o — _/ M d/lj (z) =1+ )\/ e /Lj(z) dz
0 0 0

. s , 1 In2F;
§1+)\/0 e min (1, 2Fje FJ):eA§J<1+Fj_)\), & = Fjj' (18)

For a fixed j, let us consider the sequence of functions
!
Tj,l:zzgpua l:]7]+17
v=j

On each interval w(k), k € N all functions ¢, with v < [ are constant, so that the sum Y,; 4
is also constant. Thus, applying (18) and (16) and induction in [ with [ > j, for A < Fj we

obtain the estimate l
1
1
ATi0@) g < v 1 .
/0 e Tz < H e ( + )

v=j

Letting | — oo, from here we derive the claims A) of theorem 2.



To prove the claim B), for a given positive number € and j = 0,1,... let us consider the
sets

N

Fi(e) := {x: r € (0,1), pj(x) >z, z = %} , Fle):= U

Jj+1)2%

<.
|

=0
According to (15), (16), for each interval w = w(k), k € N/, the part &£,(z;) of F;(e) is an

interval I = I;.(k) of the length
1 qj
1 Lo ).
1 4 (7 +1)%

and keeping in mind that a > 2, |w| > qj’z, we have

1\ ™ g\ T _etu+1) _eri+1)*™

g Fp?

Therefore,

076 = U B @ Y (ngg) fJi S ot = SV

keN keN keNs J

Consequently, the set F () is covered by the collection of intervals

(o) := {{Lc (k) }eers };oo ’

1\ “ G+ a
lIl—) < e T<<5a, a > 2.
> (w > U

IeI(oe) j=0

and

In the complement of the set F(¢) the series T converges:

1
x) = j; pi(x) > m < 00,

J

o0

VAN

which completes the proof of the claim B) of theorem 2.
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