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1. Introduction

We discuss in this paper some mathematical aspects of supervised learning theory. Su-
pervised learning, or learning-from-examples, refers to a process that builds on the base of
available data of inputs xi and outputs yi, i = 1, . . . , m, a function that best represents
the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y . The central
question is how well this function estimates the outputs for general inputs. The standard
mathematical framework for the setting of the above learning problem is the following ([CS],
[PS]).

Let X ⊂ R
d, Y ⊂ R be Borel sets and let ρ be a Borel probability measure on Z = X×Y .

For f : X → Y define the error

E(f) := Eρ(f) :=
∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and ρX - the
marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S × Y )). Define

fρ(x) :=
∫

Y

ydρ(y|x).

The function fρ is known in statistics as the regression function of ρ. It is clear that fρ

minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤ E(f), f ∈ L2(ρX). Thus, in the sense
of error E(·) the regression function fρ is the best to describe the relation between inputs
x ∈ X and outputs y ∈ Y . Now, our goal is to find an estimator fz, on the base of given data
z = ((x1, y1), . . . , (xm, ym)) that approximates fρ well with high probability. We assume
that (xi, yi), i = 1, . . . , m are independent and distributed according to ρ. There are several
important ingredients in mathematical formulation of this problem. In our formulation we
follow the way that has become standard in approximation theory and based on the concept
of optimal method. A classical example of such a setting is the concept of the Kolmogorov
width. Kolmogorov’s n-width for centrally symmetric compact set F in Banach space B is
defined as follows

dn(F,B) := inf
L

sup
f∈F

inf
g∈L

‖f − g‖B

1
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where infL is taken over all n-dimensional subspaces of B. In other words the Kolmogorov
n-width gives the best possible error in approximating a compact set F by n-dimensional
linear subspaces. So, first of all we need to make an assumption on the unknown function
fρ. Following the approximation theory approach we make this assumption in the form
fρ ∈ W , where W is a given class of functions. For instance, we may assume that fρ has
some smoothness. The next step is to find an algorithm for constructing an estimator fz

that is optimal for the class W . By optimal we mean the one that provides the minimal error
‖f −fz‖ for all f ∈ W with high probability. A problem of optimization is naturally broken
into two parts: upper estimates and lower estimates. We discuss only upper estimates in
this paper. In order to prove upper estimates we need to decide what should be the form of
an estimator fz. In other words we need to specify the hypothesis space H (see [CS], [PS])
where an estimator fz comes from. We may also call H an approximation space.

The next question is how to build fz ∈ H. In Section 2 we will discuss the method that
takes

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

is the empirical error of f . This fz,H is called the empirical optimum. Section 2 contains a
discussion of known results from [CS] and some new results. Proofs of new results in Section
2 are based on the technique developed in [CS].

In Section 3 we assume that ρ is an absolutely continuous measure with density µ(x):
dρ = µdx. We study estimation of a new function fµ := fρµ instead of regression function
fρ. As a part of motivation of this new setting we discuss one practical example from finance.
Let x = (x1, . . . , xd) ∈ R

d be information that is used by a bank to decide to give or not
to give a mortgage to a client. For instance, x1 - income, x2 - home value, x3 - mortgage
value, x4 - interest rate. Let y be the total profit (loss if negative) that the bank gains from
this mortgage. Then fρ(x) stands for the expected (average) profit of the bank from clients
with the same information x. A clear goal of the bank is to find S ⊂ R

d that maximizes
∫

S

fρ(x)dρX .

Obviously, such S is given by
So = {x : fρ(x) ≥ 0}.

The mathematical question in this regard is how to utilize the available data
z = ((x1, y1), . . . , (xm, ym)) to find an empirical Sz that gives a good approximation to∫

So
fρ(x)dρX .

We suggest the following way to solve this problem. Assume that dρX = µdx and denote
fµ := fρµ. Then ∫

S

fρ(x)dρX =
∫

S

fµ(x)dx.
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So, we look for an estimator for fµ instead of fρ. In the above example it is sufficient to
estimate ‖fµ − fz‖L1 . Suppose we have found fz such that

Probz∈Zm{‖fµ − fz‖L1 ≤ ε} ≥ 1 − δ.

Define
Sz := {x : fz(x) ≥ 0}.

Then with the above estimate on the probability we have

∫
Sz

fρ(x)dρX =
∫

Sz

fµ(x)dx ≥
∫

Sz

fz(x)dx − ε

≥
∫

So

fz(x)dx − ε ≥
∫

So

fρ(x)dρX − 2ε.

Therefore, the empirical set Sz provides an optimal profit within an error 2ε with probability
≥ 1 − δ.

In the above example it was convenient to measure the error in the L1 norm. However,
it is usually simpler to estimate the L2 error of approximation. We note that

‖f‖L1 ≤ (mes X)1/2‖f‖L2 , and ‖f‖L1(ρX) ≤ ‖f‖L2(ρX).

We impose different assumptions on the unknown function fρ in Sections 2 and 3: in
Section 2 we assume fρ ∈ W and in Section 3 we assume fρµ ∈ W . It is clear that if µ(x)
is a nice smooth function then for many smoothness classes W we have fρ ∈ W ⇒ fµ ∈ W .
However, if µ is a ”rough” function then the assumption fρ ∈ W may be more appropriate.

Let us now discuss one more important issue. First, we remind the general scheme that
we follow in constructing an estimator fz. We begin with a function class W . Then, utilizing
the optimal method approach we look for an estimator that provides good estimation for
the class W . In some examples considered in Section 2 we choose a hypothesis space H
where fz comes from depending on the class W . It is a weak point of the above approach.
In many cases we do not know exactly the class W . However, we may know a collection
W of classes where our unknown class W belongs. Say, if we are thinking about W in
terms of Sobolev smoothness classes we may take as W the collection of all Sobolev classes
with smoothness from a certain range. We now modify the optimal method setting to the
universal method setting. In this setting a collection W of classes is given and we need
to find a procedure for constructing an estimator fz in such a way that if f ∈ W ∈ W
then ‖f − fz‖ is close to the optimal error for the class W . In approximation theory this
approach is known under the name of universal method (see [T1–T4]). We would like to
build a universal estimator fz for a given collection W of classes. In Sections 2 and 3 we
address this issue. We use different ideas in constructing universal estimators. In particular,
the well known in nonlinear approximation theory and statistics the thresholding algorithm
provides such a universal estimator for a collection of classes with finite smoothness.
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By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
positive constants that are determined by their arguments. We often have error estimates
of the form (lnm/m)α that hold for m ≥ 2. We could write these estimates in the form,
say, (ln(m + 1)/m)α to make them valid for all m ∈ N. However, we use the first variant
throughout the paper for the following two reasons: simpler notations, we are looking for
the asymptotic behavior of the error.

2. Estimating fρ

Let ρ be a Borel probability measure on Z = X × Y . If ξ is a random variable (a real
valued function on a probability space Z) then denote

E(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

The following proposition gives a relation between E(f) − E(fρ) and ‖f − fρ‖L2(ρX).

Proposition 2.1 [CS]. For every f : X → Y

E(f) − E(fρ) =
∫

X

(f(x) − fρ(x))2dρX .

We define the empirical error of f :

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2.

Let f : X → Y . The defect function of f is

Lz(f) := Lz,ρ(f) := E(f) − Ez(f); z = (z1, . . . , zm), zi = (xi, yi).

Theorem A [CS]. Let M > 0 and f : X → Y be such that |f(x)− y| ≤ M a.e. Then, for
all ε > 0

(2.1) Probz∈Zm{|Lz(f)| ≤ ε} ≥ 1 − 2 exp(− mε2

2(σ2 + M2ε/3)
),

where σ2 := σ2((f(x) − y)2).

This theorem is a direct corollary of the Bernstein inequality: If |ξ(z) − E(ξ)| ≤ M a.e.
Then for any ε > 0

Probz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp(− mε2

2(σ2(ξ) + Mε/3)
).
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Taking ξ(z) := (f(x) − y)2 and noting that E(ξ) = E(f) we get (2.1).
Let X be a compact subset of R

d. Denote C(X) the space of functions continuous on X
with the norm

‖f‖∞ := sup
x∈X

|f(x)|.

The paper [CS] indicates importance of a characteristic of a class W closely related to the
concept of entropy numbers. For a compact subset W of a Banach space B we define the
entropy numbers as follows

εn(W,B) := inf{ε : ∃f1, . . . , f2n ∈ W : W ⊂ ∪2n

j=1(fj + εU(B))}
where U(B) is the unit ball of Banach space B. We denote N(W, ε,B) the covering number
that is the minimal number of balls of radius ε needed for covering W . In this paper in the
most cases we take as a Banach space B the space C := C(X) of continuous functions on a
compact X ⊂ R

d. We use the abbreviated notations

N(W, ε) := N(W, ε, C); εn(W ) := εn(W, C).

Theorem B [CS]. Let W be a compact subset of C(X). Assume that for all f ∈ W ,
f : X → Y is such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

(2.2) Probz∈Zm{ sup
f∈W

|Lz(f)| ≤ ε} ≥ 1 − N(W, ε/(8M))2 exp(− mε2

2(σ2 + M2ε/3)
).

Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2).

We will give a proof of this theorem for completeness. We use the following simple
relation.

Proposition 2.2 [CS]. If |fj(x) − y| ≤ M a.e. for j = 1, 2, then

|Lz(f1) − Lz(f2)| ≤ 4M‖f1 − f2‖∞.

In the proof of this proposition we use

|(f1(x) − y)2 − (f2(x) − y)2| ≤ 2M‖f1 − f2‖∞.

Proof of Theorem B. Let f1, . . . , fN be the ε/(8M)-net of W , N := N(W, ε/(8M)). Then
for any f ∈ W there is an fj such that ‖f − fj‖∞ ≤ ε/(8M) and by Proposition 2.2

|Lz(f) − Lz(fj)| ≤ ε/2.

Therefore, |Lz(f)| ≥ ε implies that there is a j ∈ [1, N ] such that |Lz(fj)| ≥ ε/2, and

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ ε} ≤
N∑

j=1

Probz∈Zm{|Lz(fj)| ≥ ε/2} ≤ 2N exp(− mε2

8(σ2 + M2ε/6)
).

Denote by fH a function from H that minimizes the error E(f):

fH = arg min
f∈H

E(f).
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Theorem C [CS]. Let H be a compact subset of C(X). Assume that for all f ∈ H,
f : X → Y is such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

Probz∈Zm{E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(8M))2 exp(− mε2

8(4σ2 + M2ε/3)
).

Here σ2 := σ2(H) := supf∈H σ2((f(x) − y)2).

This theorem follows from Theorem B and the chain of inequalities

0 ≤ E(fz,H) − E(fH) = E(fz,H) − Ez(fz,H) + Ez(fz,H) − Ez(fH) + Ez(fH) − E(fH)

≤ E(fz,H) − Ez(fz,H) + Ez(fH) − E(fH).

Assume W is such that

(2.3) εn(W ) ≤ C1n
−r, n = 1, 2, . . . , W ⊂ C1U(C).

Then

(2.4) N(W, ε) ≤ 2(C2/ε)1/r

.

Substituting this in Theorem C and optimizing over ε we get for ε = Am− r
1+2r , A ≥ A0(M, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

We have proved the following theorem that is essentially contained in [CS].

Theorem 2.1. Assume that W is such that

εn(W ) ≤ C1n
−r, n = 1, 2, . . . , W ⊂ C1U(C).

Then for A ≥ A0(M, r)

(2.5) Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − exp(−c(M)A2m

1
1+2r ).

We will now impose some extra restictions on W and will get in return better estimates
for E(fz) − E(fW ). We begin with the one from [CS] (see Theorem C∗ and Remark 13).

Theorem C∗ [CS]. Suppose that either H is a compact and convex subset of C(X) or H
is a compact subset of C(X) and fρ ∈ H. Assume that for all f ∈ H, f : X → Y is such
that |f(x) − y| ≤ M a.e. Then, for all ε > 0

Probz∈Zm{E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(24M))2 exp(− mε

288M2
).

We will need the following theorem in a style of Theorem C∗.
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Theorem D. Let H be a compact subset of C(X). Assume that for all f ∈ H, f : X → Y
is such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

Probz∈Zm{E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(24M))2 exp(− mε

C(M,K)
)

under assumption E(fH) − E(fρ) ≤ Kε.

Proof. The proof is similar to the proof of Theorem C∗ from [CS]. We will only point out
the difference of the proofs. In the proof of Theorem C∗ the convexity assumption is used
to prove the following lemma.

Lemma 2.1 [CS]. Let H be a convex subset of C(X) such that fH exists. Then for all
f ∈ H

‖f − fH‖2
L2(ρX) ≤ E(f) − E(fH).

We use the assumption E(fH)−E(fρ) ≤ Kε instead of convexity and we use the following
lemma instead of Lemma 2.1.

Lemma 2.2. For any f we have

‖f − fH‖2
L2(ρX) ≤ 2(E(f) − E(fH) + 2‖fH − fρ‖2

L2(ρX)).

Proof. We have

‖f − fH‖L2(ρX) ≤ ‖f − fρ‖L2(ρX) + ‖fρ − fH‖L2(ρX).

Next,
‖f − fρ‖2

L2(ρX) = E(f) − E(fρ) = E(f) − E(fH) + E(fH) − E(fρ).

Combining the above two relations we get

‖f − fH‖2
L2(ρX) ≤ 2(‖f − fρ‖2

L2(ρX) + ‖fH − fρ‖2
L2(ρX))

≤ 2(E(f) − E(fH) + 2‖fH − fρ‖2
L2(ρX)).

Thus instead of Lemma 2.1 we use the inequality

‖f − fH‖2
L2(ρX) ≤ 2(E(f) − E(fH) + 2Kε)

in the proof of Theorem D.
The following theorem is essentially contained in [CS].
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Theorem 2.2. Assume that W satisfies (2.3). Suppose that either W is convex or fρ ∈ W .
Then for A ≥ A0(M, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+r } ≥ 1 − exp(−c(M)Am

1
1+r ).

The proof of this theorem repeats the proof of Theorem 2.1 with the following changes:
we set ε = Am− r

1+r and use Theorem C∗ to estimate E(fz,W ) − E(fW ).
We continue to consider classes satisfying a stronger assumption than (2.3). We first use

the concept of the Kolmogorov width to impose an extra condition on W . Let us assume
that W satisfies the following estimates for the Kolmogorov widths

(2.6) dn(W, C) ≤ C1n
−r, n = 1, 2, . . . ; W ⊂ C1U(C).

Then by Carl’s [C] inequality

εn(W ) ≤ C2n
−r, n = 1, 2, . . . .

Therefore, for this class we have the estimate (2.5) as above in Theorem 2.1. We will prove
a better estimate than (2.5).

Theorem 2.3. Let fρ ∈ W and let W satisfy (2.6). Then there exists an estimator fz such
that for A ≥ A0(M, r)

(2.7) Probz∈Zm{E(fz) − E(fρ) ≤ CA(ln m/m)
2r

1+2r } ≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Proof. Let a sequence {Ln} be a sequence of optimal (near optimal) subspaces for W ,
dimLn = n. Then for any f ∈ W there is a ϕn ∈ Ln such that ‖f − ϕn‖∞ ≤ C1n

−r.
It is clear that ‖ϕn‖∞ ≤ 2‖f‖∞ ≤ 2C1. We now consider in place of W from the above
argument that gave Theorem 2.1 the set Vn := 2C1U(C) ∩ Ln. In other words we take as a
hypothesis space the set Vn. Then it is well known that

N(Vn, ε) ≤ (C3/ε)n.

We construct an estimator for fρ ∈ W by

fz,Vn = arg min
f∈Vn

Ez(f).

Choosing ε = A(lnm/m)
2r

1+2r and n = [ε−1/(2r)] + 1 we now estimate E(fz,Vn) − E(fρ). Let
f∗ ∈ Vn be such that

‖fρ − f∗‖∞ ≤ C1n
−r ≤ CA1/2(lnm/m)

r
1+2r .

Then

(2.8) E(f∗) − E(fρ) =
∫

X

(f∗(x) − fρ(x))2dρX ≤ C2A(ln m/m)
2r

1+2r .
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We have
0 ≤ E(fz,Vn) − E(fρ) = E(fz,Vn) − E(f∗) + E(f∗) − E(fρ).

Next,

E(fz,Vn) − E(f∗) = E(fz,Vn) − E(fVn) + E(fVn) − E(f∗) ≤ E(fz,Vn) − E(fVn).

Taking into account the choice of ε = A(lnm/m)
2r

1+2r and n = [ε−1/(2r)] + 1 we get from
Theorem C∗ for A > A0(M, r)

(2.9) Probz∈Zm{E(fz,Vn) − E(f∗) ≤ A(lnm/m)
2r

1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Using (2.8) we obtain from here

(2.10) Probz∈Zm{E(fz,Vn) − E(fρ) ≤ (1 + C2)A(lnm/m)
2r

1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

This completes the proof of Theorem 2.3.

We now proceed to imposing extra conditions on W in terms of nonlinear approximation.
We begin with the definition of nonlinear Kolmogorov’s (N,n)-width (see [T5]):

dn(F,B,N) := inf
LN ,#LN≤N

sup
f∈F

inf
L∈LN

inf
g∈L

‖f − g‖B,

where LN is a set of at most N n-dimensional subspaces L. It is clear that

dn(F,B, 1) = dn(F,B).

The new feature of dn(F,B,N) is that we allow to choose a subspace L ∈ LN depending on
f ∈ F . It is clear that the bigger N the more flexibility we have to approximate f . It turns
out that from the point of view of our applications the following case

N � nan,

where a > 0 is a fixed number, plays an important role.
Let us assume that W satisfies the following estimates for the nonlinear Kolmogorov

widths

(2.11) dn(W, C, nan) ≤ C1n
−r, n = 1, 2, . . . ; W ⊂ C1U(C).

Then by [T5]
εn(W )∞ ≤ C2(lnn/n)r, n = 2, 3, . . . .

For this class we have the estimate similar to (2.5) from above with m replaced by m/ ln m.
It is clear that a class satisfying (2.11) is wider than a class satisfying dn(W, C) ≤ C1n

−r.
We will prove an estimate for W satisfying (2.11) similar to (2.7).
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Theorem 2.4. Let fρ ∈ W and let W satisfy (2.11). Then there exists an estimator fz

such that for A ≥ A0(M, r, a)

Probz∈Zm{E(fz) − E(fρ) ≤ CA(lnm/m)
2r

1+2r } ≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Proof. Denote for a given n a collection of Nn := [nan] optimal for W subspaces by
L1

n, . . . , LNn
n , dimLj

n = n. Then for any f ∈ W there are a j(f) ∈ [1, Nn] and a ϕn ∈ L
j(f)
n

such that ‖f − ϕn‖∞ ≤ C1n
−r. It is clear that ‖ϕn‖∞ ≤ 2‖f‖∞ ≤ 2C1. We now consider

the following set
Un := ∪Nn

j=1V
j
n , V j

n := 2C1U(C) ∩ Lj
n.

Then it is clear that
N(Un, ε) ≤ Nn(C3/ε)n.

We construct an estimator for fρ ∈ W by

fz,Un = arg min
f∈Un

Ez(f).

Choosing ε = A(ln m/m)
2r

1+2r and n = [ε−1/(2r)] + 1 we now estimate E(fz,Un) − E(fρ). Let
f∗ ∈ Un be such that

‖fρ − f∗‖∞ ≤ C1n
−r ≤ C1A

1/2(lnm/m)
r

1+2r .

Then

(2.12) E(fUn) − E(fρ) ≤ E(f∗) − E(fρ) =
∫

X

(f∗(x) − fρ(x))2dρX ≤ C2
1A(lnm/m)

2r
1+2r .

We have
0 ≤ E(fz,Un) − E(fρ) = E(fz,Un) − E(fUn) + E(fUn) − E(fρ).

Taking into account that fz,Un ∈ Un, E(fUn) − E(fρ) ≤ C2
1 ε,

N(V j
n , ε) ≤ (C3/ε)n, j ∈ [1, Nn],

and the choice of ε = A(lnm/m)
2r

1+2r and n = [ε−1/(2r)] + 1 we get from Theorem D

(2.13) Probz∈Zm{E(fz,Un) − E(fUn) ≤ A(lnm/m)
2r

1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ), A ≥ A0(M, r, a).

Using (2.12) we obtain from here

(2.14) Probz∈Zm{E(fz,Un) − E(fρ) ≤ (1 + C2
1 )A(lnm/m)

2r
1+2r }
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≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ), A ≥ A0(M, r, a).

This completes the proof of Theorem 2.4.

Let us discuss an example how Theorem 2.4 may be applied. We will consider n-term
approximations with regard to a given system Ψ. Assume that the system Ψ = {ψj}∞j=1

satisfies the condition:
(VP) There exist three positive constants Ai, i = 1, 2, 3, and a sequence {nk}∞k=1, nk+1 ≤

A1nk, k = 1, 2, . . . such that there is a sequence of the de la Vallée-Poussin type operators
Pk with the properties

Pk(ψj) = λk,jψj ,

λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

‖Pk‖C→C ≤ A3, k = 1, 2, . . . .

Denote

σn(f,Ψ) := inf
k1,...,kn;c1,...,cn

‖f −
n∑

j=1

cjψkj‖∞,

and
σn(W, Ψ) := sup

f∈W
σn(f,Ψ).

Theorem 2.5. Let fρ ∈ W and let W satisfy the following two conditions.

σn(W, Ψ) ≤ C1n
−r, W ⊂ C1U(C(X)).

En(W, Ψ) := sup
f∈W

inf
c1,...,cn

‖f −
n∑

j=1

cjψj‖∞ ≤ C2n
−b,

where Ψ is the (VP)-system. Then there exists an estimator fz such that for A ≥ A0(M, r, b)

Probz∈Zm{E(fz) − E(fρ) ≤ CA(lnm/m)
2r

1+2r } ≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Proof. Define

Ψ(n) := {f : f =
∑
j∈Λ

cjψj , |Λ| ≤ n, Λ ⊂ [1, [nr/b] + 1], ‖f‖∞ ≤ 2C1}.

As an estimator fz we take fz,Ψ(n) with n = [A−1/(2r)(m/ ln m)
1

1+2r ] + 1. For this n we
consider the following family of n-dimensional subspaces:

XΛ := {f : f =
∑
j∈Λ

cjψj , |Λ| = n}, Λ ⊂ [1, [nr/b] + 1].
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Then the total number T of such subspaces satisfies

T ≤
(

[nr/b] + 1
n

)
≤ (nr/b + 1)n ≤ n(r/b+1)n, n ≥ 2.

Thus it remains to apply Theorem 2.4 with a = r/b + 1.

We proceed to construction of universal estimators. Let us begin with a case where we
impose conditions on the class W in a spirit of Kolmogorov’s widths. Denote for a subspace
L

d(W,L) := sup
f∈W

inf
g∈L

‖f − g‖∞.

Let L := {Ln}∞n=1 be a sequence of n-dimensional subspaces of C(X). Denote by W(L, α, β)
a collection of classes W r(L), r ∈ [α, β], satisfying the following relations

d(W r(L), Ln) ≤ C1n
−r, n = 1, 2, . . . ; W r(L) ⊂ C1(U(C(X)).

Theorem 2.6. For a given collection W(L, α, 1/2), α > 0, there exists an estimator fz

such that if fρ ∈ W r(L), r ∈ [α, 1/2] then for A ≥ A0(M,α)

Probz∈Zm{E(fz) − E(fρ) ≤ CA(ln m/m)
2r

1+2r } ≥ 1 − mC1(M)(C2(M)−A).

Proof. We use the notations from the proof of Theorem 2.3. We define an estimator fz by
the formula

fz := fz,Vk

with
k = arg min

1≤n≤m
(Ez(fz,Vn) + An ln m/m).

We will use the following result from [CS] (it is a direct corollary to Proposition 7 from
[CS]).

Lemma 2.3. Let H be a compact and convex subset of C(X). Then for all ε > 0 with
probability at least

1 − N(H,
ε

24M
) exp(− mε

288M2
)

one has for all f ∈ H

E(f) ≤ 2Ez(f) + 2ε − E(fH) + 2(E(fH) − Ez(fH)).

First of all we note that by Bernstein’s inequality

(2.15) Probz∈Zm{E(fH) − Ez(fH) ≤ (A lnm/m)1/2} ≥ 1 − mC3(M)(C4(M)−A).
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Applying Lemma 2.3 with H = Vn, ε = An ln m/m, f = fz,Vn and using that E(fVn) ≥ E(fρ)
we get for n ∈ [1,m]

E(fz,Vn) ≤ 2(Ez(fz,Vn) + An ln m/m) − E(fρ) + 2(A ln m/m)1/2

with probability at least 1 − mC5(M)(C6(M)−A). Therefore,

(2.16) E(fz) ≤ min
n∈[1,m]

2(Ez(fz,Vn) + An ln m/m) − E(fρ) + 2(A lnm/m)1/2.

To estimate the right side we take n = n(r) := [A−1/(2r)(m/ ln m)1/(1+2r)] + 1. We have

Ez(fz,Vn(r)) ≤ Ez(fVn(r)).

Similarly to (2.15) we get

Ez(fVn(r)) ≤ E(fVn(r)) + (A ln m/m)1/2

with probability ≥ 1 − mC3(M)(C4(M)−A). Next, in the same way as we got (2.8) we obtain

E(fVn(r)) ≤ E(fρ) + C2
1A(lnm/m)

2r
1+2r .

Substituting these estimates into (2.16) we get

(2.17) E(fz) ≤ E(fρ) + 2An(r) ln m/m + 2C2
1A(ln m/m)

2r
1+2r + 4(A ln m/m)1/2

with probability ≥ 1 − mC1(M)(C2(M)−A).
This completes the proof of Theorem 2.6.

Some remarks. Let us compare the above new results with known results from [CS].
We will present only the estimates for

(2.18) ε(W, z) := sup
fρ∈W

‖fρ − fz‖2
L2(ρX)

keeping in mind that the estimates hold with high probability in z ∈ Zm.
Under the most general assumption on W in the form (2.3) Theorem 2.2 claims that

there exists an estimator fz with the error

(2.19) ε(W, z) � m− r
1+r .

Now, if we impose an extra assumption on W in the form of decay of the Kolmogorov widths
(2.6) then Theorem 2.3 gives

(2.20) ε(W, z) � (lnm/m)
2r

1+2r .
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This estimate is better than (2.19). In a particular case W = W r
2 the Sobolev class on [0, 1]

one can derive from (2.19) and from known estimates ([BS])

εn(W r
2 , C) � n−r, r > 1/2,

that there exists fz such that

(2.21) ε(W r
2 , z) � m− r

1+r , r > 1/2.

It is known ([K]) that

(2.22) dn(W r
2 , C) � n−r, r > 1/2.

Therefore, by Theorem 2.3 we get

(2.23) ε(W r
2 , z) � (lnm/m)

2r
1+2r , r > 1/2,

what is better than (2.21).
Theorems 2.4 and 2.5 show that the class W r

2 can be replaced by a bigger class with
(2.23) still holding. For instance, we may take W = W r

1 - the Sobolev class defined in the
L1 norm. Then it is known that for r > 1 W r

1 ↪→ W r−1
∞ and for wavelet type system Ψ one

has
σn(W r

1 ,Ψ) � n−r.

Therefore, we have by Theorem 2.5

(2.24) ε(W r
1 , z) � (lnm/m)

2r
1+2r , r > 1.

We also note that the estimate (2.22) is only an existence theorem. We do not know
subspaces that provide approximation in (2.22). Therefore, Theorem 2.3 does not give a
constructive estimator providing (2.23). However, we can use Theorem 2.5 to overcome this
problem. For instance, in the periodic case it is known ([DT]) that

σn(W r
2 , T ) � n−r, r > 1/2,

where T is the trigonometric system. Using this result and the embedding W r
2 ↪→ W

r−1/2
∞

we get by Theorem 2.5

(2.25) ε(W r
2 , z) � (lnm/m)

2r
1+2r , r > 1/2,

As a hypothesis space H one can take here the following set of n-term trigonometric poly-
nomials

H = {f =
∑
k∈Λ

ckeikx, |Λ| ≤ n, Λ ⊂ [−n
2r

2r−1 , n
2r

2r−1 ], ‖f‖∞ ≤ C}

with n � (m/ ln m)
1

1+2r .
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3. Estimating fµ

In this section we assume that ρX is an absolutely continuous measure with density µ(x):
dρX = µdx. We keep the notations from the previous section. Our major goal in this section
is to estimate the function fµ := fρµ instead of the function fρ. In this section we assume
that |y| ≤ M . In the probability estimates we will use the following notations

w(m,A) := C1m
C2(M)(C3(M)−A); w(m,A; r) := C1m

C2(M)(C3(M,r)−A)

w(m,A;B, r) := C1m
C2(M,B)(C3(M,B,r)−A)

where C1 an absolute constant, C2, C3 may depend on M and the indicated parameters.
3.1. Let {ψj} be a uniformly bounded orthonormal basis for L2(X), ‖ψj‖∞ ≤ B. Assume

that fµ ∈ L2(X). Then

fµ =
∞∑

j=1

cjψj ; cj :=
∫

X

fµψjdx.

Denote

Sn(fµ) :=
n∑

j=1

cjψj .

Consider

ĉj := ĉj(z) :=
1
m

m∑
i=1

yiψj(xi).

Then
E(ĉj(z)) =

∫
X

fρ(x)ψj(x)dρX =
∫

X

fµ(x)ψj(x)dx = cj .

Therefore, by Bernstein’s inequality applied to a random variable yψj(x) we obtain

(3.1) Probz∈Zm{|ĉj(z) − cj | ≥ η} ≤ 2 exp(−mη2/C(M,B)).

Assume now that W is a class satisfying the following approximation property: for f ∈ W
one has

(3.2) ‖f −
n∑

j=1

cj(f)ψj‖2 ≤ C1n
−r, cj(f) :=

∫
X

fψjdx.

We define an estimator by the formula

(3.3) f(z,n) :=
n∑

j=1

ĉj(z)ψj .

It is clear that

‖Sn(fµ) − f(z,n)‖2
2 =

n∑
j=1

|ĉj(z) − cj |2.
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We get from (3.1)

Probz∈Zm{|ĉj(z) − cj | ≤ η, j = 1, . . . , n} ≥ 1 − 2n exp(−mη2/C(M,B)).

Using (3.2) we obtain from here

(3.4) Probz∈Zm{‖fµ − f(z,n)‖2 ≤ n1/2η + C1n
−r} ≥ 1 − 2n exp(−mη2/C(M,B)).

Choosing ε = (A lnm/m)
r

1+2r , η = εn−1/2, n = [ε−1/r] + 1 we get from (3.4)

Probz∈Zm{‖fµ − f(z,n)‖2 ≤ (1 + C1)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B, r).

We have proved the following theorem.

Theorem 3.1. Let Ψ be a uniformly bounded orthonormal basis, ‖ψj‖∞ ≤ B. Then for
fµ satisfying (3.2) the estimator f(z,n) defined by (3.3) with n = [(m/(A ln m))

1
1+2r ] + 1

provides

Probz∈Zm{‖fµ − f(z,n)‖2 ≤ (1 + C1)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B, r).

3.2. In the previous subsection we considered the case of general uniformly bounded
orthonormal basis. In this subsection we restrict ourselves to the case µ = 1 (fρ = fµ)
and also impose some additional (or other) assumptions on a basis Ψ and we obtain error
estimates in the Lp-norm. We note that instead of assuming µ = 1 in the arguments that
follow it is sufficient to assume that µ ≤ C with absolute constant C. Then we obtain
the same results for fµ instead of fρ. In order to illustrate new technique we consider a
periodic case with a basis T the trigonometric system {eikx}. Let Vn(x) denote the de la
Vallée-Poussin kernel. We define an estimator for fρ by the formula:

(3.5) fz,V P :=
1
m

m∑
i=1

yi
1
π
Vn(x − xi).

Then for the random variable ξ(y, u) := y 1
πVn(x − u) we obtain

E(ξ) =
1
π

∫ 2π

0

fρ(u)Vn(x − u)dρX =
1
π

∫ 2π

0

fρ(u)Vn(x − u)du =: Vn(fρ)(x).

It is well known that
‖Vn(f)‖∞ ≤ C‖f‖∞.

Also, we have
E(ξ2) ≤ C(M)n.
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Let x(l) = πl/(4n), l = 1, . . . , 8n. By Bernstein’s inequality for each l ∈ [1, 8n] we have

Probz∈Zm{|Vn(fρ)(x(l)) − fz,V P (x(l))| ≥ ε} ≤ 2 exp(− mε2

C(M)n
).

Using the Marcinkiewicz-Zygmund [Z] theorem: for any trigonometric polynomial t of order
N one has

‖t‖∞ ≤ C1 max
1≤k≤4N

|t(kπ/(2N))|

we obtain

(3.6) Probz∈Zm{‖Vn(fρ) − fz,V P ‖∞ ≤ C1ε} ≥ 1 − nC2 exp(− mε2

C(M)n
).

We define the class W r
p (T ) as the set of f that satisfy the estimate:

‖f − Vn(f)‖p ≤ C3n
−r, 1 ≤ p ≤ ∞.

Assume that fρ ∈ W r
p (T ). We specify ε = (A lnm/m)

r
1+2r , n = [ε−1/r] + 1. Then (3.6)

implies

Probz∈Zm{‖Vn(fρ) − fz,V P ‖∞ ≤ C1(A ln m/m)
r

1+2r } ≥ 1 − w(m,A)

and
Probz∈Zm{‖fρ − fz,V P ‖p ≤ (C1 + C3)(A lnm/m)

r
1+2r } ≥ 1 − w(m,A).

We point out that in this subsection we have obtained the Lp estimates for 1 ≤ p ≤ ∞.
We conclude this subsection by formulating the result proved above as a theorem.

Theorem 3.2. Assume µ = 1 and fρ ∈ W r
p (T ) with some 1 ≤ p ≤ ∞. Then the estimator

fz,V P defined by (3.5) with n = [(m/(A ln m))
1

1+2r ] + 1 provides

Probz∈Zm{‖fρ − fz,V P ‖p ≤ (C1 + C3)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A).

We note that the estimator fz,V P from Theorem 3.2 does not depend on p and depends
on r (the choice of n depends on r). We proceed to construction of an estimator that is
universal for r. We denote

Wp[T ] := {W r
p (T )}.

Theorem 3.3. For a given collection Wp[T ] there exists an estimator fz such that if fρ ∈
W r

p (T ) with some r ≤ R then

Probz∈Zm{‖fρ − fz‖p ≤ C(R)A1/2(lnm/m)
r

1+2r } ≥ 1 − w(m,A).
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Proof. We define

A0 := V1; As := V2s − V2s−1 , s = 1, 2, . . . ; As(f) := As ∗ f,

where ∗ means convolution. Using our assumption that fρ ∈ W r
p (T ) we get for all s

(3.7) ‖As(fρ)‖p ≤ K2−rs

with K ≤ (1 + 2R)C3. We consider the following estimators

fs,z :=
1
m

m∑
i=1

yiAs(x − xi).

Similarly to (3.6) with ε = (A(2s/m) ln m)1/2 we get for all s ∈ [0, log m]

(3.8) ‖As(fρ) − fs,z‖∞ ≤ C1(A(2s/m) ln m)1/2

with probability at least 1 − w(m,A). We now consider only those z that satisfy (3.8). We
build an estimator fz on the base of the sequence {‖fs,z‖p}[log m]

s=0 . First, if

(3.9) ‖fs,z‖p ≤ (C1A
1/2 + K)((2s/m) ln m)1/2, s = 0, . . . , [log m],

then we set fz := 0. We have in this case

(3.10) ‖fρ‖p ≤
∞∑

s=0

‖As(fρ)‖p.

Therefore, for z satisfying (3.8) and (3.9) we get from (3.8)–(3.10), (3.7) that

‖fρ‖p ≤ C1(R)A1/2
∞∑

s=0

min(2s lnm/m)1/2, 2−rs) ≤ C2(R)A1/2(lnm/m)
r

1+2r .

Second, if (3.9) is not satisfied then we let l ∈ [0, log m] be such that for s ∈ (l, log m]

‖fs,z‖p ≤ (C1A
1/2 + K)((2s/m) ln m)1/2

and

(3.11) ‖fl,z‖p > (C1A
1/2 + K)((2l/m) ln m)1/2.

We set n = 2l and

fz :=
1
m

m∑
i=1

yiVn(x − xi).
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Then we get from (3.11) and (3.8)

‖Al(fρ)‖p ≥ K((2l/m) ln m)1/2.

Therefore, by (3.7) with s = l we obtain

2l(1+2r) ≤ m/ ln m.

Let l0 be such that
2(l0−1)(1+2r) ≤ m/ ln m < 2l0(1+2r).

Then for z satisfying (3.8) and not satisfying (3.9) we get

‖fρ − fz‖p ≤ ‖fρ − V2l0 (fρ)‖p +
l0∑

s=l+1

‖As(fρ)‖p +
l∑

s=0

‖As(fρ) − fs,z‖p

≤ C32−rl0 +
l0∑

s=l+1

(2C1A
1/2 + K)((2s/m) ln m)1/2 +

l∑
s=0

C1(A(2s/m) ln m)1/2

≤ C(R)A1/2(lnm/m)
r

1+2r .

This completes the proof of Theorem 3.3.

We now point out that the above method that has been applied to the trigonometric
system works also for more general systems. Let Ψ = {ψj}∞j=1 be an orthonormal basis.
First, we assume that Ψ is the (VP)-system for C. Using notations from the definition of
the (VP)-system we define

VΨ
nk

(x, u) :=
∑

j

λk,jψj(x)ψj(u).

Then
Pk(f) =

∫
X

f(u)VΨ
nk

(x, u)du.

Second, we assume that for all k and x, u ∈ X

(I) |VΨ
nk

(x, u)| ≤ C ′nk, ‖VΨ
nk

(x, ·)‖2
2 ≤ C ′nk.

Denote
Ψ(n) := span{ψ1, . . . , ψn}.

Third, we assume that for each n there exists a set of points ξ1, . . . , ξN(n) ∈ X such that
N(n) ≤ nc and for any f ∈ Ψ(n)

(II) ‖f‖∞ ≤ C ′′ max
i

|f(ξi)|.

We define the class W r
p (Ψ) as the set of f satisfying

‖f − Pk(f)‖p ≤ C1n−r
k , 1 ≤ p ≤ ∞.

The following analog of Theorem 3.2 holds.
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Theorem 3.2Ψ. Let Ψ be an orthonormal basis. Suppose Ψ is the (VP)-system for C
satisfying (I) and (II). Assume fρ ∈ W r

p (Ψ) with some 1 ≤ p ≤ ∞. Let nk be the smallest
that satisfy nk ≥ (m/(A ln m))

1
1+2r . Define

fz :=
1
m

m∑
i=1

yiVΨ
nk

(x, xi).

Then
Probz∈Zm{‖fρ − fz‖p ≤ C(A ln m/m)

r
1+2r } ≥ 1 − w(m,A)

with constants that may depend on C ′, c, C ′′, C1 and parameters A1, A2, A3 from the
definition of the (VP)-system.

The universality technique can also be extended to the bases Ψ from Theorem 3.2Ψ. We
denote

Wp[Ψ] := {W r
p (Ψ)}.

Theorem 3.3Ψ. Let Ψ be an orthonormal basis. Suppose Ψ is the (VP)-system for C
satisfying (I) and (II). For a given collection Wp[Ψ] there exists an estimator fz such that
if fρ ∈ W r

p (Ψ) with some r ≤ R then

Probz∈Zm{‖fρ − fz‖p ≤ CA1/2(lnm/m)
r

1+2r } ≥ 1 − w(m,A)

with constants that may depend on C ′, c, C ′′, C1 and parameters A1, A2, A3 from the
definition of the (VP)-system.

The proof of this theorem goes along the lines of the proof of Theorem 3.3. We only
explain the construction of fz. Without loss of generality we may assume that the sequence
{nk} from the definition of the (VP)-system satisfies the inequalities

A′
1nk ≤ nk+1 ≤ A′′

1nk, A′
1 > 1.

We define

AΨ
0 := VΨ

n1
; AΨ

s := VΨ
ns+1

− VΨ
ns

, s = 1, 2, . . . , AΨ
s (f) :=

∫
X

f(u)AΨ
s (x, u)du.

Using our assumption that fµ ∈ W r
p (Ψ) we get

‖AΨ
s (fµ)‖p ≤ K1n

−r
s .

We consider the following estimators

fΨ
s,z :=

1
m

m∑
i=1

yiAΨ
s (x, xi).
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Let l be such that for s ∈ (l, log m] (otherwise we set fΨ
z := 0)

‖fΨ
s,z‖p ≤ (C ′′A1/2 + K1)((ns/m) ln m)1/2

and
‖fΨ

l,z‖p > (C ′′A1/2 + K1)((nl/m) ln m)1/2.

We set

fΨ
z :=

1
m

m∑
i=1

yiVΨ
nl

(x, xi).

3.3. In this subsection we extend the results of Section 3.1 to a wider range of function
classes. We impose a weaker assumption than (3.2). It will be formulated in terms of
nonlinear n-term approximations. Let Ψ be an orthonormal uniformly bounded basis for
L2(X), ‖ψj‖∞ ≤ B. Denote

σn(f,Ψ)2 := inf
k1,...,kn;c1,...,cn

‖f −
n∑

j=1

cjψkj‖2.

We will keep notations from subsection 3.1.

Theorem 3.4. Let Ψ be an orthonormal uniformly bounded basis for L2(X), ‖ψj‖∞ ≤ B.
Let R ≥ a > 0 be given. We define the following estimator depending on a parameter A

fz :=
∑

j∈[1,mR/a]:|ĉj(z)|≥2(A ln m/m)1/2

ĉj(z)ψj .

Assume fµ satisfies

(3.12) σn(fµ,Ψ)2 ≤ C1n
−r

and

(3.13) ‖fµ − Sn(fµ)‖2 ≤ C2n
−a

with r ≤ R. Then

Probz∈Zm{‖fµ − fz‖2 ≤ C(R)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B,R/a).

Proof. We will be using the inequality (3.1) from subsection 3.1.

(3.14) Probz∈Zm{|ĉj(z) − cj | ≥ η} ≤ 2 exp(−mη2/C(M,B)).

Denote for some N that will be chosen later depending on m

Λ(z, η) := {j ∈ [1, N ] : |ĉj(z)| ≥ 2η},
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and define an estimator for fµ by

fz,η :=
∑

j∈Λ(z,η)

ĉj(z)ψj .

Using (3.14) we obtain

(3.15) Probz∈Zm{ max
j∈[1,N ]

|ĉj(z) − cj | ≤ η} ≥ 1 − 2N exp(−mη2/C(M,B)).

Consider those z that satisfy maxj∈[1,N ] |ĉj(z)− cj | ≤ η. For these z and j ∈ Λ(z, η) we get
|cj | ≥ η. Also, if j is such that |cj | ≥ 3η then j ∈ Λ(z, η). Moreover, we have

(3.16) ‖
∑

j∈Λ(z,η)

(ĉj(z) − cj)ψj‖2 ≤ η|Λ(z, η)|1/2.

It is not difficult to prove that for fµ satisfying (3.12) one has

#{j : |cj | ≥ η} ≤ C(R)η− 2
1+2r

and, therefore,

(3.17) |Λ(z, η)| ≤ C(R)η− 2
1+2r .

Next,

(3.18) ‖
∑

j∈[1,N ]\Λ(z,η)

cjψj‖2 ≤ ‖
∑

j:|cj |≤3η

cjψj‖2 ≤ C(R)η
2r

1+2r .

For all r ≤ R we choose N = [mR/a] and η = (A ln m/m)1/2. Then combining (3.12), (3.13),
(3.15), (3.16), (3.17), and (3.18) we obtain

(3.19) Probz∈Zm{‖fµ − fz,η‖2 ≤ C(R)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B,R/a).

We stress here that the estimator fz from Theorem 3.4 does not depend on r. In this
sense the estimator fz is universal. It adjusts automatically to the optimal smoothness of
the class that contains fµ.

3.4. This subsection is a natural continuation of the previous subsection. We assume
in this subsection that {ψj} is an orthonormal basis for L2(X) satisfying the condition
‖ψj‖∞ ≤ Bj1/2, j = 1, 2, . . . and impose an extra condition µ ≤ C. Then instead of (3.14)
we have by Bernstein’s inequality

(3.20) Probz∈Zm{|ĉj(z) − cj | ≥ η} ≤ 2 exp(− mη2

C(M,B)(1 + ηj1/2)
).
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We use the same notations and definitions as above in subsection 3.3. Instead of (3.15) we
now have

(3.21) Probz∈Zm{ max
j∈[1,N ]

|ĉj(z) − cj | ≤ η} ≥ 1 − 2N exp(− mη2

C(M,B)(1 + ηN1/2)
).

Similarly to the above we get relation (3.16) and relations (3.17), (3.18) for a fµ satisfying
(3.12). We now set

η = (A ln m/m)1/2, N = [η−2] + 1.

Using (3.13) with a = r
1+2r in the same way as we got (3.19) we obtain now a similar

estimate

(3.22) Probz∈Zm{‖fµ − fz,η‖2 ≤ C(R)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B,R).

We have proved the following theorem.

Theorem 3.5. Let Ψ be an orthonormal basis for L2(X) satisfying the condition ‖ψj‖∞ ≤
Bj1/2, j = 1, 2, . . . . Let R > 0 be given. We define the estimator depending on a parameter
A

fz :=
∑

j∈[1,m/(A ln m)]:|ĉj(z)|≥2(A ln m/m)1/2

ĉj(z)ψj .

Assume µ ≤ C, fµ satisfies (3.10) with r ≤ R and satisfies (3.11) with a = r
1+2r . Then

Probz∈Zm{‖fµ − fz‖2 ≤ C(R)(A lnm/m)
r

1+2r } ≥ 1 − w(m,A;B,R).

In this case the estimator fz is also universal.
We will make a remark how estimators for fρ and fµ can be used. Let us denote here an

estimator for fρ by fρ
z and an estimator for fµ by fµ

z . We mentioned in the Introduction
that we can use fµ

z to estimate
∫

S
fρdρX by

∫
S

fµ
z dx within the error ‖fµ − fµ

z ‖L1 . We will
now estimate the following integral:

∫
S

f2
ρdρX . We estimate it by

∫
S

fρ
z fµ

z dx. Suppose we
have

‖fρ − fρ
z ‖L1(ρ) ≤ ε1 and ‖fµ − fµ

z ‖L1 ≤ ε2.

Then
|f2

ρ µ − fρ
z fµ

z | ≤ |fρµ(fρ − fρ
z )| + |fρ

z ||fρµ − fµ
z |.

Using |fρ| ≤ M , |fρ
z | ≤ M we get

‖f2
ρµ − fρ

z fµ
z ‖L1 ≤ M(ε1 + ε2).

Therefore, for any S ⊂ X the integral
∫

S
fρ

z fµ
z dx gives the integral

∫
S

f2
ρ dρX within the

error M(ε1 + ε2).
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