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Abstract

Let BV = BV(IRd) be the space of functions of bounded variation on IRd with
d ≥ 2. Let ψλ, λ ∈ ∆, be a wavelet basis of compactly supported functions nor-
malized in BV, i.e. |ψλ|BV(IRd) = 1, λ ∈ ∆. Each f ∈ BV has a unique wavelet
expansion

∑
λ∈∆ cλ(f)ψλ with convergence in L1(IRd). If ΛN (f) is the set of N

indicies λ ∈ ∆ for which |cλ(f)| are largest (with ties handled in an arbitrary way),
then GN (f) :=

∑
λ∈ΛN (f) cλ(f)ψλ is called a greedy approximation to f . It is shown

that |GN (f)|BV(IRd) ≤ C|f |BV(IRd) with C a constant independent of f . This answers
in the affirmative a conjecture of Meyer [15] (see p. 79).

AMS subject classification: 42C40, 46B70, 26B35, 42B25.
Key Words: N -term approximation, greedy approximation, functions of bounded
variation, thresholding, bounded projections.

1 Introduction

The space BV := BV(Ω) of functions of bounded variation on a domain Ω ⊂ IRd is impor-
tant in mathematics (geometric measure theory, differential geometry) and applications
(image processing, nonlinear PDEs). The structure of BV is complicated by the fact that
neither it nor the closely related Sobolev space W 1(L1(Ω)) have an unconditional basis
(BV does not even have a basis). Wavelet decompositions of BV functions, while not
characterizing this space, give fine information (see [4, 19, 2]) about its structure and
these decompositions can be used to solve various extremal problems.

Consider, for example, the extremal problem

K(f, t) := K(f, t;L2(Ω),BV(Ω)) := inf
g∈BV(Ω)

‖f − g‖L2(Ω) + t|g|BV(Ω), (1.1)

where Ω = [0, 1]2 and t > 0 is a parameter. The expression (1.1) is called a K-functional in
interpolation of linear operators. It is used to describe interpolation spaces between L2(Ω)
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Contracts UFEIES0302005USC and DAAD 19-02-1-0028, the Foundation for Polish Science and KBN
grant 5P03A 03620 located at the Institute of Mathematics of the Polish Academy of Sciences.
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and BV(Ω). This and related functionals also occur in image processing in such problems
as denoising and deblurring. The rate of decay of K(f, t) as t → 0 gives information
about the smoothness of f relative to L2(Ω) and BV(Ω). A function g = gt is a called a
near minimizer (with constant C) to (1.1) if

‖f − gt‖L2(Ω) + t|gt|BV(Ω) ≤ CK(f, t).

One would like simple constructive methods for finding minimizers or near minimizers to
(1.1).

In [4], it is shown that thresholding the Haar decomposition of f provides a near
minimizer to (1.1). Namely, if Hλ, λ ∈ ∆, is the Haar basis on [0, 1]2, then given f ∈
L2([0, 1]2), we can write

f =
∑
λ∈∆

cλ(f)Hλ

with the Hλ normalized in L2([0, 1]2) (which is equivalent to normalizing in BV([0, 1]2)).
For each t > 0, a near minimizer gt is given by thresholding the Haar series:

gt := Tt2f :=
∑

λ∈Λ(f,t2)

cλ(f)Hλ,

where for any t > 0

Λ(f, t) := {λ : |cλ(f)| > t}.
The proof that thresholding is a near minimizer relies on three basic results concerning

Haar decompositions and BV. To describe these, we introduce the concept of N -term
approximation using the Haar basis. We define Σw

N as the collection of all functions
S =

∑
λ∈Λ cλHλ, where Λ ⊂ ∆ is any index set with cardinality #(Λ) ≤ N . Given

f ∈ L2([0, 1]2), we consider the approximation of f using the elements of Σw
N :

σN (f)L2([0,1]2) := inf
S∈Σw

N

‖f − S‖L2([0,1]2).

The first of these basic results is the following direct estimate (see [4]) for the approx-
imation error:

σN(f)L2([0,1]2) ≤ C0N
−1/2|f |BV([0,1]2), N = 1, 2, . . . .

This inequality is called an inequality of Jackson type (corresponding to analogous in-
equalities in approximation by algebraic polynomials). The Jackson inequality is proved
by showing that the Haar coefficients of a BV([0, 1]2) function are in weak �1. That is

#(Λ(f, ε)) ≤ C0ε
−1, ε > 0.

This weak �1 property was shown in [6] to hold in the more general setting of wavelet
expansions of functions in BV(IRd) using compactly supported orthogonal wavelets. This
allows the generalization of the Jackson inequality to arbitrary space dimensions and
arbitrary compactly supported orthogonal wavelet systems (see Lemma 4.2).
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The second basic result (see [4]) is the Bernstein inequality which (in the case of [0, 1]2)
says that

|S|BV([0,1]2) ≤ C0N
1/2‖S‖L2([0,1]2), S ∈ Σw

N , N = 1, 2, . . . .

We shall show in §5 that this inequality also generalizes to IRd and general compactly
supported orthogonal wavelet systems.

The Jackson and Bernstein inequalities are not enough to show that thresholding the
Haar expansion is an approximate minimizer for (1.1). One also needs the stability of
thresholding in BV([0, 1]2):

|Tε(f)|BV([0,1]2) ≤ C0|f |BV([0,1]2), f ∈ BV([0, 1]2).

This remarkable property says that projecting onto any sum involving the N largest
wavelet coefficients of the Haar series of a function in BV([0, 1]2) results in a function
with controllable BV([0, 1]2) norm. Note that this property does not hold for projecting
onto an arbitrary N -term sum of the Haar series nor does it hold in IR1 (see §7). This
stability result for Haar expansions was generalized to space dimensions d > 2 in [19].
Yves Meyer [15] (see p. 79) has conjectured that this property holds for any compactly
supported wavelet system. The main result of this paper is to prove this conjecture.

Theorem 1.1 Let ϕ be a compactly supported univariate scaling function in BV(IR1)
which generates the compactly supported orthogonal wavelet ψ. For d ≥ 2, we consider the
multivariate orthogonal wavelet system (ψλ)λ∈∆ obtained from ϕ and ψ, and normalized
in BV(IRd). Then this wavelet system has the following BV stability property. If f ∈
BV(IRd), d ≥ 2, let

f =
∑
λ∈∆

cλ(f)ψλ

be the wavelet expansion of f . Let for any N , ΛN(f) be the set of N indices λ ∈ ∆ for
which |cλ(f)| are largest. Then the nonlinear operator

GN (f) :=
∑

λ∈ΛN (f)

cλ(f)ψλ

satisfies

|GN(f)|BV(IRd) ≤ C(ϕ, d)|f |BV(IRd).

As a consequence of this theorem we shall also show that GN(f) realizes the K-
functional for the pair (Ld∗(IRd),BV(IRd)).

Theorem 1.2 Let ϕ be a compactly supported univariate scaling function in BV(IR1)
which generates the compactly supported orthogonal wavelet ψ. For d ≥ 2, we consider the
multivariate orthogonal wavelet system (ψλ)λ∈∆ obtained from ϕ and ψ, and normalized
in BV(IRd). Then the greedy operator

GN(f) :=
∑

λ∈ΛN (f)

cλ(f)ψλ,

with ΛN(f) the set of N indices λ ∈ ∆ for which |cλ(f)| are largest, satisfies

‖f−GN (f)‖Ld∗(IRd)+N
−1/d|GN(f)|BV(IRd) ≤ C(ϕ, d)K(f,N−1/2;Ld∗(IRd),BV(IRd)). (1.2)
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2 The space BV

There are several treatments of the space BV. We mention two valuable references [15, 20]
which contain all of the properties of BV functions that we shall need. There are several
equivalent definitions of BV. The approach we take below is simply the most direct and
convenient for our setting.

Let Ω be an open set in IRd. We begin with the Sobolev space W 1(L1(Ω)) which is
the collection of all functions in L1(Ω) such that the distributional gradient ∇f is also in
L1(Ω). The semi-norm on this space is

|f |W 1(L1(Ω)) := ‖∇f‖L1(Ω),

and the norm for this space is obtained by adding the L1(Ω) norm:

‖f‖W 1(L1(Ω)) := |f |W 1(L1(Ω)) + ‖f‖L1(Ω).

The space BV(Ω) can now be defined as the set of all f ∈ L1(Ω) for which there is a
sequence (fn) satisfying

‖f − fn‖L1(Ω) → 0, sup
n

|fn|W 1(L1(Ω)) <∞. (2.1)

The semi-norm on BV is then defined as

inf
(fn)

lim inf
n→∞ |fn|W 1(L1(Ω)), (2.2)

where the infimum is taken over all sequences satisfying (2.1). To see that this definition
is equivalent to other definitions of BV the reader should consult Theorems 5.2.1 and
5.3.3 in [20].

We mention a couple of properties of the BV norm that we shall use in this paper.

Remark 2.1 In the case Ω = IRd, the functions fn appearing in (2.1) and (2.2) can be
taken to be in C∞(IRd) with compact support.

Remark 2.2 Let I0 be a dyadic cube in IRd and Ij, j = 1, . . . , m, be a finite collection
of disjoint dyadic cubes each of which is contained in I0. Let χIk

be the characteristic
function of Ik, k = 0, . . . , m. Then the function f = χI0 −

∑m
j=1 χIj

has BV semi-norm

|f |BV(IRd) ≤
m∑

j=0

measd−1(∂Ij), (2.3)

where ∂Ω denotes the boundary of a set Ω ⊂ IRd and measd−1 is the (d− 1) dimensional
surface measure.

The second result can be proved directly or derived from the well known co-area formula
for BV functions (see [20], p. 231). We have equality in (2.3) if the boundaries of the Ij ,
j = 0, 1, . . . , m, are disjoint.

Remark 2.3 If Ωj ⊂ IRd, j = 1, . . . , m, is a partition of Ω, then
m∑

j=1

|f |BV(Ωj) ≤ |f |BV(Ω). (2.4)

This follows from the set additivity of the L1 semi-norm in the case f ∈ W 1(L1(Ω)) and
by taking limits in the general case f ∈ BV(Ω).
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3 Wavelet decompositions

We shall limit our analysis to the case of compactly supported orthogonal wavelets on
IRd. The results we put forward in this paper hold equally well for biorthogonal compactly
supported wavelets with the same proofs but somewhat more cumbersome notation.

Let ϕ be a compactly supported univariate scaling function with orthogonal shifts
which satisfies the two scale relation

ϕ(x) =
∑
k

αkϕ(2x− k),

where only a finite number of the αk are nonzero. We shall assume throughout this paper
that ϕ is in BV(IR1). Let ψ be the univariate wavelet function with compact support
which is obtained from ϕ by multiresolution. Examples of such wavelets and scaling
functions were given by Daubechies [8].

We use the standard construction of multidimensional wavelet bases. Let E ′ denote
the set of vertices of the cube [0, 1]d and E denote the set of nonzero vertices. We shall
use the notation ψ0 := ϕ and ψ1 := ψ. For each e ∈ E ′, we define

ψe(x1, . . . , xd) := ψe1(x1) · · ·ψed(xd).

Let D denote the set of dyadic cubes in IRd and let Dk denote those dyadic cubes which
have sidelength 2−k and D+ := ∪k≥0Dk. For any dyadic cube I = 2−k(j + [0, 1]d) ∈ Dk,
k ∈ ZZ, j ∈ ZZd, we define the functions

ψe
I(x) := γ(I, e)ψe(2kx− j), e ∈ E ′,

with the γ(I, e) > 0 chosen so that

|ψe
I |BV(IRd) = 1, I ∈ D, e ∈ E ′.

These functions are scaled to I. It follows that the constants γ(I, e) = |I|−1/d∗γ(e)1 with
d∗ := d

d−1
and therefore we have

c1 ≤ ‖ψe
I‖Ld∗(IRd) ≤ c2, I ∈ D, e ∈ E ′,

with constants c1, c2 depending only on ϕ and d. In other words, normalization in BV is
equivalent to normalization in Ld∗ .

To simplify the notation that follows, we introduce the indexing set ∆ which consists
of all pairs λ = (I, e) with I ∈ D+ and e ∈ E (e ∈ E ′ if I ∈ D0). We define |λ| := k
when I ∈ Dk. The set of functions {ψλ}λ∈∆ is a complete orthogonal system. Any locally
integrable function f on IRd has a formal wavelet series

f =
∑
λ∈∆

cλ(f)ψλ,

where the wavelet coefficients cλ(f) are given by

cλ(f) := ceI(f) := 〈f(·), γ′(e, I)ψe(2k · −j)〉, λ = (I, e) ∈ ∆, I = 2−k(j + [0, 1]d),

1Througout this paper, we shall use the notation |A| to denote the Lebesgue measure of a set A ⊂ IRd.
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where the normalization factors γ′(e, I) of the dual wavelet scale are like γ′(I, e) ∼ |I|−1/d.
The set of functions {ψλ}λ∈∆ is a basis for many function spaces. For example, they

are an orthogonal basis for L2(IRd). They are an unconditional basis for the Lp spaces
1 < p < ∞ and for the Besov spaces whenever they admit an unconditional basis.
They are a basis for W 1(L1(Ω)), but not unconditional (this space does not admit an
unconditional basis).

We shall use the abbreviated notation φ := ψ(0,...,0) for the function which is a tensor
product of scaling functions. Similarly, we write

φI(x) := |I|− 1
d∗ φ(2kx− j), I = 2−k(j + [0, 1]d),

to index the scaling functions at level k. The shift invariant space Sk := Sk(φ) is the span
of the functions φI , I ∈ Dk. Each space Sk is a dilate of the space S0. At each dyadic
level k, the shifts φI , I ∈ Dk sum to a constant:

∑
I∈Dk

φI = c|I|− 1
d∗ (3.1)

with c a constant. Any wavelet ψλ or scaling function at a dyadic level j < k (i.e. |λ| = j)
is an element in Sk and can be written as a finite linear combination of the φI , I ∈ Dk.

4 Approximation by piecewise constants

We shall use in the course of our proofs some results on approximation of BV functions
by piecewise constant functions. Throughout this and the next section, we assume that
d ≥ 2. The results we shall need are for the most part proved in two earlier works [4] (for
the case d = 2) and [19] (for the case d > 2).

We shall discuss three types of approximation by piecewise constants. The first of these
is N -term approximation using Haar functions. In this case, we can be more general and
treat N -term approximation using compactly supported wavelets. So let (ψλ)λ∈∆ be one
of the wavelet bases introduced in the previous section. We take the basis functions ψλ

to be normalized in BV.
We define the nonlinear space

Σw
N := {∑

λ∈Λ

cλψλ : #(Λ) ≤ N}.

Thus, each element in Σw
N is a linear combination of at most N wavelets which can occur

at arbitrary positions or scales.
We define the error in approximating f ∈ Lp(IRd) by the elements of Σw

N by

σw
N (f)Lp(IRd) := inf

S∈Σw
N

‖f − S‖Lp(IRd). (4.1)

A fundamental result in wavelet approximation [17] is that the approximation error
σw

N (f)Lp(IRd) can be obtained up to a constant C(d, ϕ) by greedy approximation. We
describe this result only in the case p = d∗ although it holds for all 1 < p < ∞ when
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one uses wavelets normalized in Lp(IRd). For each N = 1, 2, . . ., we define the greedy
approximant

GN(f) :=
∑

λ∈ΛN (f)

cλ(f)ψλ,

where ΛN(f) is the set of the N indices of the largest coefficients cλ(f), λ ∈ ∆, in absolute
value (ties in the size of these coefficients can be handled in an arbitrary way). Then, we
have

Proposition 4.1 For any f ∈ Ld∗(IRd), we have

‖f − GN(f)‖Ld∗(IRd) ≤ C(d, ϕ)σN(f)w
Ld∗(IRd). (4.2)

Proof: This result can be derived easily from a result of [17] where it is shown that
(4.2) holds when GN(f) is replaced by GLd∗

N (f). Here, GLd∗
N (f) is defined as above except

that one starts with the wavelet coefficients normalized in Ld∗ instead of BV.
Let {ψλ}λ∈∆ be as usual the wavelet basis normalized for BV: |ψλ|BV = 1. For each

λ ∈ ∆, we choose ξλ such that ‖ξλψλ‖Ld∗(IRd) = 1. The equivalence of the BV and
Ld∗ normalizations gives that c1 ≤ ‖ψλ‖Ld∗(IRd) ≤ c2, with c1, c2 > 0 independent of λ.

Because of the unconditionality of the wavelet basis for Ld∗(IRd), there are C1, C2 > 0
such that for any sequence of coefficients {aλ}λ∈∆,

C1‖
∑
λ∈∆

aλψλ‖Ld∗(IRd) ≤ ‖ ∑
λ∈∆

aλξλψλ‖Ld∗(IRd) ≤ C2‖
∑
λ∈∆

aλψλ‖Ld∗(IRd). (4.3)

Given any function f =
∑

λ∈∆ cλ(f)ψλ in Ld∗(IRd), we let g :=
∑

λ∈∆ cλ(f)ξλψλ which
by (4.3) is also in Ld∗(IRd). If GN (f) =

∑
λ∈∆ cλ(f)ψλ then GLd∗

N (g) =
∑

λ∈∆ cλ(f)ξλψλ.
Hence, using (4.3), we have

C1‖f − GN(f)‖Ld∗(IRd) ≤ ‖g − GLd∗
N (g)‖Ld∗(IRd) ≤ C(d, ϕ)σw

N(g)Ld∗(IRd). (4.4)

On the other hand, if S =
∑

λ∈Λ aλψλ is a best N -term approximation to f in Ld∗(IRd)
then, using (4.3) again, we have

σw
n (g)Ld∗(IRd) ≤ ‖g − ∑

λ∈Λ

aλξλψλ‖Ld∗(IRd) ≤ C2‖f − S‖Ld∗(IRd) = C2σN(f)Ld∗(IRd). (4.5)

The estimates (4.4) and (4.5) combine to prove the proposition. �

We are interested in quantitative estimates for the approximation error σN(f)Ld∗(IRd)

whenever f ∈ BV(IRd). This will be provided by the following lemma.

Lemma 4.2 For any function f ∈ BV(IRd) we have the estimate

σw
N (f)Ld∗(IRd) ≤ C(d, ϕ)N−1/d|f |BV(IRd), N = 1, 2, . . . .
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Proof: The set Aα
∞(Lp(IRd)) of functions f ∈ Lp(IRd) which satisfy

σw
N(f)Lp(IRd) ≤ CN−α (4.6)

is called an approximation space. The norm ‖f‖Aα∞(Lp(IRd)) in this space is the smallest
C > 0 for which (4.6) is valid. For 1 < p < ∞, and α > 0, it was proved in [5]
that f ∈ Aα

∞(Lp(IRd)) if and only if the sequence (‖(cλ(f)ψλ‖Lp(IRd))λ∈∆ is in the space

weak �τ (denoted by w�τ ) with 1
τ

= α + 1
p
. Moreover, ‖f‖Aα∞(Lp(IRd)) is equivalent to

‖(‖(cλ(f)ψλ‖Lp(IRd))λ∈∆‖w�τ . In the case of interest to us, we have p = d∗ = d
d−1

and
α = 1/d so that τ = 1. It was shown in [4] (for the case of Haar wavelets) and in [6]
(for general wavelets) that the wavelet coefficients of a BV function f are in weak �1 and
satisfy

‖(‖(cλ(f)ψλ)λ∈∆‖Ld∗(IRd))‖w�1 ≤ C(ϕ, d)|f |BV(IRd).

Therefore, the lemma follows. �

In the case of ϕ = χ[0,1], the wavelets ψλ, λ ∈ ∆, are the Haar wavelets and the
elements in Σw

N are piecewise constant functions which take at most CN values. We shall
now consider two other types of nonlinear approximation using piecewise constants which
will be important for us later. For the first of these, let

Σc
N := {∑

I∈Λ

cIχI : #(Λ) ≤ N},

where Λ ⊂ D is a set of dyadic cubes and for each set S in IRd, χS denotes the characteristic
function of S. Note that we do not require that the cubes in Λ are disjoint. In analogy
with (4.1), we define

σc
N (f)Lp(IRd) := inf

S∈Σc
N

‖f − S‖Lp(IRd).

Since each Haar wavelet Hλ is a linear combination of at most 2d characteristic func-
tions of dyadic cubes, it follows that Σw

N ⊂ Σc
2dN and hence from Lemma 4.2, we have

σc
N (f)L∗

d
(IRd) ≤ C(d, ϕ)N−1/d|f |BV(IRd), N = 1, 2, . . . .

Lastly, we shall consider approximation by dyadic rings. If I and J ⊂ I are two distinct
dyadic cubes (J maybe the empty set), then we define the dyadic ring R = R(I, J) to be
the set R = I \ J . Consider the nonlinear space

Σr
N := {∑

R∈P
cRχR : #(P) ≤ N},

where P is a family of disjoint rings (i.e. any two R in P are disjoint). Note that
χR = χI − χJ , and therefore

Σr
N ⊂ Σc

2N .
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In analogy with the approximation errors defined above for N -term approximation by
wavelets and constants, we define

σr
N (f)Lp(IRd) := inf

S∈Σr
N

‖f − S‖Lp(IRd).

The following lemma concerning approximation by the elements of Σr
N was proved in

[4] for the case d = 2 and by [19] for the case of general d in [19] (see Proposition 18).

Lemma 4.3 For any function f ∈ BV(IRd) we have the estimate

σr
N (f)Ld∗(IRd) ≤ C(d, ϕ)N−1/d|f |BV(IRd), N = 1, 2, . . . . (4.7)

This result was proved in [4, 19] for functions in BV([0, 1]d). However, we can deduce
it for general functions in BV(IRd) using the following argument which we will also apply
later in similar settings. First, it is enough to prove this result for functions with compact
support since it then follows for general f by a limiting argument (see the definition of
BV(IRd) given in (2.1) and Remark 2.1). Suppose then that f is supported on Qk :=
[−2k−1, 2k−1]d for some k ≥ 1. We consider the mapping η(x) := 2k(x − e/2) where
e := (1, 1, . . . , 1) ∈ ZZd. Then η, which is composed of a shift (by e/2) and then a
dyadic dilation (by 2k), maps [0, 1]d onto Qk. Moreover, η maps any dyadic cube properly
contained in [0, 1]d into a dyadic cube contained in Qk. Now let g := f(η) and apply
the analogue of (4.7) for [0, 1]d to g. This result gives a partition P with #(P) ≤ N
and a function S =

∑
R∈P cRχR, where the R ∈ P are all of the form R = I − J with

I, J dyadic subcubes of [0, 1]d. If one of these R has I = [0, 1]d then we can replace
this R by at most 2d rings corresponding to each of the children of [0, 1]d and in this
way we can assume that any ring in P involves dyadic cubes with sidelength < 1. The
function S(η−1) is in Σr

cN . From the fact that S approximates g in Ld∗([0, 1]d) to the
accuracy C(d, ϕ)N−1/d|g|BV([0,1]d) we deduce that S(η−1) approximates f to the accuracy

C(d, ϕ)N−1/d|f |BV([0,1]d) (recall that the Ld∗ and BV norms scale the same under dilation.
This the gives (4.7).

Let us make one last observation about approximation using the elements of Σr
N .

Given a locally integrable function f , for each measurable set Ω ⊂ IRd, we denote by fΩ

the average of f over Ω:

fΩ :=
1

|Ω|
∫

Ω

f(x) dx.

Lemma 4.4 If f ∈ BV(IRd), there is a collection P of disjoint rings R, such that #(P) ≤
N and the function

RN(f) :=
∑
R∈P

fRχR

satisfies
‖f −RN(f)‖Ld∗(IRd) ≤ C(ϕ, d)N−1/d|f |BV(IRd). (4.8)
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Proof: Let S ∈ Σr
N satisfy

‖f − S‖Ld∗(IRd) ≤ C(ϕ, d)N−1/d|f |BV(IRd). (4.9)

The existence of such a function is guaranteed by (4.7). We can write S =
∑

R∈P cRχR,
where P is a collection of at most N disjoint rings. From the disjointness of the rings in
P, we have

‖f −Rn(f)‖d∗
Ld∗(IRd) =

∑
R∈P

‖f − fR‖d∗
Ld∗(R) + ‖f‖d∗

Ld∗(Pc), Pc := IRd \ (∪R∈PR) , (4.10)

and
‖f − S‖d∗

Ld∗(IRd) =
∑
R∈P

‖f − cR‖d∗
Ld∗(R) + ‖f‖d∗

Ld∗(Pc). (4.11)

On the other hand,

‖f − fR‖Ld∗(R) ≤ 2 inf
c∈IR

‖f − c‖Ld∗(R) ≤ 2‖f − cR‖Ld∗(R).

This follows from the fact that the mapping f → fR is a norm one projector on Ld∗(IRd).
When this is used in (4.10), then (4.11) and (4.9) prove (4.8). �

5 Inverse inequalities

There are certain inequalities (called Bernstein inequalities) which are companion to the
Jackson inequalities. It was shown in [4] (for the case d = 2) and [19] (for the case d > 2)
that any S ∈ Σc

N satisfies

|S|BV(IRd) ≤ C(d)N1/d‖S‖Ld∗(IRd). (5.1)

This inequality was proved when S was supported on [0, 1]d in the above references. If
S ∈ Σc

N , we can assume that supp S ⊂ [−K,K]d for some K and by dilation and shifts
we can map [−K,K]d → [0, 1]d and deduce the general case (5.1) from that for [0, 1]d.

From (5.1), it follows that the same Bernstein inequality holds when S ∈ Σr
N or

S ∈ Σw
N when the wavelet is the Haar wavelet. It will follow from the results of this

section that the Bernstein inequality also holds for Σw
N for general compactly supported

wavelets. However, our more general goal is to prove a Bernstein inequality for functions
that are a sum of elements from both Σw

N and Σc
N .

We begin with a local Bernstein inequality between BV(IRd) and Ld∗(IRd) with d∗ =
d

d−1
. For any I ∈ Dk, we denote by I ′ a general set of the form I \ ∪2d

j=1Jj where each Jj

is a (possibly empty) subcube of the children Ij , j = 1, . . . , 2d, of I.

Lemma 5.1 For each f ∈ Sk and for each I ∈ Dk and any of the sets I ′ we have

|fχI′|BV(IRd) ≤ C(ϕ, d)‖fχI′‖Ld∗(IRd).
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Proof: First of all, by dilation and translation, we can assume k = 0 and that I = [0, 1]d.
We fix one of the children Ij of I and denote by I ′j := Ij \ Jj . It is enough to show

|fχI′j |BV(IRd) ≤ c0‖fχI′j‖L1(IR
d), j = 1, . . . , 2d, (5.2)

with c0 a constant depending only on ϕ, d. Indeed, we have χI′ =
2d∑

j=1

χI′j and from (5.2)

|fχI′|BV(IRd) ≤
2d∑

j=1

|fχI′j |BV(IRd) ≤ c0
2d∑

j=1

‖fχI′j‖L1(IRd)

= c0‖fχI′‖L1(IRd) ≤ c0‖fχI′‖Ld∗(IRd),

where the last inequality uses Hölder’s inequality and |I ′| ≤ 1.
To prove (5.2), we let J be one of the Ij , fix J , and let J ′ = J \ Jj. The result for the

other Ij will follow by translation. We first observe that since the space S0 has dimension
≤ C(ϕ, d) on J , we have (by equivalence of norms on a finite dimensional space) that

‖fχJ‖L∞(IRd) ≤ c1‖fχJ‖L1(IR
d), f ∈ S0, (5.3)

and
|fχJ |BV(IRd) ≤ ‖fχJ‖BV(IRd) ≤ c1‖fχJ‖L1(IRd), f ∈ S0, (5.4)

with c1 depending only on ϕ and d.
We consider two cases. The first is that J ′ is obtained from J by removing a cube

with measure ≤ δ, where δ will be specified in a moment. In this case, we note that

‖fχJ‖L1(IRd) ≤ ‖fχJ‖L1(J ′) + |J \ J ′| · ‖fχJ‖L∞(J)

≤ ‖fχJ‖L1(J ′) + c1|J \ J ′| · ‖fχJ‖L1(IR
d). (5.5)

Now, we select δ := 1
2c1

. Then, whenever |J \J ′| ≤ δ, we have c1|J \J ′| ≤ 1
2
, and therefore

(5.5) gives
‖fχJ‖L1(IRd) ≤ 2‖fχJ ′‖L1(IRd). (5.6)

Next, we note that

|fχJ ′|BV(IRd) ≤ |fχJ |BV(IRd) + measd−1(J \ J ′)‖fχJ‖L∞(IRd)

≤ c1(1 + measd−1(J \ J ′))‖fχJ‖L1(IRd)

≤ c1(1 + 2d+1)‖fχJ‖L1(IR
d) ≤ 2c1(1 + 2d+1)‖fχJ ′‖L1(IRd).

In the above inequalities, we have used relations (5.3), (5.4), (5.6), and the fact that
measd−1(J \ J ′) ≤ 2d+1. Thus, we have proved (5.2) in the case |J \ J ′| ≤ δ.

To complete the proof, we consider the case when the dyadic cube J \ J ′ has measure
> δ. For each such J ′ we have (by equivalence of norms on the finite dimensional space
S0|J ′, see for comparison (5.4))

‖fχJ ′‖BV (IRd) ≤ c(J ′, ϕ, d)‖fχJ ′‖L1(IR
d).
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There is a finite number of such sets J ′ and therefore by enlarging the constant from the
first case (if necessary), we obtain (5.2) for all J ′ in the second case as well. This proves
(5.2) and as noted earlier proves the Lemma. �

We shall utilize a construction given in [10]. Let Λ be any finite collection of dyadic
cubes. Given I ∈ Λ, we define the set B(I) = B(I,Λ) of maximal cubes in I:

B(I,Λ) := {J ∈ Λ : J ⊂ I, J �= I and if J ′ ∈ Λ with J ′ ⊂ I, J ′ �= I, J ′ ∩ J �=, ∅ then J ′ ⊆ J}.

The following Lemma was proved in [10].

Lemma 5.2 If Λ ⊂ D is any finite collection of dyadic cubes, then there exists a set of
dyadic cubes Λ̃ such that

(i) Λ ⊂ Λ̃ and #(Λ̃) ≤ 2d#(Λ),
(ii) For each cube I ∈ Λ̃, #(B(I, Λ̃)) ≤ 2d, where the B(I, Λ̃) are defined relative to

Λ̃.
(iii) each child of I contains at most one cube from B(I, Λ̃).

Let us note that in [10] this lemma was proved for the case when the cubes in Λ are
contained in [0, 1]d. However, we can deduce the lemma as stated above from this by
using the following reasoning. It follows by shifts of dyadic cubes that the lemma is true
if all of the dyadic cubes of Λ are contained in a single dyadic cube of sidelength one. In
the general case given in the above lemma, we can by dilating (if necessary) assume that
all dyadic cubes in Λ are contained in [−1, 1]d. We can then partition Λ = ∪2d

j=1Λj, where
Λj , j = 1, . . . , 2d, is the set of cubes in Λ that are contained in Ij , where Ij is one of the
2d dyadic cubes of sidelength one that make up [−1, 1]d. We apply the lemma (as stated
in [10]) to each Λj to receive Λ̃j. Then Λ̃ := ∪2d

j=1Λ̃j satisfies the above lemma.
We introduce one final notation before stating the main result of this section. Given

a dyadic cube I ∈ D, let

S(I) := {J ∈ D : |J | = |I|, supp φI ∩ J �= ∅}.

The cubes in S(I) are called the support cubes of φI . It is clear that #(S(I)) ≤ C(ϕ, d)
because ϕ has compact support.

The following theorem is the main result of this section. It establishes a Bernstein
inequality for hybrid linear combinations of scaling functions and characteristic functions
of dyadic cubes.

Theorem 5.3 If Λ1,Λ2 ⊂ D each has cardinality at most N (i.e. #(Λ1),#(Λ2) ≤ N),
then any function

f =
∑

K∈Λ1

aKφK +
∑

K∈Λ2

bKχK , (5.7)

satisfies

|f |BV (IRd) ≤ C(ϕ, d)N1/d ‖f‖Ld∗(IRd) .
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Proof: By dilating f (if necessary), we can assume that each of the functions φK and χK

appearing in (5.7) are supported in [−1, 1]d. (Recall again that the BV and Ld∗ norms
scale the same under dilation.) Let Ij, j = 1, . . . , 2d, be the dyadic cubes of sidelength
one that make up [−1, 1]d. We define

Λ :=

⎛
⎝ ⋃

K∈Λ1

S(K)

⎞
⎠ ∪ Λ2 ∪ {Ij : j = 1, . . . , 2d}.

We now apply Lemma 5.2 and receive the set Λ̃ with #(Λ̃) ≤ C(ϕ, d)N .
For each I ∈ Λ̃ we now define I ′ := I \ ⋃

J∈B(I) J , where B(I) = B(I, Λ̃). We have⋃
I∈Λ̃ I

′ = [−1, 1]d and the sets I ′ are pairwise disjoint. Therefore

f =
∑
I∈Λ̃

fχI′. (5.8)

Claim: For any I ∈ Λ̃ with I ∈ Dk, each summand appearing in the representation
(5.7) is in Sk on I ′.

To prove this claim, we first consider any φK , K ∈ Λ1, appearing in the first sum. If
|K| ≥ |I| then φK ∈ Sk and we have our claim for this term. In the case |K| < |I| let J
be any support cube of φK with J ∩ I �= ∅. Then |J | = |K| and hence J is contained in
one of the cubes of B(I) and hence J ∩ I ′ = ∅. Thus such a φK is zero on I ′. Thus we
have established our claim for terms appearing in the first summand.

We now consider an arbitrary term χK appearing in the second summand for which
K ∩ I �= ∅. If |K| < |I| then K is contained in one of the cubes in B(I) which in
turn means that χK is zero on I ′. If |K| ≥ |I| then φK is identically one on I ′. Since
the constant functions are in Sk, we have proved our claim for the terms in the second
summand as well.

We can now complete the proof of the theorem by returning to (5.8). Because of the
claim, we can apply Lemma 5.1 to each term in (5.8) and thereby obtain

|f |BV (IRd) ≤
∑
I∈Λ̃

|fχI′|BV (IRd) ≤ C(ϕ, d)
∑
I∈Λ̃

‖f‖Ld∗(IRd).

On the other hand, from the Hölder inequality,

∑
I∈Λ̃

‖fχI′‖Ld∗(IRd) ≤ (#(Λ̃))1/d

⎛
⎝∑

I∈Λ̃

‖fχI′‖d∗
Ld∗(IRd)

⎞
⎠

1/d∗

= (#(Λ̃))1/d‖f‖Ld∗(IRd) ≤ C(ϕ, d)N1/d‖f‖Ld∗(IRd),

because the sets I ′ ∈ Λ̃ are disjoint. �

Theorem 5.3 contains many Bernstein inequalities as a special case. These are sum-
marized in the following Corollary

Corollary 5.4 The Bernstein inequality

|f |BV (IRd) ≤ C(ϕ, d)N1/d ‖f‖Ld∗(IRd)

is valid whenever
(i) f ∈ Σw

N , f ∈ Σc
N , f ∈ Σr

N .
(ii) f ∈ Σw

N ⊕ Σr
N .
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Proof: Indeed, in each of these situations f can be rewritten in the form (5.7) with each
of the two sums in (5.7) having at most C(ϕ, d)N terms. �

6 Proof of Theorem 1.1

and Theorem 1.2 We can now prove Theorem 1.1. Given f ∈ BV(IRd), let RN (f) ∈ Σr
N

be the function in Σr
N satisfying Lemma 4.4. We have

|GN (f)|BV (IRd) ≤ |GN(f) −RN (f)|BV (IRd) + |RN(f)|BV (IRd)

≤ CN1/d‖GN(f) −RN(f)‖Ld∗(IRd) + |RN (f)|BV (IRd). (6.1)

In the last inequality we have used (ii) of Corollary 5.4 for the function (GN (f)−RN(f)).
We estimate now the first term in (6.1) by

N1/d‖GN (f) −RN (f)‖Ld∗(IRd) ≤ N1/d
(
‖GN(f) − f‖Ld∗(IRd) + ‖f −RN (f)‖Ld∗(IRd)

)

≤ C|f |BV (IRd), (6.2)

where in the last inequality we have used (4.2) and Lemma 4.2 to estimate the first term
and Lemma 4.4 to estimate the second term. It follows from Corollary 12 of [19] (see also
[4] for the case d = 2) that

|RN(f)|BV (IRd) ≤ C|f |BV (IRd). (6.3)

Here we have used our general arguments of dilation and shifts to deduce (6.3). Using
the estimates (6.2) and (6.3) in (6.1) gives the desired estimate. �

Theorem 1.2 can be proved exactly as Theorem 12 in [19].

7 Further discussion

We briefly discuss some further issues which will help put our results into perspective

7.1 The case d = 1

Theorem 1.1 does not hold in the case d = 1. Consider, for example, the function
f = χ[0,1/3] which is in BV([0, 1]). We take the Haar basis Hλ, λ ∈ ∆, normalized in
BV([0, 1]): |Hλ|BV([0,1]) = 1. This is the same as normalizing this basis in L∞([0, 1]). For
each dyadic level k = 0, 1, . . ., there is exactly one Haar coefficient that is nonzero (it
corresponds to the dyadic interval I ∈ Dk which contains 1/3). This coefficient cλ(f) has
absolute value 1/3 so that cλ(f)Hλ(1/3) = ±1/3. For any given N , we can take N of these
intervals so that all of the numbers cλ(f)Hλ(1/3) have the same sign. Then, the function
GN (f) obtained by retaining exactly these N terms of the Haar expansion of f will have
BV([0, 1]) norm ≥ N/3. If one wants to avoid the question of choosing arbitrarily in the
case of ties, then one can perturb these coefficients slightly.
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7.2 Quasi-greedy bases

Let X be a Banach space and {bλ}λ∈∆ be a (Schauder) basis for X with ‖bλ‖X = 1, for
all λ ∈ ∆. Each f ∈ X has a unique basis expansion f =

∑
λ∈∆ cλ(f)bλ. We define the

greedy approximant GN(f) as before:

GN(f) :=
∑

λ∈ΛN (f)

cλ(f)bλ,

where ΛN(f) is the set of indicies corresponding to the N largest coefficients in absolute
value (with ties handled in an arbitrary way).

The basis {bλ} for the space X is said to be quasi-greedy if ‖f−GN(f)‖X → 0, N → ∞.
It is known that the Haar basis is not quasi-greedy for L1(IRd) (see [13]). On the other
hand, it follows from what we have proved in this paper, that the wavelet bases are quasi-
greedy in W 1(L1(IR

d)). Indeed, it was proved in [18] that a basis is quasi-greedy for X if
and only if

‖GN (f)‖X ≤ C‖f‖X , f ∈ X,

with C > 0 an absolute constant. From Theorem 1.1, we know that the wavelet bases
satisfy

|GN(f)|W 1(L1(IRd)) ≤ C(ϕ, d)|f |W 1(L1(IRd)). (7.1)

We want to change from semi-norm to norm in (7.1) which we can accomplish as follows.
Since the basis {ψλ}λ∈∆ is normalized in BV(IRd), it follows that

‖ψλ‖L1(IRd) ≤ C2−k, |λ| = k.

Secondly, we have the embedding W 1(L1(IRd)) ⊂ B1
∞(L1(IRd)) and

‖f‖B1∞(L1(IRd)) ≤ C(d)‖f‖W 1(L1(IRd)),

where B1
∞(L1(IRd)) is the Besov space whose norm is given by

‖f‖B1∞(L1(IRd)) := sup
k≥0

∑
λ∈Dk

|cλ(f)|.

Therefore, taking any index set Λ (not necessarily a greedy selection), we have

‖ ∑
λ∈Λ

cλ(f)ψλ‖L1(IRd) ≤
∞∑

k=0

2−k
∑

λ∈Λ∩Dk

|cλ(f)| ≤ ‖f‖W 1(L1(IRd)).

Hence, we can add the L1(IR
d)-norm of GN(f) to the left side of (7.1) and replace the

W 1(L1(IR
d)) semi-norm of f by the W 1(L1(IRd)) norm and obtain that

‖GN(f)‖W 1(L1(IRd)) ≤ C(ϕ, d)‖f‖W 1(L1(IRd)).
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7.3 Thresholding

Continuing with our setting of a wavelet basis {ψλ}λ∈∆ normalized for BV(IRd), for each
ε > 0, we define the hard thresholding operator

Tε(f) :=
∑

λ∈Λ(f,ε)

cλ(f)ψλ,

where Λ(f, ε) := {λ : |cλ(f)| > ε}. It follows from Theorem 1.1 that this operator is
bounded on BV(IRd):

|Tε(f)|BV(IRd) ≤ C(ϕ, d)|f |BV(IRd), f ∈ BV(IRd).

There is another version of thresholding (called soft thresholding) which is preferred in
some problems of statistical optimization. To describe soft thresholding, we fix a function
η(t) defined on [0,∞) such that η is increasing and

0 ≤ η(t) ≤ 1 for all t,

η(t) = 0 for 0 ≤ t ≤ 1/2,

η(t) = 1 for t ≥ 1.

Given ε > 0 and f ∈ BV (IRd), we define the soft thresholding operator T η
ε by

T η
ε (f) :=

∑
λ∈∆

η(|cλ(f)|/ε)cλ(f)ψλ.

Claim: For each ε > 0, we have

|T η
ε (f)|BV (IRd) ≤ C(ϕ, d)|f |BV (IRd), f ∈ BV(IRd).

Proof of Claim: We order the coefficients cλ := cλ(f) of f in decreasing order as
|cλ1 | ≥ |cλ2| ≥ . . .. We fix integers N0 < N1 < . . . < Ns and numbers 1 =: β0 > β1 >
· · · > βs > βs+1 := 1/2 in such a way that

|cλj
| ≥ ε = β0ε for j ≤ N0,

|cλj
| ≤ ε/2 = βs+1ε for j > Ns,

|cλj
| = βi+1ε for Ni < j ≤ Ni+1, i = 0, . . . , s− 1.

One checks that

T η
ε (f) =

s∑
i=0

[η(βi) − η(βi+1)]GNi
(f),

so from the triangle inequality we get

|T η
ε (f)|BV(IRd) ≤

s∑
i=0

[η(βi) − η(βi+1)]|GNi
(f)|BV(IRd)

≤ C(ϕ, d)|f |BV(IRd)

s∑
i=0

[η(βi) − η(βi+1)]

= C(ϕ, d)|f |BV(IRd).

Note that the above claim and its proof, although stated for the space BV(IRd), hold
for any Banach space X (used in place of BV(IRd)) which has a quasi-greedy basis (used
in place of {ψλ}).
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7.4 The case of domains Ω ⊂ IRd

Versions of Theorem 1.1 remain valid for BV(Ω) with Ω certain domains in IRd. We briefly
mention two of the typical settings.

For certain domains Ω ⊂ IRd, one can construct wavelet bases {ψλ}λ∈∆ such that
supp(ψλ) ⊂ Ω for each λ ∈ ∆. The ψλ whose support is sufficiently inside the interior
of the domain are the usual wavelets on IRd. Near the boundary, the ψλ have a different
structure. The first examples of such constructions were made in [3] for an interval on
IR. These constructions were then extended to certain multidimensional domains (such as
polyhedral domains) (see [7]) and then ultimately to quite general domains in [1]. These
constructed bases have the three main properties we need to prove Theorem 1.1. They
are of compact support. The scaling functions on a given dyadic level form a partition of
unity. The scaling functions and wavelets on a dyadic level k can be written as a linear
combination of a fixed number of scaling functions at level k + 1. Thus, an analogue of
Theorem 1.1 is valid for such basis where now the BV(IRd) norm is replaced by the BV(Ω)
norm.

The second setting applies to quite general domains Ω ⊂ IRd. For example, it is
sufficient that Ω is a Lipschitz graph domain (a minimally smooth domain in the sense
of Stein (see [16], p.180)). Any function in BV(Ω) can be extended to a function Ef in
BV(IRd) satisfying

‖Ef‖BV(IRd) ≤ C(Ω)‖f‖BV(Ω).

Such extension theorems are typically proved for the space W 1(L1(Ω)) and then follow
for BV(Ω) by a limiting argument. We can expand Ef in a wavelet expansion

Ef =
∑
λ∈∆

cλ(Ef)ψλ.

This decompositions serves as a wavelet representation for f on Ω:

f =
∑

λ∈∆(Ω)

cλ(Ef)ψλ,

where ∆(Ω) is the set of all indicies λ ∈ ∆ for which ψλ does not vanish identically on Ω.
Consider now the thresholding operator Tε applied to f and Ef . Since Tε(f) = Tε(Ef)

on Ω, we deduce that

|Tε(f)|BV(Ω) = |Tε(Ef)|BV(Ω) ≤ |Tε(Ef)|BV(IRd)

≤ C(ϕ, d)|Ef |BV(IRd) ≤ C(ϕ, d,Ω)‖f‖BV(Ω).

In general, we cannot replace the norm on the right by the semi-norm.
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