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Abstract

Greedy algorithms in ridge approximation (gridge algorithms) are con-
sidered. Functions from the Gaussian weighted Hilbert space L2 are
approximated by linear combinations of ridge functions. The con-
struction is iterative. On each step one more ridge function is added
to the preceeding combination. This ridge function is selected greedily
from the dictionary of ridge functions. The convergence rate of the
gridge approximant is estimated in terms of the best approximations
by algebraic polynomials.

1



Introduction
The main result of this paper is a constructive estimate of the efficiency

of the greedy algorithm approximation of a multivariate function by linear
combinations of ridge functions (plane waves) in a Gaussian weighted Hilbert
space metric. A ridge function is a multivariate function whose level curves
are straight lines. The paper was inspired by and follows closely [4] where the
authors answered a similar question about ridge approximation of functions,
supported on the unit ball in the non-weighted L2− space.

This method of approximation is not new and have been used in Statistics
since the 80’s. It is called Projection pursuit regression. Generally, statistical
methods of fitting a multidimensional regression model suffer from the so
called ”curse of dimensionality”, which roughly means that in most cases the
price for the better fit of a multidimensional model is choosing enormously
large samples. The Projection pursuit regression seems to overcome this
drawback of the traditional statistical methods. A very detailed discussion
of the pros and cons of this method is given in [2]. The same approach of
decomposing a signal into a linear expansion of waves is used also in Signal
processing under the name of Matching pursuit and was developed by Mallath
and Zhang [5]. The question about the greedy algorithm approximation
efficiency, however, has not been studied until the appearance of some recent
papers [4], [6].

The motivation for this is clear. It is important to estimate quantita-
tively the efficiency of this algorithm. Another reason is that this method
of approximation is an application of the recently developed general theory
of Greedy Algorithms to some particular sets of functions and dictionaries.
While we cannot say too much in the most abstract setting, it is worth to
see what happens in some concrete situations.
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Preliminaries
As we mentioned before we shall use linear combinations of ridge functions

to approximate a given multivariate function. This linear combination will
be constructed by using the Pure Greedy Algorithm (PGA). This explains
the new term ”gridge”, which is a combination of ”greedy” and ”ridge”. The
PGA is a step-wise method. On each step we expand the existing linear
combination by one more ridge function. This new ridge function is selected
greedily, i.e. in a certain optimal way. The method generates an infinite
series of ridge functions whose partial sums approximate the given function.

As usual we shall denote the dot product of the elements x and y of Rd

by x·y and the length of x by |x|. The unit ball and the unit sphere in
Rd will be denoted by Bd and Sd−1, respectively. The measure on the sphere
Sd−1 will be assumed normalized, i.e.

∫
Sd−1

dθ = 1 .

Here is a brief description of the ridge functions and the properties of the
PGA. We will refer the reader interested in more details to [4].

The function W (x) is called a ridge function if it admits the special form
W (x) = w(x·θ), where w is a univariate function (called the profile of W )
and θ is a fixed unit vector. Then we say that W is a plane wave propagating
in the direction θ.

If H is a Hilbert space and D is a subset of H whose span is dense in H ,
then D is called a (non-normalized) dictionary. Let f ∈ H be a fixed element
and let ‖f‖H be its Hilbert space norm. The following notations are more or
less standard in the Greedy Algorithm theory.

g0(f) = 0 ,

GN−1(f) =
N−1∑
j=0

gj(f) , N = 1, 2, . . . ,

gN(f) = arg

(
min
g∈D

‖ (f − GN−1(f)) − g‖H

)
.

We write ”min” only for simplicity, because neither the existence nor
the uniqueness of the extremal element are guaranteed in the general case.
However for the particular space and dictionary considered in the paper we
have existence, and gN denotes any of the minimizers from D. It may happen
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that the minimizer is not unique and the process ”branches”. In such a case
we shall follow an arbitrary branch. If we denote

fN := f − GN−1(f) , N = 1, 2, . . .

then we have the following relation

‖fN‖H = min
g∈D

‖fN−1 − g‖H .

We should mention the so called Parseval property of the PGA, that is

‖f − GN(f)‖2
H = ‖f‖2

H −
N−1∑
j=0

‖gj(f)‖2
H .

The strong convergence of the PGA for a general Hilbert space and a general
dictionary was proved by Jones [3]. The immediate corollaries from this
result are the equalities

‖f − GN(f)‖2
H =

∞∑
j=N+1

‖gj(f)‖2
H ,

‖f‖2
H =

∞∑
j=0

‖gj(f)‖2
H ,

f
H
=

∞∑
j=0

gj(f) .

In the paper we shall approximate functions from the Gaussian weighted
L2 by means of ridge functions.

For a multivariate complex-valued function f we denote by ‖f‖ the weighted
norm

‖f‖ :=

(∫
Rd

e−π|x|2|f(x)|2dx
) 1

2

,

and define

L2(Rd, e−π|x|2) := {f : ‖f‖ < ∞} .

Next, define the dictionary D as the set of all ridge functions from L2(Rd, e−π|x|2).
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We can give another characterization of the elements of the dictionary based

on their profiles. Assume that ed =(0, 0, . . . ,
d

1) and ed = Bθ for some
orthogonal matrix B. Then set

Bx = y = (y1, y2, . . . , yd) .

Then we have

‖W‖2 =

∫
Rd

e−π|x|2|W (x)|2dx =

∫
Rd

e−π|x|2|w(x·θ)|2dx

=

∫
Rd

e−π|y|2|w(y·ed)|2dy =

∫
Rd

e−π|y|2|w(yd)|2dy

=

∫ ∞

−∞
e−πy2

d |w(yd)|2
(∫

Rd−1

e−π(y2
1+y2

2+···+y2
d−1)dy1dy2 . . . dyd−1

)
dyd

=

∫ ∞

−∞
e−πy2

d |w(yd)|2dyd .

This shows that D consists of all ridge functions whose profiles w(t) ∈L2(R, e−πt2).
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Fourier-Hermite Analysis in L2(Rd, e−π|x|2)

Let Pm,d be the space of all d - variate algebraic polynomials of degree
not exceeding m. By Hn(t) we denote the normalized univariate Hermite
polynomials in L2(R, e−πt2), i.e. Hn ∈ Pn,1 and Hn satisfies the equalities∫ ∞

−∞
e−πt2Hn(t)P (t)dt = 0 , for P ∈ Pn−1,1 ,

∫ ∞

−∞
e−πt2H2

n(t)dt = 1 , n = 1, 2, . . . .

For every fixed g ∈L2(Rd, e−π|x|2) introduce the following functions of
θ ∈ Sd−1 .

an(g, θ) :=

∫
Rd

e−π|x|2g(x)Hn(x·θ)dx , n = 0, 1, 2, . . . .

Clearly, an(g, θ) is a spherical polynomial of degree n for every fixed nonneg-
ative integer n.
Let us notice as well that

an(g,−θ) = (−1)nan(g, θ) .

The latter follows from the well-known fact that Hn(−t) = (−1)nHn(t). It is
natural to call the spherical polynomials an(g, θ) n = 0, 1, 2, . . . the Hermite
momenta of g of degree n.
The following characterizes the expansion of a function g ∈L2(Rd, e−π|x|2)
in terms of the ridge functions Hn(x·θ) , n = 0, 1, 2, . . . . It seems to be a
folk theorem, but as we can not find an explicit reference we include a short
proof given in the appendix.

Lemma 1. For every function g ∈L2(Rd, e−π|x|2) there exist unique spherical
polynomials bn(g, θ) , θ ∈ Sd−1 such that

g(x)
L2(Rd,e−π|x|2)

=
∞∑

n=0

∫
Sd−1

bn(g, θ)Hn(x·θ)dθ , n = 1, 2, . . .

The spherical polynomials an(g, θ) and bn(g, θ) are related by
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an(g, θ) =

∫
Sd−1

(θ·φ)nbn(g, φ)dφ .

Moreover

‖g‖2 =
∞∑

n=0

∫
Sd−1

bn(g, θ)an(g, θ)dθ

=
∞∑

n=0

∫∫
Sd−1×Sd−1

(θ·φ)nbn(g, θ)bn(g, φ)dφdθ . (1)

It is easy to see that the spherical polynomial bn(g, θ) also satisfies the con-
dition

bn(g,−θ) = (−1)nbn(g, θ) .

Now we introduce the notation ‖ · ‖〈n〉, defined by

‖f‖2
〈n〉 :=

∫∫
Sd−1×Sd−1

(θ·φ)nf(θ)f(φ)dφdθ

for an arbitrary function f with integrable square on Sd−1 and we shall use
it throughout the paper. Then (1) becomes

‖g‖2 =

∞∑
n=0

‖bn(g)‖2
〈n〉 .
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Theorem 1. If f ∈L2(R2, e−π|x|2)and EN (f) = O(N−r) , N → ∞ then

‖f − GN (f)‖ = O(log−r N) , N → ∞

Remark. The proof of the theorem follows the ideas from [4]. In order to
find the optimal ridge approximant we have to find its profile and direction.

First, we find the optimal profile of a fixed direction. This is a linear approx-
imation problem and we can even give the explicit solution in terms of the
direct Radon transform.
Second, we find the optimal direction. This is a non-linear approximation
problem, which cannot be solved explicitly in the general case. The approach
used here is to estimate the error in the optimal direction by means of the
average of the errors in all possible directions.

The key moment is to compare the two functionals ‖bn(g)‖2
〈n〉 and

∫
Sd−1

|an(g, θ)|2dθ.

Obtaining an inequality of the form

‖bn(g)‖2
〈n〉 ≤ cn

∫
Sd−1

|an(g, θ)|2dθ (2)

where cn is a constant (depending also on d) will result in the following
estimate

‖fj+1‖2 ≤
∞∑

n=1

cn − cn−1

cncn−1
min(E2

n(f), ‖fj‖2) .

From this estimate the asymptotical order of the error can be obtained by
using the general estimation lemma from [4].
In this paper we obtain an inequality of the form (2) for the case d = 2 and
thus the case of an arbitrary dimension is still an open question.
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Proof
Let g ∈L2(Rd, e−π|x|2). We shall estimate the error of the best ridge approx-
imant of the function g. Since we can write

min
W∈ D

‖g − W‖ = min
θ∈ Sd−1

(
min

W∈ Dθ

‖g − W‖
)

,

where

Dθ = {W ∈ D : W (x) = w(x·θ)}

we can estimate the error in two steps.

Lemma 2. Let g ∈L2(Rd, e−π|x|2)and θ∈ Sd−1 be fixed. Then

min
W∈ Dθ

‖g − W‖ = ‖g‖2 −
∞∑

n=0

|an(g, θ)|2 , (3)

and the best ridge approximant of g has profile

w∗
θ(t) = eπt2

∫
x·θ=t

e−π|x|2g(x)dx′ ,

where dx′ stands for the Lebesgue measure on the hyperplane x·θ = t .

Proof. It is not hard to see that even in a more general setting the mini-
mization of ‖g − W‖ in D1, a fixed subset of D is solved by the orthogonal
projection of g onto Span (D1). Thus by a well-known property of the linear
approximation we have that the best approximant W ∗ satisfies

〈g − W ∗ , W 〉 = 0 ,

for all W ∈ D1 , where the inner product 〈f , g〉 of f and g is defined as usual

by 〈f , g〉 =

∫
Rd

e−π|x|2f(x)g(x)dx . Arguments similar to those, presented

in [2] show that the optimal profile w∗
θ is

w∗
θ(t) =

∫
x·θ=t

e−π|x|2g(x)dx′

∫
x·θ=t

e−π|x|2dx′
.
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Next we can see that the integral in the denominator is equal to e−πt2 . In-

deed, since e−π|x|2 is orthogonal invariant we can assume θ = ed =(0, 0, . . . ,
d

1)
and then if we set x = (x1, x2, . . . , xd) we evaluate∫

x·θ=t

e−π|x|2dx′ =

∫
xd=t

e−π(x2
1+x2

2+···+x2
d−1+t2)dx1dx2 . . . dxd−1 = e−πt2 .

This proves the second part of Lemma 1. To prove (3) we make use of the
above mentioned orthogonality 〈g − W ∗ , W 〉 = 0 and we obtain

‖g − W ∗
θ‖2 = ‖g‖2 − ‖W ∗

θ‖2 .

We already mentioned the equality

‖W ∗
θ‖2 =

∫ ∞

−∞
e−πy2

d |w∗
θ(yd)|2dyd .

On the other hand

w∗
θ(t) = eπt2

∫
x·θ=t

e−π|x|2g(x)dx′

and therefore

∫ ∞

−∞
e−πt2w∗

θ(t)Hn(t)dt =

∫ ∞

−∞
Hn(t)

(∫
x·θ=t

e−π|x|2g(x)dx′
)

dt

=

∫
Rd

e−π|x|2g(x)Hn(x·θ)dx

= an(g, θ) .

Hence

w∗
θ(t) =

∞∑
n=0

an(g, θ)Hn(t)

and by the Parseval equality∫ ∞

−∞
e−πt2 |w∗

θ(t)|2dt =
∞∑

n=0

|a2
n(g, θ)|2 .

Thus we obtain (3), which can be rewritten as

‖g − W ∗
θ‖2 = ‖g‖2 −

∞∑
n=0

|an(g, θ)|2 =

∞∑
n=0

(‖bn(g)‖2
〈n〉 − |an(g, θ)|2) .
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Lemma 3. Let g ∈L2(Rd, e−π|x|2)and W ∗
θ is the best ridge function approx-

imating g in the dictionary Dθ for every fixed θ ∈ Sd−1. Then

min
θ∈ Sd−1

‖g − W ∗
θ‖ ≤

∞∑
n=0

(
‖bn(g)‖2

〈n〉 −
∫

Sd−1

|an(g, θ)|2dθ

)
.

Proof. The result of the previous lemma shows that for an arbitrary fixed
θ ∈ Sd−1

‖g − W ∗
θ‖2 = ‖g‖2 −

∞∑
n=0

|an(g, θ)|2 =

∞∑
n=0

(‖bn(g)‖2
〈n〉 − |an(g, θ)|2) .

Therefore

min
θ∈ Sd−1

‖g − W ∗
θ‖ = ‖g‖2 − max

θ∈ Sd−1

∞∑
n=0

|an(g, θ)|2

≤ ‖g‖2 −
∫

Sd−1

∞∑
n=0

|an(g, θ)|2dθ

=

∞∑
n=0

(
‖bn(g)‖2

〈n〉 −
∫

Sd−1

|an(g, θ)|2dθ

)
.

Lemma 4. Let an(θ) and bn(θ) be trigonometric polynomials of degree n
satisfying

(i) bn(θ + π) = (−1)nbn(θ)

(ii) an(θ) =

∫ 2π

0

cosn(θ − φ)bn(φ)dφ ,

where the measure on the interval [0, 2π] is normalized by
∫ 2π

0
dθ = 1 .

Then ∫ 2π

0

∫ 2π

0

cosn(θ − φ)bn(θ)bn(φ)dφdθ ≤ 2n

∫ 2π

0

|an(θ)|2dθ . (4)

Proof. Let

bn(φ) =
∑
|m|≤n

b̂meimφ .
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Then b̂m = 0 if m �≡ n (mod 2), because of the relation bn(θ+π) = (−1)nbn(θ) .
So keeping in mind that m and n are of the same parity we get

an(θ) =

∫ 2π

0

cosn(θ − φ)bn(φ)dφ =

∫ 2π

0

cosnφ bn(θ − φ)dφ

=

∫ 2π

0

(
eiφ + e−iφ

2

)n ∑
|m|≤n

b̂meim(θ−φ)dφ

=
1

2n

∫ 2π

0

n∑
k=0

(
n

k

)
ei(2k−n)φ

∑
|m|≤n

b̂meim(θ−φ)dφ

=
1

2n

∫ 2π

0

n∑
k=0

(
n

k

) ∑
|m|≤n

b̂mei(2k−n−m)φeimθdφ

=
1

2n

∑
|m|≤n

b̂meimθ

n∑
k=0

(
n

k

)∫ 2π

0

ei(2k−n−m)φdφ

=
1

2n

∑
|m|≤n

b̂meimθ

(
n

n+m
2

)
.

Thus ∫ 2π

0

|an(θ)|2dθ =
1

22n

∑
|m|≤n

|b̂m|2
(

n
n+m

2

)2

.

Moreover∫ 2π

0

∫ 2π

0

cosn(θ − φ)bn(θ)bn(φ)dφdθ =

∫ 2π

0

bn(θ)

(∫ 2π

0

cosn(θ − φ)bn(φ)dφ

)
dθ

=

∫ 2π

0

bn(θ)an(θ)dθ

=
1

2n

∑
|m|≤n

|b̂m|2
(

n
n+m

2

)
.

Clearly, this implies (4).

Proof of the Theorem. From the first two lemmas we have the following esti-
mate for the best ridge approximation of an arbitrary function g ∈L2(Rd, e−π|x|2).

min
W∈ D

‖g − W‖2 ≤
∞∑

n=0

(
‖bn(g)‖2

〈n〉 −
∫

Sd−1

|an(g, θ)|2dθ

)
.
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Let d = 2. We shall use the usual parametrization of the unit circle S1, that
is we set θ = (cos θ, sin θ), θ ∈ [0, 2π). Then (with a slight abuse of the
notation) we can denote

bn(θ) = bn (g, θ) ,

an(θ) = an (g, θ) ,

and we have

‖bn(g)‖2
〈n〉 =

∫ 2π

0

∫ 2π

0

cosn(θ − φ)bn(θ)bn(φ)dφ ,∫
Sd−1

|an(g, θ)|2dθ =

∫ 2π

0

|an(θ)|2dθ .

Now from Lemma 3 we see that

min
W∈ D

‖g − W‖2 ≤
∞∑

n=0

(
‖bn(g)‖2

〈〉 −
1

2n
‖bn(g)‖2

〈n〉

)

=
∞∑

n=1

(
1 − 1

2n

)
‖bn(g)‖2

〈n〉 .

Substituting ‖bn(g)‖2
〈n〉 = E2

n−1(g)−E2
n(g) and applying the Abel summation

formula yields

min
W∈ D

‖g − W‖2 ≤
∞∑

n=1

1

2n
E2

n(g) . (5)

Now, applying (5) to the consecutive gridge approximants we get

‖fj+1‖2 ≤
∞∑

n=1

1

2n
E2

n(fj) , j = 0, 1, 2, . . . . (6)

Denote by E the infinite matrix of the best polynomial approximation of the
gridge approximants of the function f .

E :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E0(f0) E1(f0) E2(f0) · · · En(f0) · · ·
E0(f1) E1(f1) E2(f1) · · · En(f1) · · ·
E0(f2) E1(f2) E2(f2) · · · En(f2) · · ·

...
...

...
. . .

...
E0(fj) E1(fj) E2(fj) · · · En(fj) · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Then E is row and column monotonous. Indeed the following two inequalities
hold true

En(fj) ≥ En+1(fj) ,

En(fj) ≥ En(fj+1) .

The first inequality follows from the definition of the best polynomial approx-
imation while the second one is a consequence of Lemmas 1 and 2. Taking
into account that En(fj) ≤ ‖fj‖, n = 1, 2, . . ., j = 0, 1, . . . and the column
monotonicity we get the estimate

‖fj+1‖2 ≤
∞∑

n=1

1

2n
min(E2

n(f), ‖fj‖2) , j = 0, 1, 2, . . . . (7)

In order to complete the proof we shall use the following estimation lemma
(Lemma 4) from [4].
Estimation Lemma. Let F (ξ) be a non-decreasing function defined on
(0, 1] and let the sequence {An}∞n=0 be defined by

An+1 =

∫ 1

0

min(F (ξ), An)dξ , n = 0, 1, 2, . . . .

Then

AN ≤ 2F

(
H−1

(
N

2

))
, N = 1, 2, . . . ,

where

H(ξ) :=
2

ξ
sup

1/2≥η≥ξ

(
log

F (2η)

F (η)

)

and H−1 is the inverse of H.

Since we want to find the order of ‖fj‖ as n → ∞ we can ”replace” En(f)
by n−r for simplicity. So instead of (7) we have now

‖fj+1‖2 ≤
∞∑

n=1

1

2n
min(n−2r, ‖fj‖2) , j = 0, 1, 2, . . . .
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Define the function F (ξ) as a step function on (0, 1].

F (ξ) := n−2r, if
1

2n
< ξ ≤ 1

2n−1
, n = 1, 2, . . . .

Note that n =

[
log2

1

ξ

]
+ 1 for every ξ ∈ (0, 1]. We denote also ‖fj‖2 by Aj .

Then it is not hard to see that we can rewrite the inequality

Aj+1 ≤
∞∑

n=1

1

2n
min(n−2r, Aj) (8)

as

Aj+1 =

∫ 1

0

min(F (ξ), Aj)dξ . (9)

Indeed, if m is such that (m + 1)−2r < Aj ≤ m−2r, then (8) is equivalent to

Aj+1 ≤
m∑

k=1

Aj

2k
+

∞∑
k=m+1

k−2r

2k
= Aj

(
1 − 1

2m

)
+

∞∑
k=m+1

k−2r

2k

and (9) is equivalent to

Aj+1 ≤
∫

U

min(F (ξ), Aj)dξ+

∫
[0,1]\U

min(F (ξ), Aj)dξ =

∫
U

F (ξ)dξ+Aj(1−meas U) ,

where U = {ξ : ξ ∈ (0, 1] and F (ξ) < Aj} , and meas U is the Lebesgue
measure of U . The definition of F implies that U =

(
0, 1

2m

]
and that∫

U
F (ξ)dξ =

∑∞
k=m+1

k−2r

2k and this proves the equivalency of (6) and (7).
Finally, if F (η) = n−2r then F (2η) = (n− 1)−2r where η ∈ (0, 1/2]. We have
then

F (2η)

F (η)
=

(
1 +

1

n − 1

)2r

=

(
1 +

1

[log2(η
−1)]

)2r

.

This means that
F (2η)

F (η)
is a non-decreasing function and so is log

F (2η)

F (η)
.

Hence H(ξ) =
c

ξ
for some constant c. Therefore H−1(ξ) =

c

ξ
. Clearly this

implies the estimate

‖f − GN (f)‖ = O(log−r N) , N → ∞ .
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Appendix

Proof of Lemma 1.
At first we will prove that there exist unique spherical polynomials bn(g, θ) , θ ∈

Sd−1 , n = 0, 1, 2, . . . such that

g(x)
L2(Rd,e−π|x|2)

=
∞∑

n=0

∫
Sd−1

bn(g, θ)Hn(x·θ)dθ , n = 1, 2, . . . . (10)

Since the set of all algebraic polynomials is dense in L2(Rd, e−π|x|2) it suf-
fices to show that this representation holds true when g(x) is an algebraic
polynomial. It is proven in [6, Theorem 3.1] that every function f ∈ L2(Bd)
can be represented uniquely as

f(x)
L2(Bd)

=

∞∑
n=0

∫
Sd−1

An(f, θ)Un(x·θ)dθ , n = 1, 2, . . . ,

where Un is the Gegenbauer polynomial C
d/2
n and An(f, θ) is a spherical

polynomial of degree n. Therefore if g(x) is an algebraic polynomial of degree
m we have

g(x) =
m∑

n=0

∫
Sd−1

An(g, θ)Un(x·θ)dθ , n = 1, 2, . . . .

Since both Un and Hn are algebraic polynomials of degree n, there exist
constants cnj , n = 0, 1, 2, . . . , m , j = 0, 1, 2, . . . , n such that

Un(t) =

n∑
j=0

cnjHj(t) , t ∈ R .

Then

g(x) =
m∑

n=0

∫
Sd−1

An(g, θ)
m∑

j=0

cnjHj(x·θ)dθ

=
m∑

j=0

∫
Sd−1

(
m∑

n=j

cnjAn(g, θ)

)
Hj(x·θ)dθ

=

m∑
j=0

∫
Sd−1

bj(g, θ)Hj(x·θ)dθ ,
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where bj(g, θ) =
m∑

n=j

cnjAn(g, θ) is a spherical polynomial of degree m. It is

well-known that every spherical polynomial is a sum of spherical harmonics
[1] so then we can rewrite bj(g, θ) as

bj(g, θ) =

m∑
k=0

Sk(θ) , Sk(θ) - spherical harmonic of degree k . (11)

Then observe that

∫
Sd−1

bj(g, θ)Hj(x·θ)dθ =

∫
Sd−1

(
m∑

k=0

Sk(θ)

)
Hj(x·θ)dθ

=

∫
Sd−1

(
j∑

k=0

Sk(θ)

)
Hj(x·θ)dθ ,

because

∫
Sd−1

Sk(θ)Hj(x·θ)dθ = 0 if k > j.

This shows that we can cut off the senior spherical harmonics (namely the
terms Sk(θ) with k > j) without changing the value of the integral. So, keep-
ing the same notation bj(g, θ) for the truncated sum we prove the expansion
(10) in Bd. Then clearly (10) holds true in Rd as well.
Now we prove the relation between an(g, θ) and bn(g, θ). Using (10) and the
definition of an(g, θ) we obtain

an(g, θ) =

∫
Rd

e−π|x|2
( ∞∑

n=0

∫
Sd−1

bn(g, φ)Hn(x·φ)dφ

)
Hn(x·θ)dx

=

∞∑
n=0

∫
Sd−1

bn(g, φ)

(∫
Rd

e−π|x|2Hn(x·φ)Hn(x·θ)dx

)
dφ

=
∞∑

n=0

∫
Sd−1

(φ·θ)nbn(g, φ)dφ .

Here we used the identity∫
Rd

e−π|x|2Hn(x·φ)Hn(x·θ)dx = (φ·θ)n .

17



The proof of the last identity is not hard and uses the orthogonal invariance
of the weight function and the normalization of the Hermite polynomials.
Finally, the proof of (1) follows easily from this relation between an(g, θ) and
bn(g, θ), and the Fubini Theorem.
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