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CONVERGENCE OF GREEDY APPROXIMATION

FOR THE TRIGONOMETRIC SYSTEM1

S.V. Konyagin and V.N. Temlyakov

Abstract. We study the following nonlinear method of approximation by trigonometric poly-
nomials in this paper. For a periodic function f we take as an approximant a trigonometric

polynomial of the form Gm(f) :=
∑

k∈Λ f̂(k)ei(k,x), where Λ ⊂ Z
d is a set of cardinality m

containing the indices of the m biggest (in absolute value) Fourier coefficients f̂(k) of function
f . Note that Gm(f) gives the best m-term approximant in the L2-norm and, therefore, for

each f ∈ L2, ‖f − Gm(f)‖2 → 0 as m → ∞. It is known from previous results that in the
case of p �= 2 the condition f ∈ Lp does not guarantee the convergence ‖f − Gm(f)‖p → 0 as

m → ∞. We study the following question. What conditions (in addition to f ∈ Lp) provide the

convergence ‖f − Gm(f)‖p → 0 as m → ∞? In our previous paper [10] in the case 2 < p ≤ ∞
we have found necessary and sufficient conditions on a decreasing sequence {An}∞n=1 to guar-

antee the Lp-convergence of {Gm(f)} for all f ∈ Lp, satisfying an(f) ≤ An, where {an(f)}
is a decreasing rearrangement of absolute values of the Fourier coefficients of f . In this paper
we are looking for necessary and sufficient conditions on a sequence {M(m)} such that the

conditions f ∈ Lp and ‖GM(m)(f) − Gm(f)‖p → 0 as m → ∞ imply ‖f − Gm(f)‖p → 0 as
m → ∞. We have found these conditions in the case p an even number or p = ∞.

1. Introduction

We study in this paper the following nonlinear method of summation of trigonometric
Fourier series. Consider a periodic function f ∈ Lp(Td), 1 ≤ p ≤ ∞, (L∞(Td) = C(Td)),
defined on the d-dimensional torus T

d. Let a number m ⊂ nN be given and Λm be a set of
k ∈ Z

d with the properties:

(1.1) min
k∈Λm

|f̂(k)| ≥ max
k/∈Λm

|f̂(k)|, |Λm| = m,

where
f̂(k) := (2π)−d

∫
Td

f(x)e−i(k,x)dx

is a Fourier coefficient of f . We define

Gm(f) := SΛm
(f) :=

∑
k∈Λm

f̂(k)ei(k,x)
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and call it a m-th greedy approximant of f with regard to the trigonometric system T :=
{ei(k,x)}k∈Zd . Clearly, a m-th greedy approximant may not be unique. In this paper we do
not impose any extra restrictions on Λm in addition to (1.1). Thus theorems formulated
below hold for any choice of Λm satisfying (1.1) or in other words for any realization Gm(f)
of the greedy approximation.

There has recently been (see surveys [4], [12], [9]) much interest in approximation of
functions by m-term approximants with regard to a basis (or minimal system). We will
discuss in detail only results concerning the trigonometric system. T.W. Körner answering
a question raised by Carleson and Coifman constructed in [6] a function from L2(T) and
then in [7] a continuous function such that {Gm(f)} diverges almost everywhere. It has
been proved in [11] for p �= 2 and in [3] for p < 2 that there exists a f ∈ Lp(T) such that
{Gm(f)} does not converge in Lp. It was remarked in [12] that the method from [11] gives
a little more: 1) There exists a continuous function f such that {Gm(f)} does not converge
in Lp(T) for any p > 2; 2) There exists a function f that belongs to any Lp(T), p < 2,
such that {Gm(f)} does not converge in measure. Thus the above negative results show
that the condition f ∈ Lp(Td), p �= 2, does not guarantee convergence of {Gm(f)} in the
Lp-norm. The main goal of this paper is to find an additional (to f ∈ Lp) condition on f to
guarantee that ‖f −Gm(f)‖p → 0 as m → ∞. Some results in this direction have already
been obtained in [10]. In the case 2 < p ≤ ∞ we found in [10] necessary and sufficient
conditions on a decreasing sequence {An}∞n=1 to guarantee the Lp-convergence of {Gm(f)}
for all f ∈ Lp, satisfying an(f) ≤ An, where {an(f)} is a decreasing rearrangement of
absolute values of the Fourier coefficients of f . We will formulate three theorems from [10].

For f ∈ L1(Td) let {f̂(k(l))}∞l=1 denote the decreasing rearrangement of {f̂(k)}k∈Zd , i.e.

(1.2) |f̂(k(1))| ≥ |f̂(k(2))| ≥ . . . .

Denote an(f) := |f̂(k(n))|.

Theorem 1 [10]. Let 2 < p < ∞ and let a decreasing sequence {An}∞n=1 satisfy the
condition:

(1.3) An = o(n1/p−1) as n→ ∞.

Then for any f ∈ Lp(Td) with the property an(f) ≤ An, n = 1, 2, . . . , we have

(1.4) lim
m→∞ ‖f −Gm(f)‖p = 0.

We also proved in [10] that for any decreasing sequence {An}, satisfying

lim sup
n→∞

Ann
1−1/p > 0

there exists a function f ∈ Lp such that an(f) ≤ An, n = 1, . . . , with divergent in the Lp

sequence of greedy approximants {Gm(f)}.
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Theorem 2 [10]. Let a decreasing sequence {An}∞n=1 satisfy the condition (A∞):

(1.5)
∑

M<n≤eM

An = o(1) as M → ∞.

Then for any f ∈ C(T) with the property an(f) ≤ An, n = 1, 2, . . . , we have

(1.6) lim
m→∞ ‖f −Gm(f)‖∞ = 0.

The following theorem shows that the condition (A∞) in Theorem 2 is sharp.

Theorem 3 [10]. Assume that a decreasing sequence {An}∞n=1 does not satisfy the condition
(A∞). Then there exists a function f ∈ C(T) with the property an(f) ≤ An, n = 1, 2, . . . ,
and such that we have

lim sup
m→∞

‖f −Gm(f)‖∞ > 0

for some realization Gm(f).

In this paper we concentrate on imposing extra conditions in the following form. We
assume that for some sequence {M(m)}, M(m) > m, we have

(1.7) ‖GM(m)(f) −Gm(f)‖p → 0 as m→ ∞.

This exrta assumption on f is in a style of A.S. Belov [2]. He studied convergence of Fourier
series in Lp with p = 1,∞ and imposed extra conditions on f in the form ‖S2n(f)−Sn(f)‖p =
o(1). In the case p is an even number or p = ∞ we find necessary and sufficient conditions on
the growth of the sequence {M(m)} to provide convergence ‖f −Gm(f)‖p → 0 as m→ ∞.
We prove the following theorem in Section 3 (see Theorem 3.2).

Theorem 4. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that f ∈ Lp(T) and
there exists a sequence of positive integer M(m) > m1+δ such that

‖GM(m)(f) −Gm(f)‖p → 0 as m→ ∞.

Then we have
‖f −Gm(f)‖p → 0 as m→ ∞.

In Section 4 we prove that the condition M(m) > m1+δ cannot be replaced by a condition
M(m) > m1+o(1). The following theorem is a direct corollary of Theorem 4.1.

Theorem 5. For any p ∈ (2,∞) there exists a function f ∈ Lp(T) with divergent in the
Lp(T) sequence {Gm(f)} of greedy approximations with the following property. For any
sequence {M(m)} such that m ≤M(m) ≤ m1+o(1) we have

‖GM(m)(f) −Gm(f)‖p → 0 (m→ 0).

In Section 5 we discuss the case p = ∞. We prove there necessary and sufficient conditions
for convergence of greedy approximations in the uniform norm. For a mapping α : W →W
we denote αk its k-fold iteration: αk := α ◦ αk−1.
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Theorem 6. Let α : N → N be strictly increasing. Then the following conditions are
equivalent:
a) for some k ∈ N and for any sufficiently large m ∈ N we have αk(m) > em;
b) if f ∈ C(T) and ∥∥Gα(m)(f) −Gm(f)

∥∥
∞ → 0 (m→ ∞)

then
‖f −Gm(f)‖∞ → 0 (m→ ∞).

The proof of necessary condition is based on the above Theorem 3 from [10]. In the proof
of sufficient condition we use the following special inequality (see Theorem 2.1 in Section
2).

By Σm(T ) we denote the set of all trigonometric polynomials with at most m nonzero
coefficients.

Theorem 7. For any h ∈ Σm(T ) and any g ∈ L∞ one has

(1.8) ‖h+ g‖∞ ≥ K−2‖h‖∞ − eC(K)m‖{ĝ(k)}‖�∞ , K > 1.

We note that in the proof of the above inequality we use a deep result on the uniform ap-
proximation property of the space C(X) (see [5]). Section 2 contains some other inequalities
in the style of (1.8).

Greedy approximations are close to thresholding approximations (thresholding greedy
approximations). Thresholding approximations are defined as follows

Tε(f) := SΛ(ε)(f) :=
∑

k:|f̂(k)|≥ε

f̂(k)ei(k,x), ε > 0.

Clearly, for any ε > 0 there exists an m(ε) such that Tε(f) = Gm(ε)(f). Therefore, conver-
gence of {Gm(f)} as m → ∞ implies convergence of {Tε(f)} as ε → 0. In Sections 3–5 we
obtain results on convergence of {Tε(f)} , ε → 0, that are similar to the above mentioned
results on convergence of {Gm(f)}.

We use the same notations in both cases d = 1 and d > 1. We point out that in Sections
2,3 we consider the general case d ≥ 1 and in Sections 4,5 we confine ourselves to the case
d = 1. The reason for that is that we prove necessary conditions in Section 4 and in a part
of Section 5, where, clearly, we consider the case d = 1 without loss of generality. We note
that sufficient conditions in Theorems 5.1 and 5.2 also hold for d > 1 (the proof is the same
with natural modifications).

2. Some inequalities

In this section we prove some inequalities that will be used in the paper. The general
style of these inequalities is the following. A function that has a sparse representation with
regard to the trigonometric system cannot be approximated in Lp by functions with small
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Fourier coefficients. We begin our discussion with some concepts that are useful in proving
such inequalities.

The following new characteristic of a Banach space Lp plays an important role in such
inequalities. We introduce some more notations. Let Λ be a finite subset of Z

d. By |Λ| we
denote its cardinality and by T (Λ) the span of {ei(k,x)}k∈Λ. It is clear that

Σm(T ) = ∪Λ:|Λ|≤mT (Λ).

For f ∈ Lp, F ∈ Lp′ , 1 ≤ p ≤ ∞, p′ = p/(p− 1), we write

〈F, f〉 :=
∫

Td

F f̄dµ, dµ := (2π)−ddx.

Definition 2.1. Let Λ be a finite subset of Z
d and 1 ≤ p ≤ ∞. We call a set Λ′ := Λ′(p, γ),

γ ∈ (0, 1] a (p, γ)-dual to Λ if for any f ∈ T (Λ) there exists F ∈ T (Λ′) such that ‖F‖p′ = 1
and 〈F, f〉 ≥ γ‖f‖p.

Denote by D(Λ, p, γ) the set of all (p, γ)-dual sets Λ′. The following function is important
for us

v(m, p, γ) := sup
Λ:|Λ|=m

inf
Λ′∈D(Λ,p,γ)

|Λ′|.

We note that in a particular case p = 2q, q ∈ N we have

(2.1) v(m, p, 1) ≤ mp−1.

This follows immediately from the form of the norming functional F for f ∈ Lp:

(2.2) F = f q−1(f̄)q‖f‖1−p
p .

We will use the quantity v(m, p, γ) in greedy approximation. We first prove a lemma.

Lemma 2.1. Let 2 ≤ p ≤ ∞. For any h ∈ Σm(T ) and any g ∈ Lp one has

‖h+ g‖p ≥ γ‖h‖p − v(m, p, γ)1−1/p‖{ĝ(k)}‖�∞ .

Proof. Let h ∈ T (Λ) with |Λ| = m and let Λ′ ∈ D(Λ, p, γ). Then using the Definition 2.1
we find F (h, γ) ∈ T (Λ′) such that

‖F (h, γ)‖p′ = 1 and 〈F (h, γ), h〉 ≥ γ‖h‖p.

We have

〈F (h, γ), h〉 = 〈F (h, γ), h+ g〉 − 〈F (h, γ), g〉 ≤ ‖h+ g‖p + |〈F (h, γ), g〉|.

Next,
|〈F (h, γ), g〉| ≤ ‖{F̂ (h, γ)(k)}‖�1‖{ĝ(k)}‖�∞ .

Using F (h, γ) ∈ T (Λ′) and the Hausdorf-Young theorem [14,Chap.12,Section 2] we obtain

‖{F̂ (h, γ)(k)}‖�1 ≤ |Λ′|1−1/p‖{F̂ (h, γ)(k)}‖�p
≤ |Λ′|1−1/p‖F (h, γ)‖p′ = |Λ′|1−1/p.

It remains to combine the above inequalities and use the definition of v(m, p, γ).
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Definition 2.2. Let X be a finite dimensional subspace of Lp, 1 ≤ p ≤ ∞. We call a
subspace Y ⊂ Lp′ a (p, γ)-dual to X, γ ∈ (0, 1], if for any f ∈ X there exists F ∈ Y such
that ‖F‖p′ = 1 and 〈F, f〉 ≥ γ‖f‖p.

Similarly to the above we denote by D(X, p, γ) the set of all (p, γ)-dual subspaces Y .
Consider the following function

w(m, p, γ) := sup
X:dim X=m

inf
Y ∈D(X,p,γ)

dimY.

We begin our discussion by a particular case p = 2q, q ∈ N. Let X be given and e1, . . . , em

form a basis of X . Using the Hölder inequality for n functions f1, . . . , fn ∈ Ln∫
|f1 · · · fn|dµ ≤ ‖f1‖n · · · ‖fn‖n

with fi = |ej |p
′
, n = p− 1 we get that any function of the form

m∏
i=1

|ei|ki , ki ∈ N,
m∑

i=1

ki = p− 1,

belongs to Lp′ . It now follows from (2.2) that

(2.3) w(m, p, 1) ≤ mp−1, p = 2q, q ∈ N.

There is a general theory of uniform approximation property (UAP) that provides some
estimates for w(m, p, γ). We begin with some definitions from this theory. For a given
subspace X of Lp, dimX = m, and a constant K > 1 let kp(X,K) be the smallest k such
that there is an operator IX : Lp → Lp with IX(f) = f for f ∈ X , ‖IX‖Lp→Lp

≤ K, and
rank IX ≤ k. Denote

kp(m,K) := sup
X:dim X=m

kp(X,K).

Let us discuss how kp(m,K) can be used in estimating w(m, p, γ). Consider I∗X the dual to
IX operator. Then ‖I∗X‖Lp′→Lp′ ≤ K and rank I∗X ≤ kp(m,K). Let f ∈ X , dimX = m,
and let Ff be the norming functional for f . Define

F := I∗X(Ff )/‖I∗X(Ff )‖p′ .

Then (f ∈ X)
〈f, I∗X(Ff )〉 = 〈IX(f), Ff〉 = 〈f, Ff 〉 = ‖f‖p

and
‖I∗X(Ff )‖p′ ≤ K

imply
〈f, F 〉 ≥ K−1‖f‖p.
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Therefore

(2.4) w(m, p,K−1) ≤ kp(m,K).

We note that the behavior of functions w(m, p, γ) and kp(m,K) may be very different. J.
Bourgain [1] proved that for any p ∈ (1,∞), p �= 2 the function kp(m,K) grows faster
than any polynomial in m. The estimate (2.3) shows that in the particular case p = 2q,
q ∈ N the growth of w(m, p, γ) is at most polynomial. This means that we cannot expect
to obtain accurate estimates for w(m, p,K−1) using the inequality (2.4). We give one more
application of the UAP in the style of Lemma 2.1.

Lemma 2.2. Let 2 ≤ p ≤ ∞. For any h ∈ Σm(T ) and any g ∈ Lp one has

(2.5) ‖h+ g‖p ≥ K−1‖h‖p − kp(m,K)1/2‖g‖2;

(2.6) ‖h+ g‖p ≥ K−2‖h‖p − kp(m,K)‖{ĝ(k)}‖�∞ .

Proof. Let h ∈ T (Λ), |Λ| = m. Take X = T (Λ) and consider the operator IX provided by
the UAP. Let ψ1, . . . , ψM form an orthonormal basis for the range Y of the operator IX .
Then M ≤ kp(m,K). Let

IX(ei(k,x)) =
M∑

j=1

ckjψj .

Then the property ‖IX‖Lp→Lp
≤ K implies

(
M∑

j=1

|ckj |2)1/2 = ‖IX(ei(k,x))‖2 ≤ ‖IX(ei(k,x))‖p ≤ K.

Consider along with the operator IX a new one

A := (2π)−d

∫
Td

TtIXT−tdt

where Tt is a shifting operator: Tt(f) = f(· + t). Then

A(ei(k,x)) =
M∑

j=1

ckj (2π)−d

∫
Td

e−i(k,t)ψj(x+ t)dt = (
M∑

j=1

ckj ψ̂j(k))ei(k,x).

Denote

λk :=
M∑

j=1

ckj ψ̂j(k).
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We have

(2.7)
∑

k

|λk|2 ≤
∑

k

(
M∑

j=1

|ckj |2)(
M∑

j=1

|ψ̂j(k)|2) ≤ K2M.

Also λk = 1 for k ∈ Λ. For the operator A we have

‖A‖Lp→Lp
≤ K and ‖A‖L2→L∞ ≤ KM1/2.

Therefore
‖A(h+ g)‖p ≤ K‖h+ g‖p

and
‖A(h+ g)‖p ≥ ‖h‖p −KM1/2‖g‖2.

This proves inequality (2.5).
Consider the operator B := A2. Then

B(h) = h, h ∈ T (Λ); B(ei(k,x)) = λ2
ke

i(k,x), k ∈ Z
d; ‖B‖Lp→Lp

≤ K2

and, by (2.7),
‖B(f)‖∞ ≤

∑
k

|λk|2‖{f̂(k)}‖�∞ ≤ K2M‖{f̂(k)}‖�∞ .

Now, on the one hand
‖B(h+ g)‖p ≤ K2‖h+ g‖p

and on the other hand

‖B(h+ g)‖p = ‖h+B(g)‖p ≥ ‖h‖p −K2M‖{ĝ(k)}‖�∞ .

This proves inequality (2.6).

Theorem 2.1. For any h ∈ Σm(T ) and any g ∈ L∞ one has

‖h+ g‖∞ ≥ K−1‖h‖∞ − eC(K)m/2‖g‖2;

‖h+ g‖∞ ≥ K−2‖h‖∞ − eC(K)m‖{ĝ(k)}‖�∞ .

Proof. This theorem is a direct corollary of Lemma 2.2 and the following known (see [5])
estimate

k∞(m,K) ≤ eC(K)m.

As we already mentioned kp(m,K) increases faster than any polynomial. We will improve
inequality (2.5) in the case p <∞ by using other arguments.
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Lemma 2.3. Let 2 ≤ p <∞. For any h ∈ Σm(T ) and any g ∈ Lp one has

‖h+ g‖p
p ≥ ‖h‖p

p − pm(p−2)/4‖h‖p−1
p ‖g‖2.

Proof. Since the function f(x) = |x|p is convex, we have f(x−y) ≥ f(x)−yf ′(x). Therefore,

(2.8) |h+ g|p ≥ |h|p − p|h|p−1|g|.

Taking the integral of (2.8) over T
d with respect to the measure µ with dµ := (2π)−ddx we

get

(2.9)
∫

Td

|h+ g|pdµ ≥
∫

Td

|h|pdµ− p

∫
Td

|h|p−1|g|dµ.

Next, by Cauchy’s inequality,

∫
Td

|h|p−1|g|dµ ≤
(∫

Td

|h|2p−2dµ

∫
Td

|g|2dµ
)1/2

≤ ‖g‖2

(∫
Td

|h|p‖h‖p−2
∞ dµ

)1/2

= ‖g‖2‖h‖p/2
p ‖h‖(p−2)/2

∞ .(2.10)

Using Cauchy’s inequality again, we obtain

(2.11) ‖h‖∞ ≤ m1/2‖h‖2 ≤ m1/2‖h‖p.

Combining (2.9)—(2.11) we complete the proof of Lemma 2.3.

We will mention some known inequalities in a style of inequalities in Lemmas 2.1–2.3.

Lemma 2.4 [10]. Let 2 ≤ p <∞ and h ∈ Lp, ‖h‖p �= 0. Then for any g ∈ Lp we have

‖h‖p ≤ ‖h+ g‖p + (‖h‖2p−2/‖h‖p)p−1‖g‖2.

Lemma 2.5 [10]. Let h ∈ Σm(T ), ‖h‖∞ = 1. Then for any function g such that ‖g‖2 ≤
1
4 (4πm)−m/2 we have

‖h+ g‖∞ ≥ 1/4.

We proceed to estimating v(m, p, γ) for p ∈ [2,∞). In the special case of even p we have
by (2.1) that

v(m, p, 1) ≤ mp−1.
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Lemma 2.6. Let 2 ≤ p <∞. Denote α := p/2 − [p/2]. Then we have

v(m, p, γ) ≤ mc(α,γ)m1/2+p−1.

Proof. In the case p an even number the statement follows from (2.1). We will assume that
p is not an even number. Let Λ ⊂ Z

d, |Λ| = m be given. Take any nonzero h ∈ T (Λ) and
assume for convenience that ‖h‖p = 1. We wil l construct a γ-norming functional F (h, γ)
(〈F, h〉 ≥ γ‖h‖p ). We use the formula for the norming functional of h

F = ‖h‖1−p
p h̄|h|p−2 = h̄(|h|2)p/2−1 = h̄(|h|2)[p/2]−1(|h|2)α.

By (2.11), we have
‖h‖∞ ≤ m1/2.

The idea is to replace (|h|2)α by an algebraic polynomial on |h|2. We approximate the
function xα on the interval [0, m]. We use the Telyakovskii’s result [13]: there exists an
algebraic polynomial of degree n such that

(2.12) |yα − Pn(y)| ≤ C1(α)(y1/2/n)α, y ∈ [0, 1].

Substituting y = x/m into (2.12) we get

|xα −mαPn(x/m)| ≤ C1(α)xα/2mα/2n−α.

We take θ = 1−γ
1+γ ∈ (0, 1) and choose n(m) ≤ C2(α, γ)m1/2 with C2(α, γ) big enough to

have
C1(α)xα/2mα/2n−α ≤ θxα/2.

Denote
Fm := mαPn(m)(|h|2/m)h̄(|h|2)[p/2]−1.

Then (x = |h|2)
|F − Fm| ≤ θ|h|2[p/2]−1+α.

Therefore,

(2.13) ‖F − Fm‖p′ ≤ θ‖|h|2[p/2]−1+α‖p′ .

Using 2[p/2] = p− 2α we get

(2.14) ‖|h|p−1−α‖p′ ≤ ‖|h|p−α−1‖(p−α)′ = ‖h‖p−α−1
p−α ≤ ‖h‖p−α−1

p = 1.

Combining (2.13) and (2.14) we get

‖F − Fm‖p′ ≤ θ.

This implies that
‖Fm‖p′ ≤ 1 + θ

and
〈Fm, h〉 = 〈F, h〉 + 〈Fm − F, h〉 ≥ ‖h‖p − θ‖h‖p = (1 − θ)‖h‖p.

Thus F (h, γ) := Fm/‖Fm‖p′ is a γ-norming functional for h. It remains to note that the
dimension of a subspace T (Λ′) containing all Pn(m)(|h|2/m)h̄(|h|2)[p/2]−1 when h runs over
T (Λ) does not exceed mc(α,γ)m1/2+p−1.
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3. Sufficient conditions in the case p ∈ (2,∞)

We will prove now several statements which give sufficient conditions for convergence of
greedy approximation in Lp, 2 < p <∞.

Theorem 3.1. Let p = 2q, q ∈ N, be an even integer. For f ∈ Lp(Td) assume that two
sequences Λm and Ym of sets of frequences satisfy the following conditions

(3.1) |Λm| ≤ ma, a > 0,

(3.2) sup
k/∈Ym

|f̂(k)| = o(ma(1−p)),

‖SΛm
(f) − SYm

(f)‖p → 0 as m→ ∞.

Then we have
‖SΛm

(f) − f‖p → 0 as m→ ∞.

Proof. We use the M. Riesz theorem [8,Chap. 4, Section 3] that for all 1 < p <∞ we have
the convergence ‖f − SN (f)‖p → 0 as N → ∞, where

SN (f) :=
∑

k∈K(N)

f̂(k)ei(k,x), K(N) := {k : max
j

|kj | ≤ N1/d}.

Let
εm := sup

k/∈Ym

|f̂(k)|, N = [map].

We estimate

(3.3) ‖SN (f) − SYm
(f)‖p ≤

≤ ‖
∑

k:|k|≤N ;k �∈Ym

f̂(k)ei(k,x)‖p + ‖
∑

k:|k|>N ;k∈Ym

f̂(k)ei(k,x)‖p =: ‖Σ1‖p + ‖Σ2‖p.

We have by the Paley theorem [14,Chap. 12,Section 5] that

‖Σ1‖p = O(εmN
1−1/p) = o(1).

For the second sum we have

(3.4) Σ2 = f − SN (f) − g with g :=
∑

k:|k|>N ;k �∈Ym

f̂(k)ei(k,x).

Let us rewrite

(3.5) Σ2 = (Id− SN )(SYm
(f)) =

= (Id− SN )(SΛm
(f)) + (Id− SN )(SYm

(f) − SΛm
(f)) =: h1 + h2.

By the theorem’s assumption and the M. Riesz theorem we get ‖h2‖p = o(1) and, therefore,
we get from (3.4) and (3.5) that ‖h1 + g‖p = o(1). We note that h1 is a polynomial with
at most m terms and g is a function with small Fourier coefficients. We have the following
lemma for this situation.
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Lemma 3.1. Let p = 2q, q ∈ N, be an even integer. Assume that h is an m-term trigono-
metric polynomial and g is such that |ĝ(k)| ≤ ε for all k. Then

‖h‖p ≤ ‖h+ g‖p +mp−1ε.

Proof. This lemma follows from Lemma 2.1 and the estimate (2.1).

Applying Lemma 3.1 we get for h1 that ‖h1‖p = o(1) and, therefore, ‖Σ2‖p = o(1). This
implies in turn (see (3.3)) that

‖SN (f) − SYm
(f)‖p = o(1).

Thus we get ‖f − SΛm
(f)‖p → 0 as m→ ∞. The proof of Theorem 3.1 is complete.

We now formulate a straightforward corollary of Theorem 3.1. Let us note first that
convergence of {Gm(f)} in Lp is equivalent to

‖Gm(f) −Gn(f)‖p → 0 as m,n→ ∞.

Corollary 3.1. Let p = 2q, q ∈ N, be an even integer. For f ∈ Lp(Td) assume that there
exists a sequence {εm}, εm = o(m1−p), such that

‖Gm(f) − Tεm
(f)‖p = o(1).

Then
‖Gm(f) − f‖p → 0 as m→ ∞.

We now present some results in the direction of weakening the assumption εm = o(m1−p)
in Corollary 3.1.

Theorem 3.2. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that f ∈ Lp(Td) and
there exists a sequence of positive integers M(m) > m1+δ such that

(3.6) ‖Gm(f) −GM(m)(f)‖p → 0 as m→ ∞.

Then we have
‖Gm(f) − f‖p → 0 as m→ ∞.

Proof. Let m0 := m, mj := M(mj−1) for j ∈ N. We have mj > m(1+δ)j

. Fix j0 >
log(2p)/ log(1 + δ). Let M0(m) := mj0 . We have M0(m) > m2p. Also, by (3.6),

‖Gm(f) −GM0(m)(f)‖p → 0 as m→ ∞.

Let Λm and Ym be defined from Gm(f) = SΛm
(f) and GM0(m)(f) = SYm

(f). Using that
aM0(m)(f) = O(M0(m)−1/2) = O(m−p) = o(m1−p), we complete the proof of Theorem 3.2
by Theorem 3.1.

12



Theorem 3.3. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that f ∈ Lp(Td) and
for any ε > 0 there is an η(ε) < ε1+δ such that

(3.7) ‖Tε(f) − Tη(ε)(f)‖p → 0 as ε→ 0.

Then we have
‖Tε(f) − f‖p → 0 as ε→ 0.

To prove this theorem we need the following simple lemma.

Lemma 3.2. Let p ≥ 2 and δ > 0, For any f ∈ Lp(Td) there is an εf,p > 0 with the
following property. For any ε ∈ (0, εf,p) there exists an m(ε) such that ε−p/(p−1)+δ <
m(ε) < ε−2 and

‖Gm(ε)(f) − Tε(f)‖p → 0 as ε→ 0.

Proof. We have Gm1(ε)(f) = SΛ(ε)(f) for m1(ε) = |Λ(ε)|. Moreover, the condition f ∈
L2(Td) implies m1(ε) = o(ε−2). If m1(ε) > ε−p′+δ, where p′ = p/(p − 1), then we put
m(ε) = m1(ε). Suppose that m1 ≤ ε−p′+δ. Let m2(ε) = [ε−p′+δ], m(ε) = m1(ε) + m2(ε).
By the Hausdorff-Young theorem we have

‖Gm(ε)(f) −Gm1(ε)(f)‖p ≤ m2(ε)1/p′
ε→ 0 as ε→ 0

and, moreover, ε−p/(p−1)+δ < m(ε) < ε−2 for small ε. This proves the lemma.

Proof of Theorem 3.3. By Lemma 3.2 we find m(ε) satisfying ε−p′+δ < m(ε) < ε−2 and

‖Gm(ε)(f) − Tε(f)‖p → 0 as ε→ 0.

Proceeding as in the proof of Theorem 3.2, for any ε > 0 we get the η(ε) < ε2p < m(ε)−p

such that

(3.8) ‖Tε(f) − Tη(ε)(f)‖p → 0 as ε→ 0.

We now apply Theorem 3.1 with Λm(ε) and Ym(ε) defined from

Gm(ε)(f) = SΛm(ε)(f); Tη(ε)(f) = SYm(ε)(f).

The proof of Theorem 3.3 is complete.

Theorem 3.4. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that f ∈ Lp(Td) and
for any positive integer m there exists an ε(m) < m1/p−1−δ such that

‖Gm(f) − Tε(m)(f)‖p → 0 as m→ ∞.

Then we have
‖Gm(f) − f‖p → 0 as m→ ∞.

Proof. It is clear that it suffices to prove the theorem for small δ. Let 0 < δ < p′ − 1/p′.
Applying Lemma 3.2 with ε = ε(m) we get the existence of M(m) > m1+δ′

with some
δ′ > 0 such that

‖GM(m)(f) −Gm(f)‖p → 0 as m→ ∞.

It remains to use Theorem 3.2.
13



4. Necessary conditions in the case p ∈ (2,∞)

Theorem 4.1. For any p > 2 there exists a function f ∈ Lp(T) such that
1) if two sequences {Λj} and {Yj} of sets of frequencies satisfy the conditions

sup
k �∈Λj

|f̂(k)| ≤ εj := inf
k∈Λj

|f̂(k)|,

sup
k �∈Yj

|f̂(k)| ≤ δj := inf
k∈Yj

|f̂(k)|,

Λj ⊂ Yj

and either
|Yj| = |Λj |1+o(1) (j → ∞)

or
δj = ε

1+o(1)
j (j → ∞),

then
‖SΛj

(f) − SYj
(f)‖p → 0 (j → ∞);

2) lim infε→0 ‖f −
∑

k: |f̂(k)|≥ε f̂(k)eikx‖p > 0.

Let M be a sufficiently large positive integer, ηk (1 ≤ k ≤ M) be independent random
variables such that each ηk takes value n, 1 ≤ n ≤ M , with probability 1/M . We will use
the following probabilistic inequality.

Lemma 4.1. There is a constant C1 = C1(p) such that for any function g : {1, . . . ,M} →
R with

∑M
n=1 g(n) = 0, independent random variables ξk = g(ηk), and complex numbers

z1, . . . , zM , with |zk| ≤ 1, (k = 1, . . . ,M) we have

E

(∣∣∣∣∣
M∑

k=1

ξkzk

∣∣∣∣∣
p)

≤ C1M
p/2
(
E(ξ21)

)p/2
.

Proof. First assume that the numbers z1, . . . , zM are real. We observe that E(ξk) = 0 for
k = 1, . . . ,M . By Rosenthal’s inequality, we have

E

(∣∣∣∣∣
M∑

k=1

ξkzk

∣∣∣∣∣
p)

≤ C(p)

⎛
⎝ M∑

k=1

|zk|pE(|ξ1|p) +

(
M∑

k=1

z2
kE(ξ21)

)p/2
⎞
⎠

≤ C(p)
(
ME(|ξ1|p) +Mp/2

(
E(ξ21)

)p/2
)
.(4.1)

Further,

E(|ξ1|p) =
1
M

M∑
n=1

|g(n)|p ≤ 1
M

(
M∑

n=1

g(n)2
)p/2

= Mp/2−1
(
E(ξ21)

)p/2
.
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After substitution of the last inequality into (4.1) we get

E

(∣∣∣∣∣
M∑

k=1

ξkzk

∣∣∣∣∣
p)

≤ 2C(p)Mp/2
(
E(ξ21)

)p/2
.

Finally, if the numbers z1, . . . , zM are complex then

E

(∣∣∣∣∣
M∑

k=1

ξkzk

∣∣∣∣∣
p)

≤ 2pE

(∣∣∣∣∣
M∑

k=1

ξkzk

∣∣∣∣∣
p)

+ 2pE

(∣∣∣∣∣
M∑

k=1

ξk�zk

∣∣∣∣∣
p)

≤ 2p+2C(p)Mp/2
(
E(ξ21)

)p/2
,

and the lemma is proved.

We will need some properties of random trigonometric polynomials.

Lemma 4.2. Let b = (b1, . . . , bM) be real numbers such that
∑M

k=1 bk = 0. Then

E‖
M∑

k=1

bηk
eikx‖p

p ≤ C(p)‖b‖p
�2
.

Proof. We use Lemma 4.1 with g: g(n) = bn, zn = einx, n = 1, . . . ,M . We get by Lemma
4.1 for each x

E|
M∑

k=1

bηk
eikx|p ≤ C1(p)Mp/2(E(ξ21))p/2.

Therefore,

E‖
M∑

k=1

bηk
eikx‖p

p = ‖E|
M∑

k=1

bηk
eikx|p‖1 ≤ C1(p)Mp/2(E(ξ21))p/2.

We have

E(ξ21) =
1
M

M∑
n=1

b2n = ‖b‖2
�2/M.

This completes the proof of Lemma 4.2.

For a given a = (a1, . . . , aM ) consider the following random polynomials

taI (x) :=
∑
ηk∈I

aηk
eikx − sIDM (x)/M

where I ⊆ [1,M ] is an interval and

sI :=
∑
n∈I

an; DM (x) :=
M∑

k=1

eikx.

Below we use the notation log for logarithm with the base 2.
15



Lemma 4.3. We have for any A > 0, M ≥ 8,

P{ max
I⊆[1,M ]

‖taI‖p ≤ A1/p3 logM‖a‖�2} ≥ 1 − C2(p)A−1 logM.

Proof. First, by Lemma 4.2 with bn = anχI(n) − sI/M , n = 1, . . . ,M , we obtain

E‖taI‖p
p ≤ C(p)(

M∑
n=1

b2n)p/2.

Next,

M∑
n=1

b2n ≤
M∑

n=1

2((anχI(n))2 + (sI/M)2) = 2(
∑
n∈I

a2
n +M(

∑
n∈I

an)2M−2) ≤ 4
∑
n∈I

a2
n.

Hence,
E‖taI‖p

p ≤ 4C(p)(
∑
n∈I

a2
n)p/2.

Denote I(j, l) := (2j l, 2j(l + 1)] ∩ [1,M ], j = 0, . . . , J , l = 0, 1, . . . with J := [logM ] + 1.
Then for any j ∈ [0, J ]

∞∑
l=0

E‖taI(j,l)‖p
p ≤ 4C(p)

∞∑
l=0

(
∑

n∈I(j,l)

a2
n)p/2 ≤ 4C(p)‖a‖p

�2
.

Using Markov’s inequality: for any nonnegative random variable X , and t > 0

P{X ≥ t} ≤ E(X)/t

we get for each j ∈ [0, J ]

P{
∞∑
l=0

‖taI(j,l)‖p
p ≥ A‖a‖p

�2
} ≤ 4C(p)/A.

Since every interval I ⊆ [1,M ] with integer endpoints can be represented as a union of at
most 2J + 1 disjoint dyadic intervals I(j, l) we obtain

P{ max
I⊆[1,M ]

‖taI‖p ≤ A1/p(2 logM + 3)‖a‖�2} ≥ 1 − 4C(p)(logM + 2)/A.

Lemma 4.3 is proved.
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Lemma 4.4. Let a1 > a2 > · · · > aM ≥ 0. Then for each n ∈ [1,M ]

P{||{k : aηk
≥ an}| − n| ≥M1/2 logM} ≤ 2e−C(log M)2 .

Proof. We use the probabilistic Bernstein inequality. If ξ is a random variable (a real valued
function on a probability space Z) then denote

σ2(ξ) := E(ξ − E(ξ))2.

The probabilistic Bernstein inequality states: if |ξ − E(ξ)| ≤ B a.e. then for any ε > 0

Pz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp
(
− mε2

2(σ2(ξ) +Bε/3)

)
.

We define a random variable β as follows

β(k) = 1 if aηk
≥ an; β(k) = 0 otherwise.

Then
P{β(k) = 1} = P{ηk ∈ [1, n]} = n/M.

Also
E(β) = n/M ; σ2(β) = (1 − n/M)n/M ≤ 1/4,

and

|{k : aηk
≥ an}| =

M∑
k=1

β(k).

Applying the Bernstein inequality for β with m = M and ε = M−1/2 logM we obtain
Lemma 4.4.

It will be convenient for us to use the following direct corollary of Lemma 4.4.

Lemma 4.5. Let a1 > a2 > · · · > aM ≥ 0. Then

P{ max
1≤n≤M

||{k : aηk
≥ an}| − n| ≥M1/2 logM} ≤ 2Me−C(log M)2 .

We will now consider some specific polynomials that will be used as building blocks of
a counterexample. For a given p ∈ (2,∞) we take γ ∈ (max(3/4, 2/p), 1). For M ∈ N we
denote m1 := m1(M) := [Mγ ] + 1. Let m2 := m2(M) be such that

(4.2)
m2−1∑
n=1

(n+m1)−1 <
1
2

M∑
n=1

(n+m1)−1 ≤
m2∑
n=1

(n+m1)−1.
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We define an := an(M) := (n+m1)−1 for 1 ≤ n ≤ m2, and an := an(M) := −(n+m1)−1

for m2 < n ≤M . We consider the following random trigonometric polynomials

PM (x) :=
M∑

k=1

aηk
eikx.

We also need some polynomials associated with PM . For arbitrary integers n1 and n2,
0 ≤ n1 < n2 ≤M , we define I := (n1, n2],

SI := Sn1,n2 :=
n2∑

n=n1+1

an.

We consider the following function g : {1, . . . ,M} → R:

g(n) =
{
an − SI/M, n ∈ I;
−SI/M, otherwise,

the following random variable ξk = g(ηk), (1 ≤ k ≤ M), and the random trigonometric
polynomial

taI (x) =
M∑

k=1

ξke
ikx.

It is easy to see that

(4.3) PI(x) :=
∑
ηk∈I

aηk
eikx = taI (x) + SIDM (x)/M.

We need the following well-known lemma.

Lemma 4.6. Let

DM (x) =
M∑

k=1

eikx

Then
C2M

1−1/p ≤ ‖D‖p ≤ C3M
1−1/p

for some positive C2 = C2(p) and C3 = C3(p).

Applying Lemma 4.3 with A = (logM)2 we obtain

(4.4) P{ max
I⊆[1,M ]

‖taI‖p ≤ 3(logM)2m−1/2
1 } ≥ 1 − C2(p)/ logM.

By Lemma 4.5

(4.5) P{ max
1≤n≤M

||{k : |P̂M (k)| ≥ (m1 + n)−1}| − n| ≥M1/2 logM} ≤ 2Me−C(log M)2 .
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Therefore, forM ≥M0(p) there exists a realization aη1 , . . . , aηM
such that for the polynomial

PM we have: for any I ⊆ [1,M ]

(4.6) ‖taI‖p ≤ 3(logM)2M−γ/2

and for any n ∈ [1,M ]

(4.7) ||{k : |P̂M (k)| ≥ (m1 + n)−1}| − n| ≤M1/2 logM.

We will use polynomials satisfying (4.6), (4.7). We also need some other properties of these
polynomials. We begin with two simple properties:

(4.8) ‖PM‖p ≤ 3(logM)2M−γ/2 + C(p)M−1/p−γ

and for I = (n1, n2]

(4.9) ‖PI‖p ≤ 3(logM)2M−γ/2 + CM−1/p(ln(m1 + n2) − ln(m1 + n1)).

The estimate (4.8) follows from (4.3) with I = [1,M ], (4.6), Lemma 4.6, and (4.2). The
estimate (4.9) follows from (4.3), (4.6), Lemma 4.6, and the inequality

|SI | ≤
∑
n∈I

(n+m1)−1 ≤ C(ln(m1 + n2) − ln(m1 + n1)).

Let ε0 := (m1 +m2)−1. Then

Tε0(PM ) =
∑

ηk∈[1,m2]

aηk
eikx = P[1,m2].

Using (4.3), Lemma 4.6, and (4.6) we obtain

(4.10) ‖Tε0(PM )‖p ≥ C1S[1,m2]M
−1/p − 3(logM)2M−γ/2 ≥ C2M

−1/p lnM

provided M ≥M1(p, γ).
We now estimate from above the ‖Tδ(PM ) − Tε(PM )‖p for arbitrary ε > δ > 0. It is

clear that it is sufficient to consider the case a1 ≥ ε > δ ≥ |aM |. We define the numbers
1 ≤ n1 ≤ n2 ≤M as follows

|an1 | ≥ ε > |an1+1|, |an2 | ≥ δ > |an2+1|

(we set aM+1 := 0). Let I = (n1, n2]. Then

Tδ(PM ) − Tε(PM ) = PI .
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By (4.9) we get

(4.11) ‖Tδ(PM ) − Tε(PM )‖p ≤ 3(logM)2M−γ/2 + CM−1/p(ln ε− ln δ).

We note that the condition δ ≥ ε1+α implies

(4.12) ‖Tδ(PM ) − Tε(PM )‖p ≤ 3(logM)2M−γ/2 + CαM−1/p logM.

We now set εn := |an| and estimate ‖Gn(PM ) − Tεn
(PM )‖p. We have

Tεn
(PM ) = P[1,n].

Let
Gn(PM ) =

∑
k∈Λn

P̂M (k)eikx, |Λn| = n,

and let In be such that
Tεn

(PM ) =
∑
k∈In

P̂M (k)eikx.

It is clear that we have either Λn ⊆ In or In ⊆ Λn. Hence, for

Zn := (Λn \ In) ∪ (In \ Λn)

we get
|Zn| ≤ ||Λn| − |In||.

By property (4.7) we obtain
|Zn| ≤M1/2 logM,

and

(4.13) ‖Gn(PM ) − Tεn
(PM )‖p ≤ C(M1/2 logM)1−1/pM−γ .

We now take two numbers 1 ≤ n < m ≤ M and estimate ‖Gm(PM ) − Gn(PM )‖p. By
(4.13) we have

(4.14) ‖Gm(PM ) −Gn(PM )‖p ≤ 2C(M1/2 logM)1−1/pM−γ + ‖Tεm
(PM ) − Tεn

(PM )‖p.

Using (4.11) we continue

(4.15) ≤ 2C(M1/2 logM)1−1/pM−γ + 3(logM)2M−γ/2

+C1M
−1/p(ln(m+m1) − ln(n+m1)).
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Proof of Theorem 4.1. We define two sequences of natural numbers. Let M1 be a big enough
number to guarantee that there are polynomials PM , M ≥M1, satisfying (4.6)–(4.15). For
ν ≥ 1 we define

Mν+1 = 4M2
ν .

We define N1 = 0 and for ν ≥ 1 we set

Nν+1 = Nν +Mν .

Let

(4.16) f(x) :=
∞∑

µ=1

M1/p
ν (logMν)−1eiNνxPMν

(x).

It follows from (4.8) and the inequality γ > 2/p that the series (4.16) converges in the Lp

norm. It follows from (4.10) that the statement 2) from Theorem 4.1 is satisfied. We now
proceed to the proof of part 1) of Theorem 4.1. Let Λ := Λj , Y := Yj , ε := εj , δ := δj be
from Theorem 4.1. We assume that j is big enough to guarantee that |Y | ≤ |Λ|2 and δ ≥ ε2.
Denote

Uν := ∪ν
µ=1(Nµ, Nµ +Mµ].

We note that
min

k∈(Nν ,Nν+Mν ]
|f̂(k)| > max

k∈(Nν+1,Nν+1+Mν+1]
|f̂(k)|.

Let ν be such that
Uν−1 ⊂ Λ ⊆ Uν .

We will prove that Y ⊆ Uν+1. Indeed, if to the contrary Uν+1 ⊂ Y then

|Y | ≥Mν+1 ≥ 4M2
ν ; |Λ| ≤

ν∑
µ=1

Mµ < 2Mν

which contradicts to |Y | ≤ |Λ|2. Also, Uν+1 ⊂ Y implies

(4.17) δ ≤M
−γ+1/p
ν+2 (logMν+2)−1

and Λ ⊆ Uν implies that

(4.18) ε ≥M1/p
ν (logMν)−1(2Mν)−1.

The relations (4.17) and (4.18) for big ν contradict to our assumption that δ ≥ ε2. Thus
we have Y ⊆ Uν+1. There are two cases: Y ⊆ Uν or Uν ⊂ Y . In both cases the proof is
similar. Let us begin with the first one: Y ⊆ Uν . In this case

SY (f) − SΛ(f) = M1/p
ν (logMν)−1eiNνx(SY ′(PMν

) − SΛ′(PMν
))
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where Λ′ := {k −Nν , k ∈ Λ}, Y ′ := {k −Nν , k ∈ Y }. By (4.12) we get

(4.19) ‖SY (f) − SΛ(f)‖p = o(1)

if δ = ε1+o(1). By (4.14)–(4.15) we also obtain (4.19) if |Y | = |Λ|1+o(1). This completes the
proof of 1) from Theorem 4.1 in the first case.

We now proceed to the second case: Uν ⊂ Y ⊆ Uν+1. This case reduces to the first one
by rewriting

SY (f) − SΛ(f) = SY (f) − SUν
(f) + SUν

(f) − SΛ(f).

The proof of Theorem 4.1 is complete.

5. Necessary and sufficient conditions in the case p = ∞

If W is any set and f : W → W is any operator then by fk (k ∈ N) we denote the k-fold
iteration of f .

Theorem 5.1. Let α : N → N be strictly increasing. Then the following conditions are
equivalent:
a) for some k ∈ N and for any sufficiently large m ∈ N we have αk(m) > em;
b) if f ∈ C(T) and

(5.1)
∥∥Gα(m)(f) −Gm(f)

∥∥
∞ → 0 (m→ ∞)

then

(5.2) ‖f −Gm(f)‖∞ → 0 (m→ ∞).

Proof. 1) a) implies b). Denote γ = α2k. Then

(5.3) γ(m) > eem

(m ≥ m0).

Let f ∈ C(T) and let (5.1) hold. Then

(5.4)
∥∥Gγ(m)(f) −Gm(f)

∥∥
∞ → 0 (m→ ∞).

Let us estimate ‖Vm(f) −Gm(f)‖∞, where Vm(f) is the de la Vallée Poussin sum

Vm(f) =
∑

|k|≤2m

min
(

1,
2m− |k|

m

)
f̂(k)eikx.

For m ≥ m0 we denote

h1 := Gm(f)− Vm(f), h2 := Gγ(m)(f)−Gm(f), h3 := Gγ(m)(f), h4 := f −Gγ(m)(f).
22



It will be convenient for us to use the following notation

‖f‖�̂∞ := ‖{f̂(k)}‖�∞ := sup
k

|f̂(k)|.

We have

(5.5) inf
ĥ3(k)�=0

|ĥ3(k)| ≤ ‖h3‖2(γ(m))−1/2 ≤ ‖f‖2e
−em/2,

and, hence,

(5.6) ‖h4‖�̂∞ ≤ ‖f‖2e
−em/2.

By Theorem 2.1 with K = 2, we get

‖h1 + h4‖∞ ≥ ‖h1‖∞/4 − eCm‖h4‖�̂∞ .

By (5.6), we obtain

‖h1 + h4‖∞ ≥ ‖h1‖∞/4 − o (1) (m→ ∞).

Therefore, using (5.4), we have for m→ ∞

‖h1‖∞ ≤ 4‖h1 + h4‖∞ + o (1) = 4‖f − Vm(f) − h2‖∞ + o (1) = o(1).

We have used above the well known fact that ‖f − Vm(f)‖∞ → 0 with m → 0 (see
[14,Chap.3,S.13]). Using it again we complete the proof of the first implication: a) implies
b).

2) b) implies a). We assume that a function α does not satisfy a), and we shall show that
b) does not hold. If α is identical on N, then the statement trivially follows from existence
of a continuous function with divergent greedy approximations. Otherwise there is m0 ∈ N

such that α(m0) �= m0. Since α is strictly increasing, we have α(m0) > m0 and, moreover,
α(m) > m for m ≥ m0. Let mj = αj(m0) = α(mj−1) for j ∈ N. Then the sequence
{mj} is strictly increasing. Moreover, the sequence {mj+1 −mj} is nondecreasing. By our
supposition, for any k ∈ N there is m > m0 such that αk+1(m) < em. Let mj−1 < m ≤
mj . Then αk+1(m) > mj+k and thus, mj+k < emj . Therefore, there is an unbounded
nondecreasing function τ : N → N such that for infinitely many j ∈ N we have

(5.10) mj < emj−τ(j) , τ(j) < j.

Define a sequence {An}. Let An = 1 for n ≤ m1 and An = (τ(j))−1(mj+1 − mj)−1 for
mj < n ≤ mj+1. Clearly {An} is nonincreasing. Then we have

mj∑
n=mj−τ(j)+1

An =
j−1∑

i=j−τ(j)

mi+1∑
n=mi+1

An =
j−1∑

i=j−τ(j)

τ(i)−1 ≥
j−1∑

i=j−τ(j)

τ(j)−1 = 1.

23



If, moreover, j satisfies (5.10), then for M = mj−τ(j) we get

∑
M<n≤eM

An ≥ 1.

We now use Theorem 4 from [10] (see Theorem 3 from Introduction): there is a function
f ∈ C(T) such that an(f) ≤ An and (5.2) fails. We take m > m1 and let mj < m ≤ mj+1.
We have

‖Gα(m)(f) −Gm(f)‖ ≤
α(m)∑

n=m+1

an(f) ≤
mj+2∑

n=mj+1

An

= τ(j)−1 + τ(j + 1)−1 = o(1) (m→ ∞).

This completes the proof of the theorem.

Theorem 5.2. Let β : (0,+∞) → be a nondecreasing function such that

(5.11) lim sup
ε→0+

β(ε)/ε < 1.

Then the following conditions are equivalent:
a) for some k ∈ N and for any sufficiently large u > 0 we have βk(1/u) < e−u;
b) if f ∈ C(T), and

(5.12)
∥∥Tβ(ε)(f) − Tε(f)

∥∥
∞ → 0 (ε→ 0)

then

(5.13) ‖f − Tε(f)‖∞ → 0 (ε→ 0).

Proof. 1) a) implies b). Denote γ = β2k. Then

(5.14) γ(1/u) < e−eu

(u ≥ u0).

Let f ∈ C(T) satisfy (5.12). Then

(5.15)
∥∥Tγ(ε)(f) − Tε(f)

∥∥
∞ → 0 (ε→ 0).

For ε ≥ ε0 we denote m(ε) := [1/ε] and

h1 := Tε(f) − Vm(ε), h2 := Tγ(ε)(f) − Tε(f), h3 := Tγ(ε)(f), h4 := f − Tγ(ε)(f).

We have

|{k : ĥ1(k) �= 0}| ≤ |{k : T̂ε(f)(k) �= 0}| + 4m(ε) ≤ ‖f‖2
2/ε

2 + 4m(ε).
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The rest of the proof for the implication a)→ b) repeats the proof for the same implication
in Theorem 5.1.

2) b) implies a). We assume that a function β does not satisfy a), and we shall show that
b) does not hold. By supposition (5.11), there are numbers θ < 1 and ε0 > 0 such that

β(ε) ≤ θε (0 < ε ≤ ε0).

For j ∈ N denote εj = βj(ε0) = β(εj−1). We have

(5.16) εj ≤ θεj−1.

By our assumption, for any k ∈ N there is ε < ε0 such that βk+1(ε) ≥ e−1/ε. Let εj−1 ≥
ε > εj . Then βk+1(ε) ≤ εj+k and thus, εj+k > e−1/εj . Therefore, there is an unbounded
nondecreasing function τ : N → N such that for infinitely many j ∈ N we have

(5.17) εj > e−1/εj−τ(j) .

Also, we can assume that the inequality

(5.18) τ(j) ≤ j

holds for all j. Let

mj :=
[

1
εjτ(j)

]
, Mj :=

j∑
i=1

mi.

We set M0 := 0. Let us estimate Mj from above and from below. We have

Mj ≤
j∑

i=1

1
εj
,

and, by (5.16),

(5.19) Mj ≤ 1
(1 − θ)εj

.

Also, (5.16) and divergence τ(j) to ∞ as j → ∞ imply

(5.20) Mj = o
(
ε−1
j

)
(j → ∞).

By (5.16), for sufficiently large j we have εj < j−2/4, and, taking into account (5.18) we get

(5.21) mj ≥ 1
2εjτ(j)
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and also

(5.22) Mj ≥ mj ≥ (εj)−1/2.

Now define a sequence {An} as An = εj for Mj−1 < n ≤Mj. If j − τ(j) is large enough
(observe that this is true if j is large itself and (5.17) holds), then, by (5.21), we have

Mj∑
n=Mj−τ(j)+1

An =
j−1∑

i=j−τ(j)

Mi+1∑
n=Mi+1

An =
j−1∑

i=j−τ(j)

miεi(5.23)

≥
j−1∑

i=j−τ(j)

(2τ(i))−1 ≥
j−1∑

i=j−τ(j)

(2τ(j))−1 =
1
2
.

We now assume that (5.17) holds and denote ε := εj−τ(j). Using (5.17), (5.19), and (5.22),
we have

Mj <
e1/ε

1 − θ
, Mj−τ(j) ≥ ε−1/2.

Therefore, if j is large enough (and, thus, ε is small), we have

Mj < exp
([

exp(Mj−τ(j))
])
.

We now take M equal to one of the numbers

Mj−τ(j),
[
exp(Mj−τ(j))

]
.

Then by (5.23) we get the inequality

∑
M<n≤eM

An ≥ 1/4.

Similarly to the proof of Theorem 5.1 we now use Theorem 3: there is a function f ∈ C(T)
such that an(f) ≤ An and (5.2) fails. We shall take sufficiently small ε and estimate
‖Tβ(ε)(f) − Tε(f)‖∞. Let εj−1 > ε ≥ εj . We have

‖Tβ(ε)(f) − Tε(f)‖∞ ≤
∑

β(ε)≤|f̂(k)|<ε

|f̂(k)| ≤
∑

εj+1≤|f̂(k)|<εj−1

|f̂(k)|(5.24)

≤ Σ1 + Σ2,

where
Σ1 =

∑
n>Mj−1,

εj+1≤an(f)<εj−1

an(f),
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Σ2 =
∑

n≤Mj−1,
εj+1≤an(f)<εj−1

an(f).

We observe that in the case n > Mj+1

an(f) ≤ An < εj+1.

Hence,

Σ1 =
∑

Mj−1<n≤Mj+1,
εj+1≤an(f)<εj−1

an(f) ≤
∑

Mj−1<n≤Mj+1

an(f)(5.25)

≤
∑

Mj−1<n≤Mj+1

An = mjεj +mj+1εj+1 ≤ τ(j)−1 + τ(j + 1)−1 → 0 (j → ∞).

Further, by (5.20),

(5.26) Σ2 <
∑

n≤Mj−1

εj−1 ≤Mj−1εj−1 → 0 (j → ∞).

Thus, by (5.24)–(5.26),

(5.27) lim
ε→0

‖Tβ(ε)(f) − Tε(f)‖∞ = 0,

and (5.12) holds. Moreover, (5.27) clearly implies that

lim
δ→0

∑
|f̂(k)|=δ

|f̂(k)| = 0,

and thus for f convergence of greedy and thresholding approximations are equivalent. But
we know that (5.2) fails. Therefore, (5.13) does not hold either. Theorem 5.2 is proved.
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