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Abstract

The smoothness of the solutions of 1D scalar conservation laws is
investigated and it is shown that if the initial value has smoothness
of order @ in LY with o > 1 and ¢ = 1/«, this smoothness is pre-
served at any time t > 0 for the graph of the solution viewed as a
function in a suitably rotated coordinate system. The precise notion
of smoothness is expressed in terms of a scale of Besov spaces which
also characterizes the functions that are approximated at rate N ™% in
the uniform norm by piecewise polynomials on N adaptive intervals.
An important implication of this result is that a properly designed
adaptive strategy should approximate the solution at the same rate
N~% in the Hausdorff distance between the graphs.

1 Introduction
Solutions to hyperbolic equations derived from nonlinear conservation laws

0w+ Div,[f(u)] =0, wu(z,0) = ug(x), (1.1)

may develop discontinuities even if the initial data is smooth. This well
known state of fact is the source of both theoretical difficulties - classical so-
lutions should be replaced by weak solutions and side conditions need to be
appended in order to ensure their uniqueness - as well as numerical difficulties
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CT-202-00286 “Breaking Complexity”.



- conventional discretization schemes may fail to converge and their conver-
gence rate is in all cases limited by the lack of smoothness of the solution.
We refer the reader to [10, 6, 7] for a general introduction to conservation
laws.

In the case of scalar conservation laws, the classical theory developed
by Kruzkov [8] ensures the uniqueness of an entropy solution w(z,t). This
solution is also stable in L, i.e.,

lul-8) = v(, Dl < [luo = vol[ e (1.2)

for two solutions v and v with initial data vy and vy, and satisfies the BV
diminishing property
[u(-, O)llsv < [luollBv- (1.3)

The BV boundedness plays a pivotal role in proving the convergence of nu-
merical methods and deriving convergence rates with respect to the mesh
size. As already mentionned, these rates are inherently limited by the lack of
smoothness: the approximation uy of a function u by piecewise polynomials
on a uniform mesh cannot converge in L' with a rate better than O(h) when
u has an isolated jump.

Adaptive methods offer a better compromise between error and num-
ber of degrees of freedom, especially when the solution is piecewise smooth
with isolated singularities. From Approximation theory point of view these
methods correspond to approximation from piecewise polynomials of a fixed
degree on N intervals. Note that this is a nonlinear set since the N intervals
may vary with the function being approximated, and therefore this type of
approximation is referred to as nonlinear approximation. A precise descrip-
tion of those functions which can be approximated in L! at rate N~¢ by
such piecewise polynomial functions is given by the Besov space By, with
1/q = 1 + «, which consists of all functions u € L? such that

|u|quq ::/ [t %Wk (u, t),]?dt/t < oo, (1.4)
0

where k is an integer strictly larger than o and wy,(u, t)g := supy, <, [|Aful| e
is the k-th order L? modulus of smoothness. The norm in By, is defined by

lullzg, = llullze + ulsg,- (1.5)

Roughly speaking, the functions in By, have a derivatives in L?. We refer
to [2] as a general survey on nonlinear approximation.



In a series of papers [11, 3, 4], DeVore and Lucier have explored the
smoothness properties of 1D scalar conservation laws using the above Besov
spaces. They have shown that for all a > 0, if the initial condition ug belongs
to By, with 1/¢ = 1+ a, then this property holds for the solution for all
t > 0. The theorem of DeVore-Lucier shows that the solutions of conserva-
tion laws have an arbitrarily high order of smoothness a > 0 whenever the
smoothness is measured in L? with 1/¢ = 1 4 «, and therefore ¢ < 1. From
a numerical perspective, it also indicates that a properly designed adaptive
strategy should approximate the solution in L' with an arbitrarily high rate
of convergence with respect to the number of degrees of freedom. The proof
of this theorem is based on the equivalence between smoothness and rate of

nonlinear approximation, according to the following scheme:

1. The initial data ug € By, is approximated at rate N~ by a piecewise
polynomial function vy on NN intervals.

2. Then by the L' stability (1.2) the solution u at time ¢ > 0 is approxi-
mated at the same rate N~™® by the solution v with initial value vy.

3. This rate of approximation allows to derive that u € By,

The main difficulty in this approach resides in the last step since it is no
longer true that v is a piecewise polynomial on /N intervals.

Since one of the goals of adaptive methods is to achieve uniformly ac-
curate approximation, one could hope for similar results with the L' norm
replaced by the uniform (L*) norm as a measure of the error. However, such
results are impossible since there is no stability in the uniform norm due
to the development of discontinuities. A natural alternative is to measure
the closeness between solutions and approximate solutions in the Hausdorff
distance between their completed graphs, i.e.

d(ua ’U) = dH(Gm Gv)v
where Gy denotes the completed graph of the function f and

di(A, B) == inf |a — b|, sup inf |a — b
#(A, B) max{igggng |’§1£32A|a |}

denotes the Hausdorff distance between the sets A and B (with |- | denoting
the Euclidean distance in R?). Here the completed graph G of a function f
is defined as the minimal closed set in R? which contains the graph of f and
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is convex with respect to the y-direction, i.e., it is y-simple. It is easy to see
that if f € BV and f(z7) < f(z) < f(z") for every z, then to obtain Gy
one has to add to the graph of f every segment in the plane connecting the
points (z, f(z7)) and (z, f(zT)) at every point , where f is discontinuous
(see [13]). The distance d(u,v) is a natural substitute for the L*>° distance
for discontinuous functions for two reasons: on the one hand it measures the
closeness in L in regions where one of the functions is smooth enough since
one easily checks that

lu = vl[pee < d(u, v)[[|ul| = + 1],

and on the other hand it measures how accurately a sharp transition in w is
matched in the z-direction by a sharp transition in v. In contrast to the L™
norm, stability results in the Hausdorff metric are available from [1], where
it was recently proved that for 1D scalar conservation laws one has

d(u,v) < C(t)d(ug, vo) (1.6)

with C(t) ~1+t.

In this article, we shall use these results to establish high order smoothness
results on the graph of the solution viewed as a function in a suitably rotated
coordinate system. This approach is applicable in the case of strictly convex
fluxes f, satisfying

0<m< f(u). (1.7)

In a case like this, we invoke the Oleinik inequality which ensures that the
entropy solution u of (1.1) satisfies at time ¢ > 0,

—oo <u' < i (1.8)
mt

This inequality ensures that the graph of u is the graph of a Lipschitz function
@ in a suitably rotated coordinate system (which will be precisely specified
in Section 3). In such a coordinate system the L*° distance between two
solutions is equivalent to the Hausdorff distance between their graphs in the

original coordinate system. This fact is illustrated on Figure 1.
We shall prove that the function @ can be approximated in L* by piece-
wise polynomials on /N intervals at rate N~, whenever u, satisfies a similar
property. As it will be explained in Section 2, the set of functions which can



Figure 1. Change of coordinate system.

be approximated in the uniform norm at rate (roughly) N~ with « > 1 by
such piecewise polynomials is given by the space

B* :={ue WH(R) : ' € B!, ¢=1/a}, (1.9)

;9

The norm in B® is defined by
[ull o := Nlullze + [/l g (1.10)

Notice that this space is slightly smaller than the Besov space By, which
may contain discontinuous functions if g < 1.
We next state our main result.

Theorem 1.1. Assume that ug is a compactly supported function which sat-
isfies ug, < M. Then for all & > 1 and time t > 0 the rotated solution 4
satisfies

a] go S lluollgo + 1, (1.11)

where the constant in < depends only ont and M.

From numerical perspective, this result indicates that a properly designed
adaptive strategy should approximate the solution in the Hausdorff distance
at an arbitrarily high rate with respect to the number of degrees of freedom.

The paper is organized as follows: In Section 2, we give some preliminary
results for nonlinear approximation in L*> and on the Hausdorff stability of
conservation laws. Using these results, we develop in Section 3 the strategy
of DeVore-Lucier from [3, 4], namely, we construct approximate solutions
which approximate the true solution at rate N~¢ in the Hausdorff metric,
and as a consequence in L* with respect to the rotated coordinate system.
The “return ticket” which allows to derive the smoothness of u from the
approximation rate relies on inverse estimates which are the objective of
Section 4.



2 Preliminary results

2.1 Nonlinear piecewise polynomial approximation

For a fixed compact interval I and a positive integer k, let us denote by ¥,
the set of all piecewise polynomials of degree not exceeding k£ with no more
than 2" pieces on I. Then for a given u € LP(I)(0 < p < oo) the error of
best LP approximation to u from 3, is defined by

on(u)p == Sieng lu—S||Le. (2.1)

If some S, realizes this infimum, it is said to be a best LP approximation
to u from ¥,,. We find useful the notion of a near best approximation, that
corresponds to ||u — Sy,||r < Coy,(u), for some constant C' > 1 independent
of n and u.

In order to describe the approximation rate, it is convenient to introduce
the approximation space Ag(LF), defined as the set of all functions u € L?

such that
- 1/q
lullaga = (D (20w (w), ) (22)
n=-—1
is finite. Here we use the convention ¥ ; = {0}, so that o_1(u), := ||u||L».

Clearly A% (LP) is the set of functions which are approximated in L? by piece-
wise polynomials with accuracy O(27"%), and A7 (L”) is a slight variation of
this set since AL*(LP) C A(LP) C AZ (LP) for any € > 0. We also recall
that if o, (u), — 0 as n — oo, one obtains an equivalent norm in A% (LP) by
replacing o, (w), by ||[Snt1 — Sullze, Where S, is a near-best approximation
to u from X,. Indeed, clearly ||S,+1 — Suller < 0ngi1(u)p + 0n(u), with a
constant independent of n. On the other hand, 5, converges to u in I” and
hence ||u—S,||» can be bounded by > <. ||Sn1+1—Su||Lr, and we complete
the argument by the discrete Hardy inequality.

Since the work of DeVore and Popov [5], it is known that when o < k+1,
A%(L") coincides with the Besov space BS, with 1/¢ = 1+ «, and they have
equivalent norms. In this article, we are interested in piecewise polynomial
approximation of continuous functions in the uniform norm. In this context,
Y, is redefined as the set of all continuous piecewise polynomials of degree
< k with no more that 2" polynomial pieces. This type of approximation
is studied by Petrushev in [12], where the following Jackson and Bernstein



estimates are established:
Un(u)oo ,S Qiﬁn“ulngﬁ;la (2'3)
and
weL, = Wz S 27 ullre, (2.4)

with 1 < 8 < k+ 1 and r = 1/5. These estimates are the classical vehicle
for characterizing the approximation spaces Ajg(L>) for 0 < a < 8 in terms

of the real interpolation spaces (L, B? )%,q, where
B? :={u:u' e Bl r=1/8} (2.5)

In the following, we shall prove directly that A (L) in fact coincides with

B®for1 < o < k+1. As already mentioned B® is slightly smaller than By,
and does not contain discontinuous functions.

Lemma 2.1. We have AY(L>) = B®, q = 1/a, with equivalent norms.

Proof: Assume that u € AZ(L>), and denote by S, (n > 0) a near best
L®° approximation to u from ¥,,. We consider the discontinuous piecewise
polynomial 7}, := 5], of degree k — 1 as an approximation to u’. Note that
any polynomial S of degree k satisfies

15" 22 (tas)) < CIS oo (ot

where the constant C' depends on k, but is independent of the interval [a, b]
by a scaling argument. Since T, — T, is a piecewise polynomial on at most
%2" intervals I, we have

||Tn - Tn71||L1 S Z ||Tn - Tn71||L1(I]~) ,S 2n||Sn - Sn71||L°°-
J

This gives

o0

2 12T = Tl 1 5wl gmy

n=-—1

which in turn shows that 7, converges to an L' function which is necessar-
ily u'. Tt follows that

||u'||A§;*1(L1) S ||U||A3'(L°°)v
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and therefore, according to the result of [5] for piecewise polynomial approx-
imation in L!,
||UI||B:;;1(L1) S ||u||Ag(L°°)-

Now since [|ul[g= < |lul| 42(z), then
lull e < llullag ).

For the estimate in the other direction, let us assume that v € B*. Then
u' € By, with 1/¢ = 1+ (a — 1), and due to the result of [5] for piecewise
polynomial approximation in L', there exists a sequence (T},),>—1 of piece-
wise polynomials of degree k — 1 with T"; = 0 such that 7,, converges to u’
in L' and

o0
-1
S oy T a, S L

n=-—1

Clearly, there is a subdivision with at most 2! intervals I; such that T, is
a polynomial on each of them and

||UI — Tn“Ll(Ij) S 2_"||u' — Tn||L1'

On each interval I; = [a;, b;], we define
Poia1(z) == u(a;) +/ T,(s)ds, (2.6)
and further modify P, into

m—aj

b:

J

Snt1(2) := Poga(z) + (u(by) = Poya(by))

j— alj ’
Thus the resulting S, 41 is in X,,4;. On each I;, we clearly have
(@) = Poa(2)| < [v' = Tallzrr,) < 27"l = Tallz,

and hence

i R S N
bj — a]-

[u(b;) — Pny1(b))]

Consequently,
lu = Spsillpe < 27"l — Tl



which implies

q q 119
||u||Ag‘(L°°) 5 ||u|| o T ||U ||A8¢71(L1)-

Now invoking the result of [5] for piecewise polynomial approximation in L',
we conclude
[ullagze) < llull ga-

The proof is complete. O

In the second part of the proof of Lemma 2.1, we constructed the approx-
imation S,41 to u by using that T,, approximates u’ (see (2.6)-(2.7)). For
future use, it will be useful to construct S,, so that if ' < M, then S,, also
satisfies S/ < M. To this end, we slightly modify the above construction as
is described in the following. Once the intervals I; are determined, we define
on each of them a new approximation R, to u’ as the orthogonal projection
of v’ onto the polynomials of degree k — 1, namely, R, ; is defined on each
I; so that

/ [Rpi1(z) — v/ (z)]a¥de =0, v=0,...,k—1.

I

Since this orthogonal projection is a near best L' approximation, we have
[ = Roiillzay) S 10 = Tallzaqy).-

Inside I}, there are at most [k/2+1] disjoint intervals on which R,,1(z) > M.
On each of them we replace R, ;1 by the constant M and on the remaining
part fj of I; we modify R,y as M —c¢(M — R,+1), where ¢ ensures that the
integral of R,.; on I; remains unchanged. Note that since this integral is

/Rn+1:/U,§M|Ij|,
I I

J J

then the constant
f[j [M - Rn+1]

ffj [M - Rn+1]

is necessarily in [0, 1], and consequently M — ¢(M — R,,+1) < M on fj. The
resulting function U, ., has at most 2"** pieces with a = 1 + [log, k] and

c:=




satisfies U,.1, < M everywhere. We finally remark that this modification
can only improve the L' approximation error on I;. Indeed, on the one hand

[t = Untall gy < W = Rusall g,y — /I\f [Rnt1 — M],
and on the other hand

[ = Unsallprg,y = ' =M — c(Rngr — M)z
< ' = Rotallpagyy + (L= ) IM = Rl 1z,
— |’ = Rusallgr gy + (3 [M = Ruga] = [, [M = Roa]
= [[v" = Bniallpaiyy + ij\fj [Rn1 — M].
Therefore

/

I = Unrallzrry < I = il S I = Tl (28)

We now define S,,,, € ¥,, on each interval I; by
Snta(z) == u(ay) +/ Un+a(s)ds. (2.9)

The continuity of S, is ensured since by construction f 7 Unja = f 5 u' and
J 7

we clearly have S, < M. We complete the argument as in the proof of
Lemma 2.1, namely, we have

lu = Sntalle S 27" [0 = Tall1,

and hence

> 1/q
lellagzm < (30 2= Salliel?) ™ S e, (220)

n=-—1

where S, ;=0 for —1 <n < a.

2.2 Hausdorff stability and rotated graphs

In [1], it is proved that scalar conservation laws are stable in the Hausdorff
metric d(-,-) with respect to perturbations of the initial condition. More
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precisely, if u and v are solutions of (1.1) with initial values uy and vg, and
if for some M > 0 the initial condition ug satisfies

uy < M or uy>—M, (2.11)

then we have
d(u,v) < C(t)d(ug,vo), t>0, (2.12)

with C(¢t) ~ 14 M(1+t). A stability result is also established with respect
to a perturbation of the flux function: If v and v are solutions of (1.1) with
initial value uy and fluxes f and g, respectively, then at time ¢t > 0, we have

d(u,v) < C@E)[f" = g'llze (2.13)

with C'(t) ~ 1 +¢. These two results can be combined, namely, if v and v
are solutions of (1.1) with initial value uy and vy and fluxes f and g, and if
ug satisfies (2.11), then

d(u,v) < C(t)]d(uo,vo) + [If" = g'll 2] (2.14)

with C'(t) ~ 1+ M(1 +1t).
As already explained in the introduction, our main idea is by employing
the Oleinik inequality (1.8) to replace the Hausdorff distance by the L
distance in a suitably rotated coordinate system. Indeed, assuming that

satisfies (1.8), it is readily seen that the graph of u is also the graph of a
Lipschitz function @ in the rotated coordinate system defined by

T =cr— sy
{ Jy=sx+cy (2.15)

with ¢ := cosf, s :=sinf, 0 € [0,7/2] such that

T:=§/c=tanf = mt/2. (2.16)
One can indeed readily check that

—rl<d(@) <2r+7h (2.17)
Clearly, the rotated solution @ is not compactly supported since it coincides

with the function § = 7z outside the region corresponding to the support
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of u. In order to preserve the compactness of the support, we modify u by
setting
—TZ. (2.18)

N

U=

Thus the new coordinate system is

Sl

=CIr — S
1y, Y (2.19)

< &
o

If u is supported on I(t) = [a(t),b(t)], then @ is supported on I(t) =
[ca(t), cb(t)]. Clearly, we still have a Lipschitz bound

|a(Z) —a(y)| < v|Z -y (2.20)

with
vi=14+71 " (2.21)

We also remark that if u € BV, then © € BV, and
@l gv ) < ¢! ulsv, (2.22)
which follows immediately from the definition of the total variation:
lu|py = sup Z Ju(:) — w(zi-1)l,
i=1

where the supremum is taken over all selections of points zg < --+ < x,, in
the support of u.

It is easy to see that if u and © are obtained from w and v by such a
change of the coordinate system, then

|t — 0| = ||@ — D||pe < (1 +v)d(a,v) = (1 + v)d(u,v),
and in the other direction,
d(u,v) = d(a,0) < ||t — 0||pe = ||& — 0| pee.

Therefore, the Hausdorff distance between two solutions is equivalent to the
L distance between the rotated solutions. In particular, if v and v are
solutions of (1.1) with initial values uy and vy and fluxes f and g, and if ug
satisfies (2.11), then we have

1 — 0|z < C()[lluo — vollzee + [If — ¢'llze] (2.23)
with C(t) ~ v[1 + M(1+t)].
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3 Proof of the regularity theorem

The proof of Theorem 1.1 relies on an approximation procedure by piecewise
algebraic functions which stay close to the solution u in the Hausdorff metric
for all ¢ > 0. As shown above, this stability will hold in L* in the coordinate
system (2.19).

3.1 Approximate solutions

Assuming that ug € B satisfies uy < M, let S, be the L approximation to
uo defined in (2.9). We recall that S,, is made up of at most 2" polynomial
pieces of degree < k with £ > o — 1, and that it satisfies

S, < M. (3.1)

We also observe that since S/, = U, is a near best L' approximation of wuy,
then
[Snllrr < Cllugl| e

for some constant C', and therefore
1SnllBv < Clluoll v (3.2)

Notice that S, is not necessarily a near best L* approximation to ug. How-
ever, (2.10) guarantees that it is good enough for our purposes. Clearly,
there is an interval Q (whose size may depend on ||up||py) such that ug(zx)
and S, (z) belong to Q for any .

We next approximate the flux function. Assume that f € C? and f is
strictly convex, so that there exist two constants m and m such that

0<m<f'"<m onQ.

We also assume that f belongs to WT>°(Q2). Then by a classical spline
approximation result, there exists an r — 1 times continuously differentiable
piecewise polynomial function g, of degree < r with uniform knots at the
points j2° ", j € Z, such that

1f© = gVl < C27 D) fOH || gy for 1=0,...,7.  (3.3)

Changing slightly the constants m and m, we may assume that the functions
gn also satisfy
O<m<gl'<m on Q. (3.4)

13



We now define s,, as the entropy solution at time ¢ of (1.1) with initial value
S, and flux g,, and denote it by §,, in the coordinate system (2.19). Before
going any further, we observe that our stability result (2.23) combined with
(3.3) guarantees that

[t = 8L < C(@)lluo — Snllze +27] (3.5)

as well as
18n+1 = 3nlle < CO)[[|Sn+1 — Sallre +27]. (3.6)

Therefore, 5,, approximates @ with the same rate as S,, approximates ug, up
to an additional term 27"". In the following, we assume that o +1 < r. In
particular, we can set r := k + 2.

3.2 Structure of the approximate solutions

We recall that a function y := y(z) is said to be algebraic on an interval J
if there exists a polynomial F' in two variables such that F'(z,y(x)) = 0 for
x € J. We shall now describe the structure of the approximate solutions s,
in terms of particular algebraic pieces (y, J).

Lemma 3.1. There exists a partition of the support of §,, into O(2") intervals
such that on each interval J, the function s, coincides with an algebraic piece
(y,J) of one of the following two types:

Type I: y satisfies ||y'||Ls) < v and the algebraic equation
R(T(z)) =y(z) +ve, xz€J, (3.7)

where v is defined in (2.21), T(x) := y(z) + vx — Q(y(x)), and R and
Q are algebraic polynomials of degrees k(r — 1) and r — 1, satisfying

(Al) 2 < Q, <c on y(‘])v
(A2) O0< R <c on T(J),

for two constants ¢, and cs.
Type II: y satisfies
y(0) =y(z) +ve, zelJ, (3.8)

i.e., S, 1s affine on J with slope —v.

14



Proof: Following DeVore-Lucier [4], we begin by introducing two special
types of points. First, let {a; }o<i<4 denote the knots of S,,, that is, the points
where S, changes from one polynomial piece to another. By construction,
A < 2" Let then {b;}¢<i<p denote the isolated points such that S,(b;) is
a knot of g,, that is, S, (b;) = j27" for some j. To count them, we shall
denote by {b;},<;<p all b;’s such that S, (b;_1) = S,(b;), and we denote the

remaining ones by {b;}o<;<5. Now, we have Varg, 5,.,1(Sn) > 27" for each i,

hence [|Sy|lpv > Zf;)l Varg, 5..,1(Sn) > B 27", and we infer from (3.2) that
B < |luo||pv2™. On the other hand, if I; is an interval where S, coincides
with the polynomial P;, Pj should vanish at least once in each [bi, biya] C 1.
Since P} is of degree not exceeding k and by definition there are no second
type points in I; when P; is a constant, we see that B is of order O(2"), and
so is B.

In [9], Lax shows that if the initial data S, is continuous and the flux
function g, is strictly convex, the entropy solution s, of (1.1) satisfies

Sn(x,t) = S,(2), where z:= z(z,t) is a solution of z = 9n(Sn(2)).

There may be many solutions of this equation, but a minimization property
picks a specific value z(z,t). Lax shows that z(z,t) is an increasing function
of z for a fixed t. Shocks occur wherever z(z,t) is discontinuous in z. If
we denote by o; the positions of these shocks and set z; := z(o; ,t) and
z = z(o},t), this means that the function

S:z = z+1t4,(Su.(2)) (3.9)

is increasing on each interval [z;", 2], while S(2;) = S(z;") = ;. From our
previous discussion, we can describe S as O(2") polynomial pieces of degree
at most k(r —2), so it follows that there cannot be more than O(2") shocks.
In addition, we see that there is a partition {I?}1<;<c2» such that S is an

increasing polynomial on each interval I? and satisfies
50(S(2)) = Su(2), z€T? (3.10)

(here s,, is multivalued at the shocks), while the intervals I} := S(I?) recover
R and overlap only at the boundaries. Writing z = S(z), this leads to

S(z—tg (sn(x)) =2, =x€l. (3.11)
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Finally, we observe that in the coordinate system (2.19) each algebraic
piece (s,, If) becomes a piece of Type I, while the shocks become pieces of
Type II, as is seen from Figure 1. Indeed, let us fix ¢ and let P and @)
denote the polynomials coinciding with ¢S, (s ) and s~'tg/(c-) on s7'I?
and ¢7'S,(I?) respectively. Define also R := Id + @ o P the polynomial
which coincides with s 'S(s-) on s 1I?. After a little algebra, in the new

coordinate system (3.11) becomes
R(34(2) +vZ — Q(54(7))) = 3u(T) + v,
which gives (3.7) with J := I*. Then

Q = —gn( ) and  R'=1+1g,(Sa(s))Sp(s ),

and hence (A1)-(Az) follow readily from (3.4) and (3.1) with ¢; = 2m/m
and ¢ = 1+ tmM. O

3.3 An inverse estimate

According to Lemma 3.1, each difference 3, —§,, 1 is made of O(2") algebraic
pieces (A, J) which are differences of pieces of first or second type. Following
DeVore and Lucier (Lemma 4.2 in [4]), we can further split these pieces in
order to obtain a partition consisting of O(2") pieces (A, J), each of them
monotone together with all its derivatives of order < k 4+ 1. We next state

an inverse estimate for such pieces which will allow to complete the proof of
Theorem 1.1.

Lemma 3.2. If (A, J) is an algebraic piece of §, — 3,_1, then
I Lyllgsr S Al + 270 (3.12)
with a constant independent of n.

This inverse estimate has a delicate proof which will be given in Section 4.

From (3.12), we next deduce an inverse inequality for the functions 3, — 3, ;.
Assuming that {(A;, J;) }1<i<c2n is a subdivision of §,, — §,_; into algebraic
pieces, we observe that the continuity of each s, yields

c2n

n_sn I_ZAI ]]'J
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Therefore, using the g-triangle inequality for B!, we have

4,9
~ ~ c2m
18, = el o < S0 JALL,

Bgy!
S Al g (g + 2770V (3.13)

25 = St + 270

S
S

and, using (3.6), it follows that

15, = Sallfe s S 2"M1Sns1 — Sallf + 270D,

From (3.5), it also appears that @ can be decomposed into a telescopic sum

[ee)
U= g Sp — Sp—1.

n=0
Then applying again the ¢-triangle inequality, we obtain
%, < Sl — 8l
> onol2°1Sn = Su-ilfe + 27D

S
S lwollf. + 1,

where we used our assumption » — 1 > a = 1/q. The proof of Theorem 1.1
is thus complete except for the proof of Lemma 3.2.

4 Proof of the inverse estimate

In this section, n is a fixed positive integer and (A, J) denotes an algebraic
piece of 5, — 5,,_1.

4.1 An intermediate estimate

In order to prove Lemma 3.2, we first establish the following intermediate
inverse inequality.

Lemma 4.1. If (A, J) is an algebraic piece of §, — 3,_1, then
14Ny S W1 (1Al +27¢707) (4.1)

with a constant independent of n.

17



Proof: We let y(z) and y(z) denote the algebraic pieces of §,, and §,_1 on
the interval J. Several cases are possible, depending on whether y and y are
of Type I or Type II. However, we observe that there is nothing to prove
when y and 7 are both of Type II. Thus we can always assume that y is of
Type I and set

O(z) :=1-R(T)(1 - Q'(y))

We begin by establishing the equivalences
O(z)| ~ 1, =€ J, (4.2)
and
()| ~ |]] (4.3)

with constants of equivalence independent of n.

For the proof of (4.2), we first see using (A)—(Agz) that ||O|p~) <
1+ c2(1 + ¢1). In the other direction, differentiating both sides of (3.7) and
the expression for T'(z) with respect to z yields

R(TT'(z) =vy'(z) + v (4.4)
and
T'(z) =v—y'(2)[Q(y) — 1]. (4.5)
Hence
y'()O(z) = v[R(T) — 1]. (4.6)

Let J, = {z € J;|1 — R(T)| > 1/2} and J_ = J\ J,. Ifz € J,,
then |y'(z)©(z)| > v/2, and using |y'(z)| < v it follows that |©(z)| > 1/2.
In the case when x € J_, we infer from the positivity of R'(T") on J that
1/2>1— R'(T), and using (A;), it follows that

©(z)] R(T)Q'(y) — |t = R/(T)]
(1/2)Q"(y) —1/2

1/2.

VIV IV

Hence |O(z)| > 1/2 for z € J and the proof of (4.2) is complete.

We turn to the proof of (4.3). From (4.5), it is clear that ||77||fe(s) <
V(2 + ¢;). To bound T"(x) from bellow, suppose first that y'(z) > 0. Then
(4.4) together with (Az) yields T"(x) > v/co. If y'(z) < 0, then (4.5) along
with (A1) implies T7"(z) > v, and (4.3) follows.

18



We recall the following classical inequalities, valid for arbitrary intervals
G, G’ such that G C G’, and a polynomial P of degree < I:

[
Gl
(By)  Plle=) < (&) 1Pl
(P2)  ||Pllz=(c) < C|G| Pl Loe(c)-

We now consider the case where y is of Type II. By (4.6), (4.2), and (3.8),

we have ~ )
1Y =T llzeoy = vIOTHR(T) = 1) + 1|~

V|0 R(T)Q' (y) | z()

IRI(T)| oo ()

1B 2=z )

IT(DIHIR = 5(0)|| 2z

[ JI7HIR(T) = 9(0)l| 2= ()

[Ty = Yl

which proves the lemma in this case. Here the first inequality is again (4.2)
together with (Aj), the third one is (P3), the fourth one is (4.3), and the

last one is (3.7) together with (3.8).

Let now y and § be both of Type I. We use (4.6), (4.2), and (Az) to
obtain
1Y = Ty = v (0 ©)HO(R(T) — 1) = O(R(T) = 1)]l|zee(s)
S 6(R(T) = 1) = O(R(T) = 1)~ (4.7)

S NR(T) = R(T)ll=w) + [1© = Ollpee ().

Y

ARG RUOR IR

Therefore, the lemma will follow if we establish the estimates:
IR(T) = R(D)|lee(n) S 117y = Gllzooy + 277 (4.8)

and B
10 = Ollroe(sy < |17 Iy — Fllzoe(y + 270797 (4.9)

To this end, we need the following estimates:
0 1QW = QWl=w) < ly =l + 27,
i QW — Q@le=w) S 1y = gllp=(n +27 17, (4.10)
(i) N7 =Tz < Iy = Gl +27™
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Proof of (4.10, i): Let us denote Q, := s 'tg/ (c-). Then

1Q(y) — Q@)lIzwy < QW) — Qe(®) () + 1Qe() — Q)|
It follows from (3.4) that

1Q(W) = Qe(@) || z=() < —IIy Fllzee()
and since @ coincides with s~'tg, ,(c-) on 7(J), we infer from (3.3) that

1Qe(7) = QD) |z~ S 27

Proof of (4.10, ii): The same argument can be applied here, since (3.3)

implies in particular that ||g£L3)|| Leo(q) is bounded independantly of n as long
asr > 2.

Proof of (4.10, iii): By (4.10, i), we have

1y = Gllzee ) + 1Qy) — Q)|

IT =Ty <
S 27"+ ly = Flle

Proof of (4.8): Assume first that T'(J) N T(J) = (), and without loss
of generality, that a := sup(T(J)) < inf(T(J)). We extend R by setting
R.(z) = R(a) + (z — a)R/(a) for > a. Then

IR(T) = R(T) || zy < |1R(T) = RUD) ooy + |1RUT) = BI(T)l|z< )
Since R.(T) is a constant over J, we have

|R/(T) — RL(T)|| oo () IR || oo (2| T(J)]
| R o ()
1

[ TI7HIT = Tz )

(4.11)

AR AR YAMIA

Here the second inequality is (P2), the third inequality is (A), and for the
latter inequality, we note that since 7'(.J) and T'(J) are disjoint, then using
(4.3),

|[J| ~ min(|T(J)[, [T(J)]) < IT =Tl ()
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On the other hand, R, — R is a polynomial over 7(.J) and hence we can apply
again (P3) and (4.3) to obtain
IR, — R'l| o)) S |7 IRe = Rll o (#a)
S WITHIR(T) = R(D)l gy + | R(T) = R(T) ||z ()]
S ITHIT = Tllzeey + 1y — Gl o],
where we used (Agz) and (3.7) for the latter estimate. Together with (4.11)
and (4.10, iii), this proves (4.8) in the case where 7'(J) and 7'(J) are disjoint.

Let T(J)NT(J) # 0 and set K := T'(J)UT(J). By (4.3), K is an interval
of length O(|J|). Applying (P1) and (P3), we obtain

IR || 2oy S N R lzoo(riayy S 1
and
IR ||y < |7

We have then

IR (T) — R'(T)|lzesy S 1IIHIT = Tl oo
and also

IR — R|| oo (7 |J] MR — Rl oo

|JI7HIIR(T) — R(T)|| ey + |1R(T) — R(T)|| oo ()]
| T IR oo () 1T — Tllzoe gy + 1y — Fll Lo ()]
\JI7HINT = T ooy + Iy = Glleo())-

AR VAR VAR IA

Consequently,

IR(T) = R'(T) () IR(T) = R(T)lloe () + 1R = B[l o7y

<
S MIPHIT = Tl + 1y = gllzeon]-
In view of (4.10, iii), this completes the proof of (4.8).

Proof of (4.9): Observe that (A;) guarantees the boundedness of R’ on
T(J), and since R is also obviously bounded on T'(.J), we can apply (P3) to
obtain

1B ooy S 1177
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Then using the definition of ©, we have

1© = Oy = [IR(T)(1-Q'(y)— R(T)1 - Q)=
< |IR(T) — R(T)||z()
+ R(T) oo 1Q'(y) — Q' ()l Ly
+ Q@ | R(T) = R(T)|| ()
< My = gllpeey +27 0707,

where the latter inequality follows from (4.8) and (4.10, ii). This completes
the proof of Lemma 4.1. O

4.2 Proof of Lemma 3.2

For simplicity, we denote A" := A" 1; and proceed to estimating [|A'|| ga
following the approach of DeVore and Lucier [4]. Recall first the following
inverse estimate (Lemma 4.3 in [4]).

Lemma 4.2. Let v be twice continuously differentiable on an open interval
I and assume that v, v' and v" each have one sign on I. If numbers p and q
are given such that 0 < p <1 and % — % > 1, then there exists a constant C
such that whenever v € LI(I) then v' € LP(I) and

1_1_
||U'||Lp(1) <C|I|r « . ||U||Lq(1). (4.12)

According to the definition of the Besov norm in (1.4)-(1.5), we have to
estimate wy(A',t)q = supp,<; [|AFA'|| Loy for t > 0. Then because of the
symmetry, it suffices to bound ||A¥A’||z« only for 0 < h < t. For a fixed
h > 0, we introduce the following sets:

Fi={zeR:[z,z+khlCJ}, T":={zeR\T:[z,z+kh|NJ#0D},

and
I": =R\ (TUl'y={z eR:[z,z+kh|NJ =0}

If x € I, then A¥A'(z) = 0 and hence

|AFA'(z)|9dx = 0. (4.13)

FII
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If z € I’ then using that |[AFA'(z)] < 2%(JA'(z)| + -+ + |A'(z + kh)]), we
have

[ 1A @ < I 1A T S T4

Now, Lemma 4.2 and the obvious estimate || < min(h, |J|) yield
|AF A (2)%dz < min(h, |J])|[J|70(| Al gy + 270 (4.14)
IV

Finally, let © € T"and 0 < h < |J|/k. Notice that I' = @ if b > |J|/k.
We shall employ the well-known identity: AFA'(z) = R¥FA*+D () for some
¢ € [z, z + kh]. From this and the monotonicity of A**1) we have

AR () = h* max{A*+V (z), A*V (2 + kh)}.
Without loss of generality, we can assume that A*+1) is decreasing. Then
AR A (z) < RFA®D(z), z€T. (4.15)

The following embedding is well-know: If 1 < 8 < B, ¢ = 1/0;, and
f e Bqﬁz{;;, then f € Bqﬂll,;ll and || f]| B < |If]l B2 Therefore, we may
assume that k < a <k +1.

Set qp :==¢q = l/a 5 % —1) >0, and define qi, g3, . . . , g recursively
by the 1dent1ty +e),j= 1 , k. Evidently, % =a—j(l+¢)

J

and hence - = a—k(1+6) s(a—Fk) > 0. Therefore, O0<g<q@<---<
Q-1 < 1 and qr > 1. Now, applying repeatedly Lemma 4.2, we obtain

= 5(
~(1

TN

1A | o) FNAP Ly S - S 1T NA )

~Y

<
<A gy = ] I A o) (4.16)
Using (4.15), (4.16), and Lemma 4.1, we get
/'AZA'( e 5 BT[] Al ooy + 270, (4.17)
r
Combining (4.13), (4.14), and (4.17), we arrive at

ad.0] = s [ 44 @)z
R

0<h<t

< min(t, 7)) + 2 HL O] Al gy + 27001,
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where 1 := 1L,s/x. Therefore,

0
_ [T Lg— —g [O© ,q—
SO et 4 [ ] [ ¢t
S L M (PP R
([JA]| ooy + 2—(T—1)n)q,

A1 Joo DT (A t)7dt

a—1
B‘]yq

AN

where we used that 0 < ¢ < 1and k¢g+¢q—2=(k+1)/a—2 > —1. The

proof of Lemma 3.2 is complete. U
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