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SOME ERROR ESTIMATES IN LEARNING THEORY

S.V. Konyagin and V.N. Temlyakov

Abstract. We continue investigation of some problems in learning theory in the setting

formulated by F. Cucker and S. Smale [CS]. The goal is to find an estimator fz on the base
of given data z := ((x1, y1), . . . , (xm, ym)) that approximates well the regression function fρ of

an unknown Borel probability measure ρ defined on Z = X × Y . Following [CS] we consider

a problem of approximate recovery of a projection fW of an unknown regression function fρ

onto a given class of functions W . It is known from [CS] and [DKPT] that the behavior of

the entropy numbers εn(W ) of W in the uniform norm plays an important role in the above

problem. In this paper we obtain sharp (in the sense of order) estimates for the error between
fW and fz for the classes W satisfying εn(W ) ≤ Dn−r , n = 1, 2, . . . , |f | ≤ D, f ∈ W . We

observe that the error estimates exhibit a saturation phenomenon for the range r > 1/2. We
improve the error estimates by imposing one additional assumption on the relation between fρ

and W , namely, we assume fρ ∈ W .

We discuss one more issue in the paper. We provide a method that calculates from the data
z an approximate value of the average variance

∫
Z

(y−fρ(x))2dρ of the random variable y with

controlled error estimate.

1. Introduction

We discuss in this paper some mathematical aspects of supervised learning theory. Su-
pervised learning, or learning-from-examples, refers to a process that builds on the base of
available data of inputs xi and outputs yi, i = 1, . . . , m, a function that best represents
the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y . The central
question is how well this function estimates the outputs for general inputs. The standard
mathematical framework for the setting of the above learning problem is the following ([CS],
[PS], [DKPT]).

Let X ⊂ R
d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X × Y . For

f : X → Y define the error

E(f) := Eρ(f) :=
∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and ρX - the
marginal probability measure on X (for S ⊂ X , ρX(S) = ρ(S × Y )). Define

fρ(x) :=
∫

Y

ydρ(y|x).

1
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The function fρ is known in statistics as the regression function of ρ. It is clear that
if fρ ∈ L2(ρX) then it minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤ E(f),
f ∈ L2(ρX). Thus, in the sense of error E(·) the regression function fρ is the best to
describe the relation between inputs x ∈ X and outputs y ∈ Y . Now, our goal is to find
an estimator fz, on the base of given data z = ((x1, y1), . . . , (xm, ym)) that approximates
fρ well with high probability. There are several important ingredients in mathematical
formulation of this problem. In our formulation we follow the way that has become standard
in approximation theory and based on the concept of optimal method. A classical example of
such a setting is the concept of the Kolmogorov width. Kolmogorov’s n-width for centrally
symmetric compact set W in Banach space B is defined as follows

dn(W, B) := inf
L

sup
f∈W

inf
g∈L

‖f − g‖B

where infL is taken over all n-dimensional linear subspaces of B. In other words the Kol-
mogorov n-width gives the best possible error in approximating a compact set W by n-
dimensional linear subspaces. So, first of all we need to choose a function class W (a
hypothesis space H in [CS]) to work with. After selecting a class W we have the following
two ways to go. The first one ([CS], [PS]) is based on the idea of studying approximation of
a projection fW of fρ onto W . In this case we do not assume that the regression function
fρ comes from a specific (say, smoothness) class of functions. The second way ([CS], [PS],
[DKPT]) is based on the assumption fρ ∈ W . For instance, we may assume that fρ has
some smoothness. The next step is to find a method for constructing an estimator fz that
provides a good (optimal, near optimal in a certain sense) error ‖fρ − fz‖ for all fρ ∈ W
with high probability with respect to ρ. A problem of optimization is naturally broken into
two parts: upper estimates and lower estimates. In order to prove upper estimates we need
to decide what should be the form of an estimator fz. In other words we need to specify
the hypothesis space H (see [CS], [PS]) (approximation space [DKPT]) where an estimator
fz comes from.

The next question is how to build fz ∈ H. In this paper we discuss a standard in statistics
method of empirical risk minimization that takes

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

is the empirical error (risk) of f . This fz,H is called the empirical optimum. Section 2
contains a discussion of known results from [CS], [DKPT] and some new results. We obtain
results in both directions mentioned above. Proofs of new results in Section 2 are based
on the combination of the technique developed in [CS] and [DKPT] and new technique
developed here.
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The paper [CS] indicates importance of a characteristic of a class W closely related to
the concept of entropy numbers. For a compact subset W of a Banach space B we define
the entropy numbers as follows

εn(W, B) := inf{ε : ∃f1, . . . , f2n ∈ W : W ⊂ ∪2n

j=1(fj + εU(B))}
where U(B) is the unit ball of Banach space B. We denote N(W, ε) the covering number
that is the minimal number of balls of radius ε needed for covering W . In this paper in the
most cases we take as a Banach space B the space C := C(X) of continuous functions on a
compact X ⊂ R

d. We note that for a fixed ρX all our results hold with C(X) replaced by
L∞(ρX). However, we formulate all results using the space C(X) because we want to have
assumptions on W independent of ρ. Following [DKPT] we impose restrictions on a class
W in the following two forms:

(1.1) εn(W ) := εn(W, C) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C),

or

(1.2) dn(W ) := dn(W, C) ≤ Kn−r, n = 1, 2, . . . , W ⊂ KU(C).

After building fz we need to choose an appropriate norm ‖·‖ to measure the error ‖fρ−fz‖.
In [CS] the quality of approximation is measured by E(fz)−E(fρ). It is easy to see that for
any f ∈ L2(ρX)

(1.3) E(f) − E(fρ) = ‖f − fρ‖2
L2(ρX ).

Thus the choice ‖ · ‖ = ‖ · ‖L2(ρX) seems natural. This norm has also been used in [DKPT]
for measuring the error. One of important questions is to estimate the defect function
Lz(f) := E(f) − Ez(f) of f ∈ W . If ξ is a random variable (a real valued function on a
probability space Z) then denote

E(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

For a single function f the following theorem from [CS] is a corollary of the probabilistic
Bernstein inequality: if |ξ(z) − E(ξ)| ≤ M a.e. then for any ε > 0

(1.4) Probz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp(− mε2

2(σ2(ξ) + Mε/3)
).

Theorem 1.1 [CS]. Let M > 0 and f : X → Y be such that |f(x) − y| ≤ M a.e. Then,
for all ε > 0

Probz∈Zm{|Lz(f)| ≤ ε} ≥ 1 − 2 exp(− mε2

2(σ2 + M2ε/3)
),

where σ2 := σ2((f(x) − y)2).

We will assume that ρ and W satisfy the following condition.

(1.5) For all f ∈ W, f : X → Y is such that |f(x) − y| ≤ M a.e.

The following useful inequality has been obtained in [CS].
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Theorem 1.2 [CS]. Let W be a compact subset of C(X). Assume that ρ, W satisfy (1.5).
Then, for all ε > 0

(1.6) Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ ε} ≤ N(W, ε/(8M))2 exp(− mε2

2(σ2 + M2ε/3)
).

Here σ2 := σ2(W ) := supf∈W σ2((f(x)− y)2).

This theorem contains a factor N(W, ε/(8M)) that may grow exponentially for classes
W satisfying (1.1): N(W, ε) ≤ 2(D/ε)1/r+1. In Section 2 we prove a stronger (in a certain
sense) estimate than (1.6) under assumption that W satisfies (1.1). For instance, in the
case r > 1/2 Theorem 2.2 replaces N(W, ε/(8M)) in an analogue of (1.6) by a constant
C(M, D, r) independent of ε. This strengthening of Theorem 1.2 pays off in improved
estimates for E(fz,W ) − E(fW ) in the first approach mentioned above (we do not assume
that fρ ∈ W ). The following result is essentially due to [CS] (see [DKPT]). Let W and ρ
satisfy (1.1) and (1.5) then for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

In Section 2 we prove, for instance, for r > 1/2 that for W , ρ satisfying (1.1) and (1.5) we
have for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am−1/2} ≥ 1 − exp(−c(M)A2).

We also prove in Section 2 that one cannot improve the error estimate of order m−1/2 in
the setting with no assumptions on fρ.

It turns out that if we assume that fρ ∈ W we obtain significantly better estimates. We
prove the following estimate in Section 3.

Theorem 1.3. Let fρ ∈ W and let ρ and W satisfy (1.1) and (1.5). Then there exists an
estimator fz such that for A ≥ A0(M, D, r)

Probz∈Zm{E(fz) − E(fρ) ≤ Am− 2r
1+2r } ≥ 1 − exp(−c(M)Am

1
1+2r ).

Let us compare the above estimate with the known result essentially due to [CS] (see
[DKPT]).

Theorem 1.4 [CS], [DKPT]. Assume that ρ and W satisfy (1.1) and (1.5). Suppose that
fρ ∈ W . Then for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fρ) ≤ Am− r
1+r } ≥ 1 − exp(−c(M)Am

1
1+r ).

We note that we have achieved an improved rate of error decay in Theorem 1.3 by
replacing fz,W by fz,Vε

where Vε is the ε1/2-net of W in the C norm. This raises a natural
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question of choosing for a given class W an approximation space H in such a way that
the error E(fz,H) − E(fρ) is close to optimal error and H is as simple as possible. In a
development of this idea we discuss in Section 3 several interesting settings taken from
[DKPT]. In particular, we discuss the case of W satisfying (1.2) instead of (1.1).

Let us make a comment on (1.3). The quantity E(fρ) is an important characteristic of
the probability measure ρ. Indeed, for x ∈ X

vρ(x) :=
∫

Y

(y − fρ(x))2dρ(y|x)

is the variance of the random variable y. Therefore,

E(fρ) =
∫

X

vρ(x)dρX

is the average (over X) of the variance vρ(x). However, the measure ρ is unknown and,
therefore, the estimate E(fz)−E(fρ) ≤ δ does not allow us to find an approximate value of
E(fρ) because we cannot evaluate E(fz). In Section 4 we develop a technique of constructing
fz to approximate E(fρ) by Ez(fz). The error estimates for Ez(fz)−E(fρ) from Section 4 are
weaker in the case r ≥ 1/2 than the corresponding error estimates for E(f(z))−E(fρ) obtained
in [DKPT] and Section 3 of this paper for other estimator f(z). In the case r ∈ (0, 1/2) we
obtain for Ez(fz) − E(fρ) the same order estimates as for E(f(z)) − E(fρ).

By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
constants that are determined by their arguments. We often have error estimates of the
form (lnm/m)α that hold for m ≥ 2. We could write these estimates in the form, say,
(ln(m + 1)/m)α to make them valid for all m ∈ N. However, we use the first variant
throughout the paper for the following two reasons: simpler notations, we are looking for
the asymptotic behavior of the error.

2. Estimating E(fz) − E(fW )

In this section we keep notations from Section 1. Denote by fH a function from H that
minimizes the error E(f):

fH := (fρ)H := arg min
f∈H

E(f).

For notational simplicity we always assume that such a fH exists. Otherwise we would
need to take the one that almost minimizes E(f) over f ∈ H. The following theorem (see
[DKPT]) is essentially contained in [CS].

Theorem 2.1 [CS], [DKPT]. Assume that W and ρ satisfy (1.1) and (1.5). Then for
A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

We begin with Theorem 2.2 that is a variant of Theorem 1.2 when we know the behavior
of the sequence E(W ) := {εn(W )}∞n=1. First, we prove an auxiliary result. We will use the
L∞ := L∞(ρX) norm.
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Lemma 2.1. If δ > η/(8M), |fj(x) − y| ≤ M a.e. for j = 1, 2, and ‖f1 − f2‖∞ ≤ δ, then

Probz∈Zm{|Lz(f1) − Lz(f2)| ≤ η} ≥ 1 − 2 exp
(
− mη2

30M2δ2

)
.

Proof. Consider the random variable ξ = (f1(x) − y)2 − (f2(x) − y)2. We use

|ξ| ≤ 2M‖f1 − f2‖∞ a.e.

Therefore, |ξ − Eξ| ≤ 4Mδ a.e. and the variance V of ξ is at most 4M2δ2. Applying the
Bernstein inequality (1.4) to ξ we get

Probz∈Zm{|Lz(f1) − Lz(f2)| ≥ η} = Probz∈Zm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi) − E(ξ)

∣∣∣∣∣ ≥ η

}

≤ 2 exp
(
− mη2

2(4M2δ2 + 4Mδη/3)

)
≤ 2 exp

(
− mη2

2(44M2δ2/3)

)
,

and Lemma 2.1 follows.

Theorem 2.2. Assume that ρ, W satisfy (1.5) and W is such that

(2.1)
∞∑

n=1

n−1/2εn(W ) < ∞.

Then for mη2 ≥ 1 we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, E(W )) exp(−c(M)mη2).

Proof. It is clear that (2.1) implies that

(2.2)
∞∑

j=0

2j/2ε2j (W ) < ∞.

Denote δj := ε2j , j = 0, 1, . . . , and consider minimal δj-nets Nj ⊂ W of W . We will use the
notation Nj := |Nj|. Let J be the minimal j satisfying δj ≤ η/(8M). For j = 1, . . . , J we
define a mapping Aj that associates with a function f ∈ W a function Aj(f) ∈ Nj closest
to f in the C norm. Then, clearly,

‖f − Aj(f)‖C ≤ δj .

We use the mappings Aj , j = 1, . . . , J to associate with a function f ∈ W a sequence of
functions fJ , fJ−1, . . . , f1 in the following way

fJ := AJ(f), fj := Aj(fj+1), j = 1, . . . , J − 1.
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We introduce an auxiliary sequence

(2.3) ηj := (30)1/2Mη2(j+1)/2ε2j−1 , j = 1, 2, . . . ,

and define I := I(M, E(W )) to be the minimal satisfying

(2.4)
∑
j≥I

ηj ≤ η/4.

We now proceed to the estimate of Probz∈Zm{supf∈W |Lz(f)| ≥ η} with m, η satisfying
mη2 ≥ 1. First of all it is not difficult to see ([CS], [DKPT, Proposition 2.2]) that the
assumption δJ ≤ η/(8M) implies that if |Lz(f)| ≥ η then |Lz(fJ)| ≥ η/2. Using this, (2.4),
and rewriting

Lz(fJ ) = Lz(fJ) − Lz(fJ−1) + · · ·+ Lz(fI+1) − Lz(fI) + Lz(fI)

we conclude that at least one of the following events occurs:

|Lz(fj) − Lz(fj−1)| ≥ ηj for some j ∈ (I, J ] or |Lz(fI)| ≥ η/4.

Therefore

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ Probz∈Zm{ sup
f∈NI

|Lz(f)| ≥ η/4}(2.5)

+
∑

j∈(I,J ]

∑
f∈Nj

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj}

≤ Probz∈Zm{ sup
f∈NI

|Lz(fI)| ≥ η/4}

+
∑

j∈(I,J ]

Nj sup
f∈W

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj}.

By our choice of δj = ε2j we get Nj ≤ 22j

< e2j

. Applying Lemma 2.1 we obtain

sup
f∈W

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj} ≤ 2 exp(− mη2
j

30M2δ2
j−1

).

From the definition (2.3) of ηj we get

mη2
j

30M2δ2
j−1

= mη22j+1

and

Nj exp(− mη2
j

30M2δ2
j−1

) ≤ exp(−mη22j).
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Therefore

(2.6)
∑

j∈(I,J ]

Nj exp(− mη2
j

30M2δ2
j−1

) ≤ 2 exp(−mη22I).

By Theorem 1.2

(2.7) Probz∈Zm{ sup
f∈NI

|Lz(f)| ≥ η/4} ≤ 2NI exp(− mη2

C(M)
).

Combining (2.6) and (2.7) we obtain

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, E(W )) exp(−c(M)mη2).

This completes the proof of Theorem 2.2.

Theorem 2.3. Assume that ρ, W satisfy (1.5) and W is such that

∞∑
n=1

n−1/2εn(W ) = ∞.

For η > 0 define J := J(η/M) as the minimal j satisfying ε2j ≤ η/(8M) and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1 .

Then for m, η satisfying m(η/SJ )2 ≥ 480M2 we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, E(W )) exp(−c(M)m(η/SJ)2).

Proof. This proof differs from the above proof of Theorem 2.2 only in the choice of an
auxiliary sequence {ηj}. Thus we keep notations from the proof of Theorem 2.2. Now,
instead of (2.3) we define {ηj} as follows

ηj :=
η

4
2(j+1)/2ε2j−1

SJ
.

Proceeding as in the proof of Theorem 2.2 with I = 1 we need to check that

2j − mη2
j

30M2δ2
j−1

≤ −2j m(η/SJ )2

480M2
.
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Indeed, using the assumption m(η/SJ)2 ≥ 480M2 we obtain

mη2
j

30M2δ2
j−1

− 2j =
m(η/SJ )2

480M2
2j+1 − 2j ≥ m(η/SJ )2

480M2
2j .

We complete the proof in the same way as in Theorem 2.2.

Remark 2.1. Let a = {an} be a majorant sequence for {εn(W )}: εn(W ) ≤ an, n = 1, 2, . . . .
It is clear that Theorem 2.3 holds with J replaced by J(a) - the minimal j satisfying
a2j ≤ η/(8M) and with SJ replaced by

SJ(a) :=
J(a)∑
j=1

2(j+1)/2a2j−1 .

We formulate three corollaries of Theorem 2.3. All the proofs are similar. We only proof
Corollary 2.3 here.

Corollary 2.1. Assume ρ, W satisfy (1.5) and εn(W ) ≤ Dn−1/2. Then for m, η satisfying
m(η/ log(M/η))2 ≥ C1(M, D) we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, D) exp(−c(M, D)m(η/ log(M/η))2).

Corollary 2.2. Assume ρ, W satisfy (1.5) and εn(W ) ≤ Dn−r, r ∈ (0, 1/2). Then for m,
η satisfying mη1/r ≥ C1(M, D, r) we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, D, r) exp(−c(M, D, r)mη1/r).

Denote by Nδ(W ) the δ-net of W in the C norm.

Corollary 2.3. Assume ρ, W satisfy (1.5) and εn(W ) ≤ Dn−r, r ∈ (0, 1/2). Then for m,
η, δ ≥ η/(8M) satisfying mη2δ1/r−2 ≥ C1(M, D, r) we have

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ 2η} ≤ C(M, D, r) exp(−c(M, D, r)mη2δ1/r−2).

Proof. We apply Theorem 2.3 to Nδ(W ). First of all we note that for n such that εn(W ) ≤ δ
we have εn(Nδ(W )) = 0. Also, for n such that εn(W ) > δ we have

εn(Nδ(W )) ≤ εn(W ) + δ ≤ 2εn(W ).

We now estimate the SJ from Theorem 2.3. Denote Jδ the minimal j satisfying ε2j (W ) ≤ δ
and keep the notation J for the minimal j satisfying ε2j (W ) ≤ η/(8M). Then it is clear
from our assumption δ ≥ η/(8M) that Jδ ≤ J and ε2j−1(Nδ(W )) = 0 for j > Jδ. Therefore,

SJ ≤ 2
Jδ∑

j=1

2(j+1)/2ε2j−1(W ) ≤ 23/2+rD

Jδ∑
j=1

2j(1/2−r) ≤ C1(r)D2Jδ(1/2−r).
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Next,
D2−r(Jδ−1) ≥ ε2Jδ−1 > δ implies 2Jδ ≤ 2(D/δ)1/r.

Thus
SJ ≤ C1(D, r)(1/δ)

1
2r −1.

It remains to apply Theorem 2.3.

Theorem 2.4. Assume that ρ and W satisfy (1.1) and (1.5). Then we have the following
estimates

(2.8) Probz∈Zm{E(fz,W ) − E(fW ) ≤ η} ≥ 1 − C(M, D, r) exp(−c(M)mη2),

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2η} ≥ 1 − C(M, D, r) exp(−c(M)mη2),

provided r > 1/2, mη2 ≥ 1.

Probz∈Zm{E(fz,W ) − E(fW ) ≤ η} ≥ 1 − C1(M, D) exp(−c(M, D)m(η/ log(M/η))2),

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2η} ≥ 1 − C1(M, D) exp(−c(M, D)m(η/ log(M/η))2),

provided r = 1/2, m(η/ log(M/η))2 ≥ C2(M, D).

Probz∈Zm{E(fz,W ) − E(fW ) ≤ η} ≥ 1 − C1(M, D, r) exp(−c(M, D, r)mη1/r),

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2η} ≥ 1 − C1(M, D, r) exp(−c(M, D, r)mη1/r),

provided r ∈ (0, 1/2), mη1/r ≥ C2(M, D, r).

Proof. This theorem follows from Theorem 2.2, Corollaries 2.1, 2.2, and the chain of in-
equalities

0 ≤ E(fz,W ) − E(fW ) = E(fz,W ) − Ez(fz,W ) + Ez(fz,W ) − Ez(fW ) + Ez(fW ) − E(fW )

≤ E(fz,W ) − Ez(fz,W ) + Ez(fW ) − E(fW ).

We note that we can take in (2.8) η as small as η = Am−1/2 and m−1/2 is the best rate we
can achieve using (2.8). We now prove that in general we cannot estimate E(fz,W )−E(fW )
with better rate than m−1/2.

Proposition 2.1. There exists a constant c > 0, a class W consisting of two functions 1
and −1 such that for every m = 2, 3, . . . there are two measures ρ0 and ρ1 such that for any
estimator fz ∈ W for one of ρ0, ρ1 we have

Probz∈Zm{E(fz) − E(fW ) ≥ m−1/2} ≥ c.
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Proof. Let X = [0, 1], Y = [−1, 1]. For a given m ∈ N we define ρ0, ρ1 as follows. For both
ρ0, ρ1 the ρX is the Lebesgue measure on [0, 1] (the proof below works for any ρX) and for
x ∈ [0, 1] we define

ρ0(1|x) = ρ1(−1|x) = p; ρ0(−1|x) = ρ1(1|x) = 1 − p

with p = (1 + m−1/2)/2. Then

fρ0 = m−1/2; fρ1 = −m−1/2

and
(fρ0)W = 1; (fρ1)W = −1.

Let z = ((x1, y1), . . . , (xm, ym)) =: (x, y), x = (x1, . . . , xm), y = (y1, . . . , ym). For a fixed
x ∈ Xm we will prove the lower estimate for the probability in Y m. For a subset e ⊂
{1, . . . , m} we denote by χe the vector y = (y1, . . . , ym) such that yj = 1 for j ∈ e and
yj = −1 otherwise. For a given estimator fz consider the following two sets

E1 := {e ⊂ {1, . . . , m} : fz = 1 if z = (x, χe)},
E−1 := {e ⊂ {1, . . . , m} : fz = −1 if z = (x, χe)}.

Then for the measure ρ0 we have

E(fz) − E((fρ0)W ) = 0 for z = (x, χe), e ∈ E1

E(fz) − E((fρ0)W ) = 4m−1/2 for z = (x, χe), e ∈ E−1.

Similarly for the measure ρ1 we have

E(fz) − E((fρ1)W ) = 4m−1/2 for z = (x, χe), e ∈ E1

E(fz) − E((fρ1)W ) = 0 for z = (x, χe), e ∈ E−1.

The probability of realization of y = χe in the case of measure ρ0 is equal to p|e|(1−p)m−|e|

and in the case of measure ρ1 is equal to pm−|e|(1 − p)|e|. Therefore in the case of ρ0 we
have

Proby∈Y m{E(fz) − E((fρ0)W ) = 4m−1/2} =
∑

e∈E−1

p|e|(1 − p)m−|e|

and in the case of ρ1

Proby∈Y m{E(fz) − E((fρ1)W ) = 4m−1/2} =
∑
e∈E1

pm−|e|(1 − p)|e|

We will prove that for p = (1 + m−1/2)/2 we have

(2.9) Σ :=
∑

e∈E−1

p|e|(1 − p)m−|e| +
∑
e∈E1

pm−|e|(1 − p)|e| ≥ c1 > 0
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with absolute constant c1. This implies Proposition 2.1. We restrict summation in both
sums from (2.9) to those e with m/2 − m1/2 ≤ |e| ≤ m/2 + m1/2. For such an e we have

p|e|(1 − p)m−|e| = 2−m(1 + m−1/2)|e|(1 − m−1/2)m−|e|

≥ 2−m(1 − m−1)m/2(1 − m−1/2)2m1/2 ≥ c22−m.

Therefore,
Σ ≥ c22−m

∑
|m/2−k|≤m1/2

Ck
m ≥ c1 > 0.

We note that Proposition 2.1 is based on a probabilistic argument for ρ(y|x) and reflects
the fact that saturation of the error estimate at the level m−1/2 is due to the probabilistic
feature of the problem. We will show in the following proposition that the corresponding
lower estimate in the case r ∈ (0, 1/2] can be obtained for the Dirac measure ρ(y|x). Thus
in this case (r ∈ (0, 1/2]) the lower estimate is entailed by the deterministic (in a certain
sense) feature of the problem.

Proposition 2.2. For any r ∈ [0, 1/2] and for every m ∈ N there is W ⊂ U(L∞([0, 1])
satisfying εn(W, L∞) ≤ n−r for n ∈ N such that for every estimator fz ∈ W there is a ρ
such that

Probz∈Zm{E(fz) − E((fρ)W ) ≥ m−r/4} ≥ 1/7.

Proof. Let as above X = [0, 1], Y = [−1, 1], ρX is the Lebesgue measure on [0, 1]. Define

Γ = {γ = (γ1, . . . , γ2m) : γi ∈ {1,−1} (i = 1, . . . , 2m)}.

For γ ∈ Γ, x ∈ [0, 1) let
gγ(x) = γ[2mx+1],

fγ(x) = gγ(x)[2mx + 1]−r/2,

where [u] is the greatest integer not exceeding u. Let W = {fγ : γ ∈ Γ}. For any n ∈ N,
n ≤ 2m, we can find Γn ⊂ Γ so that #Γn = 2n and

{(γ1, . . . , γn) : γ ∈ Γn} = {1,−1}n.

This means that for every γ ∈ Γ there is γ̃ ∈ Γn such that γi = γ̃i for i = 1, . . . , n and thus,

‖fγ − fγ̃‖∞ ≤ (n + 1)−r.

Therefore, εn(W, L∞) ≤ n−r as required.
We will consider a set of probability measures ρ. It will be convenient for us to use a

probabilistic interpretation of this set of measures. Assume that fρ is equal to one of the
functions gγ, γ ∈ Γ, with equal probability. So, for each γ ∈ Γ

Prob{fρ = gγ} = 2−2m.
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We define ρ(y|x) as the Dirac measure: yi = fρ(xi). Clearly, if fρ = gγ then (fρ)W = fγ .
For every estimator fz = fγ(z) we have for the i such that γi(z) 
= γi,

(fz(x) − fρ(x))2 − ((fρ)W (x) − fρ(x))2

=
(
1 + i−r/2

)2 − (
1 − i−r/2

)2 = 2i−r,

where [2mx + 1] = i. Therefore,

(2.10) E(fz) − E((fρ)W ) =
∑

i:γi(z)�=γi

1
m

i−r.

It is easy to conclude from here that always

(2.11) |E(fz) − E((fρ)W )| ≤
2m∑
i=1

1
m

i−r.

Denote
I(z) := {[2mxj + 1] : j = 1, . . . , m}.

If [2mxj + 1] = i, then γi = yj . Thus, for i ∈ I(z) the value γi is determined, and it is
natural to consider γi(z) = γi. However, for i 
∈ I(z) the probability that γi(z) 
= γi is 1/2.
Hence, by (2.10),

E (E(fz) − E((fρ)W )|z) =
1
2

∑
i�∈I(z)

1
m

i−r.

Next, for every i ∈ {1, . . . , 2m} the probability of the event i 
∈ I(z) is equal to (1 −
1/(2m))m ≥ 1/2. Therefore,

(2.12) E (E(fz) − E((fρ)W )) ≥ 1
4

2m∑
i=1

1
m

i−r.

By (2.11) and (2.12) we get

Prob{E(fz) − E((fρ)W ) ≥ 1
8

2m∑
i=1

1
m

i−r} ≥ 1
7
.

Taking into account that

2m∑
i=1

1
m

i−r >
1
m

∫ 2m+1

1

u−rdu >
(2m)1−r

m(1 − r)
> 2m−r

we complete the proof of the proposition.
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3. Estimating E(fz) − E(fρ)

We will now impose some extra restrictions on W and will get in return better estimates
for E(fz) − E(fρ). We begin with the one from [CS] (see Theorem C∗ and Remark 13).

Theorem 3.1 [CS]. Suppose that either W is a compact and convex subset of C(X) or W
is a compact subset of C(X) and fρ ∈ W . Assume that ρ, W satisfy (1.5). Then, for all
ε > 0

Probz∈Zm{E(fz,W ) − E(fW ) ≤ ε} ≥ 1 − N(H, ε/(24M))2 exp(− mε

288M2
).

We will need the following theorem from [DKPT] in a style of Theorem 3.1.

Theorem 3.2 [DKPT]. Let W be a compact subset of C(X). Assume that ρ, W satisfy
(1.5). Then, for all ε > 0

Probz∈Zm{E(fz,W ) − E(fW ) ≤ ε} ≥ 1 − N(H, ε/(24M))2 exp(− mε

C(M, R)
)

under assumption E(fW ) − E(fρ) ≤ Rε.

The following theorem from [DKPT] is essentially contained in [CS].

Theorem 3.3 [CS], [DKPT]. Assume that ρ, W satisfy (1.1) and (1.5). Suppose that
either W is convex or fρ ∈ W . Then for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+r } ≥ 1 − exp(−c(M)Am

1
1+r ).

We prove here in the case fρ ∈ W a stronger estimate than in the above theorem.

Theorem 3.4. Let fρ ∈ W and let ρ, W satisfy (1.1) and (1.5). Then there exists an
estimator fz such that for A ≥ A0(M, D, r)

Probz∈Zm{E(fz) − E(fρ) ≤ 2Am− 2r
1+2r } ≥ 1 − exp(−c(M)Am

1
1+2r ).

Proof. We have assumed that W is such that

εn(W ) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C).

Then

(3.1) N(W, ε) ≤ 2(D/ε)1/r+1.

We choose ε = Am− 2r
1+2r and define Vε to be a ε1/2-net of W in the C norm. Then by

(3.1)
|Vε| ≤ 2(D2/ε)1/(2r)+1.
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We construct an estimator for fρ ∈ W by

fz,Vε
= arg min

f∈Vε

Ez(f).

We now estimate E(fz,Vε
) − E(fρ). Let f∗ ∈ Vε be such that

‖fρ − f∗‖C ≤ ε1/2 ≤ A1/2m− r
1+2r .

Then

(3.2) E(f∗) − E(fρ) =
∫

X

(f∗(x) − fρ(x))2dρX ≤ Am− 2r
1+2r .

In particular, this implies that E(fVε
) − E(fρ) ≤ Am− 2r

1+2r = ε. We have

0 ≤ E(fz,Vε
) − E(fρ) = E(fz,Vε

) − E(f∗) + E(f∗) − E(fρ).

Next,

E(fz,Vε
) − E(f∗) = E(fz,Vε

) − E(fVε
) + E(fVε

) − E(f∗) ≤ E(fz,Vε
) − E(fVε

).

Taking into account the choice of ε = Am− 2r
1+2r and E(fVε

) − E(fρ) ≤ ε we get from
Theorem 3.2 for A > A0(M, D, r)

(3.3) Probz∈Zm{E(fz,Vε
) − E(f∗) ≤ Am− 2r

1+2r }
≥ 1 − exp(−c(M)Am

1
1+2r ).

Using (3.2) we obtain from here

(3.4) Probz∈Zm{E(fz,Vε
) − E(fρ) ≤ 2Am− 2r

1+2r }
≥ 1 − exp(−c(M)Am

1
1+2r ).

This completes the proof of Theorem 3.4.

Remark 3.1. The above proof of Theorem 3.4 works also in a little more general situation.
Assume instead of (1.1) that W satisfies

(3.5) εn(W ) ≤ D((lnn)b/n)r, n = 2, 3, . . . , W ⊂ DU(C).

Then similarly to Theorem 3.4 we obtain that there exists an estimator fz such that for
A ≥ A0(M, D, r, b)

(3.6) Probz∈Zm{E(fz) − E(fρ) ≤ 2A((lnm)b/m)
2r

1+2r }
≥ 1 − exp(−c(M)Am

1
1+2r (lnm)

2br
1+2r ), m = 2, 3, . . . .

We compare Theorem 3.4 with two theorems from [DKPT]. Let us assume that W satisfies
the following estimates for the Kolmogorov widths (see (1.2))

(3.7) dn(W, C) ≤ Kn−r, n = 1, 2, . . . ; W ⊂ KU(C).

Then by Carl’s [C] inequality

(3.8) εn(W ) ≤ Dn−r, n = 1, 2, . . . .

Therefore, for this class we have the estimate as above in Theorem 3.4. Thus Theorem 3.4
gives a slightly better estimate that in the following theorem from [DKPT]. However, we
point out that the constructions of estimators that provide the corresponding error estimates
are different. It seems that the construction from [DKPT] is simpler.
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Theorem 3.5 [DKPT]. Let fρ ∈ W and let ρ, W satisfy (1.2) and (1.5). Then there
exists an estimator fz such that for A ≥ A0(M, K, r)

Probz∈Zm{E(fz) − E(fρ) ≤ CK2A(lnm/m)
2r

1+2r } ≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

We now proceed to imposing extra conditions on W in terms of nonlinear approximation.
We begin with the definition of nonlinear Kolmogorov’s (N, n)-width (see [T5]):

dn(F, B, N) := inf
LN ,#LN≤N

sup
f∈F

inf
L∈LN

inf
g∈L

‖f − g‖B,

where LN is a set of at most N n-dimensional subspaces L. It is clear that

dn(F, B, 1) = dn(F, B).

The new feature of dn(F, B, N) is that we allow to choose a subspace L ∈ LN depending on
f ∈ F . It is clear that the bigger N the more flexibility we have to approximate f . It turns
out that from the point of view of our applications the following case

N � nan,

where a > 0 is a fixed number, plays an important role.
Let us assume that W satisfies the following estimates for the nonlinear Kolmogorov

widths

(3.9) dn(W, C, nan) ≤ Kn−r, n = 1, 2, . . . ; W ⊂ KU(C).

Then by [T5]
εn(W )C ≤ C(r)K(lnn/n)r, n = 2, 3, . . . .

For this class we have the estimate (3.6). It is clear that a class satisfying (3.9) is wider
than the class satisfying (1.2). The following result has been obtained in [DKPT].

Theorem 3.6 [DKPT]. Let fρ ∈ W and let ρ, W satisfy (1.5) and (3.9). Then there
exists an estimator fz such that for A ≥ A0(M, K, r)

Probz∈Zm{E(fz) − E(fρ) ≤ CK2A(lnm/m)
2r

1+2r } ≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

4. Estimating Ez(fz) − E(fρ)

The following theorem is essentially contained in [CS].

Theorem 4.1 [CS]. Assume that ρ, W satisfy (1.1) and (1.5). Then for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

First, we discuss estimates that follow directly from the results of Section 2. Theorem
2.4 implies the following estimates.
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Theorem 4.2. Let ρ, W satisfy (1.1) and (1.5). Then for A ≥ A0(M, D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ A(lnm/m)1/2} ≥ 1 − C(M, D, r)m−c(M)A,

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2A(lnm/m)1/2} ≥ 1 − C(M, D, r)m−c(M)A,

provided r > 1/2,

Probz∈Zm{E(fz,W ) − E(fW ) ≤ A((lnm)3/m)1/2} ≥ 1 − C(M, D)m−c(M,D)A,

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2A((lnm)3/m)1/2} ≥ 1 − C(M, D)m−c(M,D)A,

provided r = 1/2,

Probz∈Zm{E(fz,W ) − E(fW ) ≤ A(lnm/m)r} ≥ 1 − C(M, D, r)m−c(M,D,r)A,

Probz∈Zm{|Ez(fz,W ) − E(fW )| ≤ 2A(lnm/m)r} ≥ 1 − C(M, D, r)m−c(M,D,r)A,

provided r ∈ (0, 1/2].

Second, we discuss estimates that can be obtained by combining results from Section 3
with results from Section 2.

Theorem 4.3. Let fρ ∈ W and let ρ, W satisfy (1.1) and (1.5). Then there exists an
estimator fz such that for A ≥ A0(M, D, r) ≥ 2

(4.1) Probz∈Zm{E(fz) − E(fρ) ≤ 2Am− 2r
1+2r } ≥ 1 − exp(−c(M)Am

1
1+2r ).

Also

(4.2) Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 3A(lnm/m)1/2} ≥ 1 − C(M, D, r)m−c(M)A2
,

provided r > 1/2,

(4.3) Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 3A((lnm)3/m)1/2} ≥ 1 −C(M, D)m−c(M,D)(A/ log A)2 ,

provided r = 1/2,

(4.4) Probz∈Zm{|Ez(fz)−E(fρ)| ≤ 4A(lnm)1/2m− 2r
1+2r } ≥ 1−C(M, D, r)m−c(M,D,r)A1+ 1

2r ,

for m ≥ C(A, M) provided r ∈ (0, 1/2).

Proof. Theorem 3.4 provides an estimator fz ∈ W that satisfies (4.1). We will prove (4.2)
and (4.3) for any estimator fz ∈ W satisfying (4.1). First, we consider the case r > 1/2.
We use Theorem 2.2 with η = A(lnm/m)1/2 applied to the class W . Then we obtain

(4.5) |Ez(fz) − E(fz)| ≤ A(lnm/m)1/2
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with probability at least 1 −C(M, D, r)m−c(M)A2
. Combining (4.1) and (4.5) we get (4.2).

Second, we consider the case r = 1/2. We use Corollary 2.1 with η = A((lnm)3/m)1/2

applied to the class W . Then we obtain

(4.6) |Ez(fz) − E(fz)| ≤ A((lnm)3/m)1/2

with probability at least 1−C(M, D, r)m−c(M,D)(A/ log A)2 for A ≥ 2. Combining (4.1) and
(4.6) we get (4.3).

We proceed to the case r ∈ (0, 1/2). Contrary to the above two cases we will use a specific
form of the estimator fz from Theorem 3.4. The estimator fz from Theorem 3.4 is

fz := fz,Vε
= arg min

f∈Vε

Ez(f)

where Vε is a ε1/2-net of W in the C norm, ε = Am− 2r
1+2r . We now estimate Lz(fz). We note

that Vε ⊂ W and therefore for all ε the set Vε satisfies (1.1) (with D replaced by 2D) if W

satisfies (1.1). We use Corollary 2.3 with η = A(lnm)1/2m− 2r
1+2r , δ = ε1/2 = A1/2m− r

1+2r

applied to the compact Vε. Then for m ≥ C(M, A) we have δ ≥ η/(8M) and mη2δ
1
r −2 ≥

C1(M, D, r). Using Corollary 2.3 we obtain

(4.7) |Ez(fz) − E(fz)| ≤ 2A(lnm)1/2m− 2r
1+2r

with probability at least 1−C(M, D, r)m−c(M,D,r)A1+ 1
2r . Combining (4.1) and (4.7) we get

(4.4).
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