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Abstract

We present a general method for construction of frames {¢s}rep
for Triebel-Lizorkin and Besov spaces, whose nature can be prescribed.
In particular, our method allows for constructing frames consisting of
rational functions or more general functions which are linear com-
binations of a fixed (small) number of shifts and dilates of a sin-
gle smooth and rapidly decaying function 6 such as the Gaussian
0(x) = exp(—|z|?). We also study the boundedness and invertibil-
ity of the frame operator Sf =  ;.p (f,%r1)¥r on Triebel-Lizorkin
and Besov spaces and give necessary and sufficient conditions for the
dual system {S~!4};cp to be a frame as well.

1 Introduction

Frames were introduced in the early 1950’s by Duffin and Schaeffer [DS] as
a means for studying the convergence and summability properties of non-
harmonic Fourier series. Since then frames have attracted a lot of atten-
tion, which is partly due to their numerous applications in Signal analysis,
Fourier analysis and Approximation theory. In particular, Gabor frames
have been used for time-frequency analysis of functions (signals) (see [FG2]),
while wavelet-type frames have been used in statistics, image processing, and
nonlinear approximation (see e.g. [De, Do)).

Let (H,(-,-)) be a separable Hilbert space. A countable family of func-
tions ¥ C H is called a frame for H if there exist constants A, B > 0 such

*This author was supported by NSF Grant DMS-0200665.



that for all f € H

AlfIE < D WA < Bl

Yew

It is not hard to prove that the frame operator S : H — H defined by

SF=Y (f,v)

Yevw

is a bounded linear operator and Al < S < BI; hence S is self-adjoint.
Consequently, S is invertible and B—'1 < S—! < A~'I. Moreover, the family
S := {S Y }yey is a frame for H as well.

Further, for every f € H

F=881f=> (f,S ). (1.1)

pew

Thus ¥ provides a stable representation of all f € H; it acts like a Riesz basis.
However, unlike bases, in general, ¥ is redundant. Thus representation (1.1)
is not necessarily unique. In many application this redundancy turns out to
be of an advantage since it provides extra flexibility. We refer the reader
to [HW] for a more detailed overview of the basic properties of frames for
Hilbert spaces.

In the late 1980’s it was recognized that certain elements of the ab-
stract theory on Hilbert spaces could be extended to more general settings.
Grohenig [G], building upon the theory of the so called coorbit spaces and
using group theoretic techniques, introduced frames for Banach spaces which
included the modulation spaces and the Besov-Triebel-Lizorkin spaces (see
also [FG1]).

Suppose that X is a quasi-Banach space and let Y be an associated
sequence space. We say that a countable family of functions ¥ in the dual
X* of X is a frame for X if there exist constants A, B > 0 such that for all
feX

Alfllx < 10F ) wewlly < Bllflx,

where (f, ) :=¢(f).

Our goal in this article is to develop a general method for construction
of frames for homogeneous Triebel-Lizorkin and Besov spaces. An obvious
modification of this method (which will not be considered here) produces
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frames for inhomogeneous Triebel-Lizorkin and Besov spaces as well. Our
method utilizes a specific small perturbation principle which allows for a lot
of flexibility. Thus the main feature of our method is that the nature of
the frame elements can be prescribed. In particular, if 6 is a sufficiently
smooth and rapidly decaying function on R?¢, then our method allows for
constructing a frame consisting of functions which are linear combinations of
a fixed (small) number of shifts and dilates of §. Typical examples of such
functions are (z) = exp(—|z|?) and 6(z) = (1+|z|?)~". For construction of
bases this method was first introduced in [Pet] and further generalized and
refined in [KP].

Frames for Triebel-Lizorkin-Besov spaces can be valuable if the repre-
sentation (1.1) holds; this is no longer a byproduct of the general theory.
Moreover, it is important to know whether the membership of a distribution
f to a certain Triebel-Lizorkin or Besov space can be characterized by the
frame coefficients (f, S™!¢),v € ¥, i.e., if ST'V is a frame itself. These are
the primary objectives of our development of new frames in this article.

To better describe our results we begin with the introduction of some
standard notation. As is customary we denote by S := S(R?) the Schwartz
space of infinitely differentiable, rapidly decreasing functions on R? and by
S = S'(RY) its dual, the space of tempered distributions. We also denote
by &'/P the space of equivalence classes of distributions in S’ modulo poly-
nomials, and by S, its dual (for more details and references we refer the
reader to [K]).

We let D denote the family of all dyadic cubes in R¢ and let D,,, m € Z,
be the collection of all cubes I € D of side-length ¢(I) = 27™. For any dyadic
cube I € D, we use z; to denote its lower-left corner and |I| for its volume.
For any f € ', we define

)=l (), (12)

where the dilation and translation are considered in distributional sense.

As usual the Fourier transform f of an integrable function f is defined
by f(§) = [ga f(z)e ™ dz and can be extended by duality uniquely from
S to 8. Finally, we use (f,n) for the standard inner product [ f7 of two
functions (whenever this makes sense) and the same notation is employed for
the action of a distribution f €S on 7 € S.



1.1 Frames for homogeneous Triebel Lizorkin and Besov
spaces
Choose an arbitrary function ¢ € S so that supp ¢ C {£: 271 < |¢] < 2}
and |P(€)] > ¢ > 01if 3/5 < |£] < 5/3, and define ¢, () := 2% p(2"-).
For s € R, 0 <p < o0, 0 <g < o0, the homogeneous Triebel- Lizorkin
space F}; is defined as the set of all f € S'/P such that

1l = 12w £ )], < o0
VEZL

with the usual modification when ¢ = oco. By interchanging the roles of
integration and summation we get the homogeneous Besov spaces, that is,
for s € R, 0 <p,q < oo, By, is defined as the set of all f € §'/P such that

Bs, *— (Z [2us

vEZ

/]

Pu * fHLp}q)l/q < 0o.

It can be shown that the above definitions of Triebel-Lizorkin and Besov
spaces are independent of the specific selection of ¢ (see e.g. [T]).

Note that the F- and B-spaces are quasi-Banach spaces (Banach spaces if
p,q > 1) and by varying the indexes s, p, ¢ one can recover from them most of
the classical spaces (see e.g. [T]). In particular, F192 ~ L, if 1 <p < oo, and
Fz?2 ~ H, (the Hardy space) if 0 < p < 1. Also, for s > 0, 1 < p < o0, sz2
coincides with the potential space H, and for integer values of s, F;2 ~ Wy,
the Sobolev space equipped with its seminorm. Here ~ means that the spaces
have equivalent (quasi-)norms.

Now, let ¢ € S satisfy

(i) supp g C {€: 271 < |¢] < 2},
(11) |P(&)| = > 0if 3/5 < |¢] < 5/3,

(1.3)
i) SI@OP =1, €40
vEZ
By (1.3(iii)) it readily follows that for f € S'/P,
Y buxouxf=F  Glx) =0 () (1.4)

vEZ



in distributional sense. Identity (1.4) is the so called Calderén’s reproducing
formula. Using techniques reminiscent of the Shannon sampling theorem and
expanding @, * ¢, * f, one can further show [FJ2] that for all f € §'/P,

F=Y (e (1.5)

1€D

where @g(+) := |[|_1/2g0(%) (see (1.2)).
The F- and B-spaces are naturally characterized by the sequence spaces

;q and bf)q defined as follows: For s € R, 0 < p < 00, and 0 < ¢ < o0,

foi=1{h = (hi)iep : ||

3 < b

where

1

i = IO g 1)),

IeD

Similarly, for s € R and 0 < p, g < o0,

b5, = {h = (hp)iep : ||h

b, < 0%

where

1A

bs, = (Z Z( Z (|[|*S/d+1/p71/2|hle|)P)Q/p)1/q‘

e€el meZ I€Dy,

A fundamental result due to Frazier and Jawerth [FJ1, FJ2] says that
the family ® := {¢;}1ep is a frame for both the Triebel-Lizorkin and Besov
spaces: If s e R, 0 < p < o0, and 0 < ¢ < 00, there exist constants ¢y, co > 0
such that for f € F;q,

cil £l

ig, < ICF il gy, < call iy, (1.6)
Similarly, if s € R, and 0 < p,q < oo, then for f € B;

el f]

q’

By (1.7)

By, SN er)alliy, < call £

1.2 The construction of new frames

The construction of affine frames in the literature follows in the footsteps of
the main scheme for constructing wavelet bases, namely, by making use of



the notion of a Multiresolution analysis (see e.g. [BL]). As a consequence,
most of the constructed frames are of a very particular nature.

Here instead we propose a method for constructing frames based on the
idea of the small perturbation principle. The starting point of our method
is the selection of a frame ® := {pr};ep such as the Frazier-Jawerth frame
described above, consisting of sufficiently smooth and rapidly decaying func-
tions. Then the main step of our scheme is to approximate every frame
element ; of ® by a function 1, of the new system ¥ := {¢1}1ep.

The grand question is: What kind of approximation should be used in this
construction in order that the new system VU be a frame for the spaces of
interest?

Following the idea introduced in [Pet| and further developed in [KP],
we propose the following approximation scheme: For suitable values of the
parameters €, 7, k, M > 0 we require that all ¥; in ¥ satisfy the conditions:

Al.

17 (@) =0 @)] < el e e — ) ol <
A2.

/ 2*Yy(x)de =0, |of < k.

Rd

For simplicity we shall assume in the following that & is the Frazier-
Jawerth frame described above. However, any other frame consisting of
sufficiently smooth and rapidly decaying functions with enough vanishing
moments can do the job.

We shall prove in Theorem 3.1 that if ¢ > 0 is sufficiently small and
r, k, M are sufficiently large (depending on s,p, q), then the family ¥ is a
frame for the Besov-Triebel-Lizorkin spaces. The questions that naturally
arise here are, whether S~V is a frame itself and if the representation

F=Y (.5 e (1.8)

holds? It turns out that the key to both questions is the boundedness of the
operator with matrix

B = (bry)r,5ep, where bry:= (05,5 "¥1),
on

e (o1 qu). As we show in Theorem 3.3 the boundedness of B is a
necessary and sufficient condition for S™'¥ to be a frame for the Triebel-
Lizorkin and Besov spaces. Moreover, the same condition guarantees that
(1.8) holds in distributional sense.

S



Since the family ® is generated by dilations and shifts of a single function

v, it suffices to approximate ¢ by a function 1 satisfying the conditions:
B1.

@ (@) — @ (@) <e(1+]e) ™", |af <
B2.
/ *Y(x)de =0, |a <k.
Rd

After that we define the new system ¥ by U := {¢;};cp (see (1.2)). Then
by dilation and translation it follows that ¥ satisfies A1-2.

The construction of functions 1 satisfying B1-2 has been explored in
[KP]. In particular, it is shown that if § is an arbitrary sufficiently smooth and
rapidly decaying function on R¢, then one can devise 9 satisfying B1-2 using
a finite linear combination of shifts and dilates of §. Typical examples include
the rational function 6(-) := (1 +]-|?)~" and the Gaussian 0(-) := e~

2 Auxiliary results

In this section we present some basic results concerning the algebra of almost
diagonal operators on qu and bs and their interplay with the study of the
boundedness of linear operators on Triebel-Lizorkin and Besov spaces. These
results have been established by Frazier and Jawerth within the framework
of the so-called ¢-transform (see [FJ1, FJ2, FJW]) and will be needed for
our developments in the next section.

Let A be a linear operator acting on f;q or B;q with associated matrix

(ars)ryep. We say that A is almost diagonal on f;q or b;q if there exist 6 > 0
and ¢ > 0 such that

lars| < ews(I,J), I,J €D,

with

s <(?)8(”maf{jé(_f‘ef('tf)})#a

X mm{< T ED T

where J := d/ min{1,p, ¢} for f* , and J := d/min{1, p} for Ef,q
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We denote by ad;, the collection of all almost diagonal operators on ;q
or bzq. It turns out that ad,, is closed under composition and therefore it
is an algebra. Moreover, almost diagonal operators are bounded on 5(1 and
by
Proposition 2.1. Let s € R, 0 < p,qg < oo and A € ad;,. Then A is

bounded on by, and, if p < oo, on f, .

It is not hard to construct almost diagonal operators for the f- or b-
spaces. Consider for instance the following construction: Let J be as above
and N := max{[J —d—s|, —1}. Suppose that for some M > max{7,d+ s},
k > [s], and r > N, the functions {b;};ep satisfy the conditions

|b3a)($)| < C|I|71/2*|a\/d(1 + K(I)fl|$ _ x1|)_M, lal <7, (2.1)

/ z%br(x)de =0, |a| <k, (2.2)
Rd
where (2.2) is void if s < 0, then the operator A with matrix

A = (ars)1,5ep, Wwhere ary:= (¢s,b1), (2.3)

is almost diagonal on ';q or b;q.

An important consequence of the boundedness of A is that the family
{br}1ep is a norming family for the Triebel-Lizorkin and Besov spaces, that
is, for all f € F;q

1({f, )1

s, < el (2.4

b
qu

and similarly for f € B;q

1({f, b))

b, < c”f“ng- (2.5)

We say that {m;}ep is a family of smooth molecules for Fpsq or B;q if for
somer > [s], k >N, and M > 7,

s ()] < el 72 (14 61 o — )TN, (2.6)

|m3a)($)| < C|I|71/2*|a\/d(1 + K(I)fl|$ _ x1|)_M, lal <7, (2.7)

/ z*mr(z)dx =0, |a <k, (2.8)
Rd



where (2.7) is void if s < 0.
Similarly as above, molecules give rise to almost diagonal operators. For
instance, the operator C with matrix

C= (CIJ)I,JeDa where cry = <mJ, <PI>, (2-9)

is almost diagonal on .Ifq and b;,q. Consequently, for every sequence (s7); €

Foa>

H ZS[m]H . S CH(SI)I f's s (210)
7 Fq -
and similarly if (s;); € bf,q, then
‘ les,m, 5, < ol (2.11)

Let us now assume that 7" is a continuous linear operator from S to S'.
If the operator with matrix

D= (d[J)I,Je'D, where d[J = <Tg0J,()0[>, (212)

is almost diagonal on f;q or bf,q then 7" extends to a bounded operator on F;q
or B;q. Indeed, employing (1.5)-(1.6), we have for f € F;q,

ITfllg, < T o)l = || (D distien))
J

< c|({fs )1 i, = el f]

A similar result holds for Besov spaces as well.

Fpa

s .
qu

3 Main results

We recall some of our notation from the previous section: J := d/ min{1, p, ¢}
in the case of Triebel-Lizorkin spaces, while J := d/min{1,p} for Besov
spaces. Also N := max{[J —d — s|,—1}.

Theorem 3.1. Suppose that s € R, 0 < p,q < oo and let ¥ := {¢;}1ep
satisfy A1-2 for some r > N, k> [s], and M > max{J,d + s}. If e > 0 is
sufficiently small, then there exist constants A, B > 0 such that for f € B,

Alfllg, < ICFen)s

q’

Bs, (3-1)

i, < BIf
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and, if p < oo, for f € F;q,
Alflliy < (60 s (3.2

Proof. We shall prove only (3.2) since (3.1) follows similarly. From A1-2
it follows that W is a norming family for F (see (2.4)), i.e. there exists a

constant B such that for f € F ,

1F 60l g, < BISI

Thus we only have to establish the left-hand-side estimate in (3.2). For
this we note that since (yr) satisfies (2.1)-(2.2) for all » > 0 the family
((¢r — ¥r)e 1) is a norming family as well and, therefore, for some ¢ > 0

||(<f,<PI—¢I>)I

;. < Bl

s .
qu

< el

Fpg
Therefore,

N oDl < eUlCF )il + I o —d)illy, )
< e(|((F $n)illz,, + <l f]

ng)-
Taking now into account that the family ® is a frame, we obtain using (1.6)

el fllzg, < ell((F 90

o eelf

Ey’
Choosing € > 0 sufficiently small, we have A := (¢; — ce)/c > 0 and hence

Alfllgg, < I o)

T’
which completes the proof of the theorem. O

Assume now that U := {¢;}rep is a frame for F;q (or B;q) satisfying
(2.1)-(2.2) (with {b;} replaced by {¢;}) and let k, M, r be sufficiently large.
If k>0, M >d,and r > 0, ¥ constitutes a frame for Fy, = B3, = Ly(R?)
and from the Hilbert space theory we know that the frame operator S :
Ly(R%) — Ly(RY) defined by

Sf=>_(fien)¢r,

1€D
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is self-adjoint and invertible. Moreover, the family S0 := {S 14 },cp is
also a frame for Ly(R?) and for f € Ly(R?),

=Y (5 n)vr.

IeD

We would like to devise conditions on ¥ which would guarantee that
S~ is a frame for the Triebel-Lizorkin and Besov spaces as well. As already
mentioned in the introduction, in essence one has to study the boundedness
of the operator B with matrix

B := (byy)sep, where bry:= (p;, 5 '), (3.3)

on the corresponding sequence spaces.
We first have to give meaning to the coefficients (f, S~'¢). Since S™'W¥
is a frame for Ly(R%), if f € Ly(R?), then f =", (f, vs)ps in La, and hence

<f7571¢1>:Z<f>90J><90J,Sil¢I>’ I'eD. (34)

JeD

Assuming that B is bounded on fgq, (3.4) yields that for f € Ly(R%) N F;q
and I € D,

[(f, S| < I S ™)

i Sel(feilly, < ellfli.  (35)

A similar argument applies to the b;q and B;q spaces as well. Using the
density of Ly(RY) in F;q (or B;q) and a standard argument one now easily
extends the linear functional S—'¢; : f — (f, S 14;) to F;q (or Bf,q).

Lemma 3.2. Suppose that s € R, 0 < p,q < 0o and let U := {¢r}1ep be
a frame for Ly(R?) satisfying (2.6) — (2.8) for some r > [s], k > N, and
M > J. If B is bounded on b, then for f € B,

pg’ q’

F=Y (£S5 ), (3.6)

IeD

in the sense of 8'/P. Similarly, if p < oo and B is bounded on 'Ifq, then
(3.6) holds for f € F;q.

11



Proof. We shall again treat only the case of Triebel-Lizorkin spaces. Since
U is a frame for Ly(R?), we know that for every I € D,

or = Z (01,5 )by

JeD

in Ly (and consequently in distributional sense).

For f € F,,, we have
f= Z fror)yer = ZZ foon{er, S~ ¢J>¢
IeD I€D JED
= Z Z (f,en(en S Wy = Z (f, S ).
JED IED JeD

To justify the shift of the order of the summation we note that since ((f, vr))rep €

»g and B is bounded on f; , the sequence

d:=(ds)jep with dy:= 3.5 (f,en)l(er, S Ys)|

belongs to f,, . Using this fact one easily obtains (see [K], Lemma 4.1) that
for n € Soo,

> " ldgl (s, m)| < oo.

JED
([

Theorem 3.3. Suppose that s € R, 0 < p,q < oo and let ¥ := {¢r}iep
be a frame for Ly(R?) satisfying (2.6) — (2.8) for some r > [s], k > N, and
M > J. Then S~ is a frame for Bg, or qu, when p < oo, if and only if

the operator B defined by (3.3) is bounded on bs respectively.

pq’
Proof. We again treat only the case of Triebel-Lizorkin spaces. Let us first
assume that B is a bounded operator on F;,. We shall prove that there exist

constants A, B > 0 such that for f € F},

Alflsg, < IS Uil < Blfls, (3.7)

The right-hand-side estimate in (3.7) has already been established in (3.5).
We next prove the left-hand-side estimate in (3.7). Consider the operator
C with matrix

C = (CIJ)I,JED7 Where Crjg = <¢J7%0[>‘

12



As in (2.9) we know that C is bounded on f;q. Since

(fror) =2 ep (F, STMs) (g, @1) for I € D, putting cg := ((f, 1)) 1ep and
d:= ((f,S™ 1)) 1ep, We can write

Cd = Cf.
Then

1]

gy, < el(UFpn)illyy, = ellCdly, < elidlyy = el (£, S vl
Assume now that S~1U is a frame for F;q. We claim that the operator B
(see (3.3)) is necessarily bounded on f;, . To see this let (d)rep € f,,- From

(2.10) we know that the distribution f =), ., drpr belongs to F;q and

1Y~ dien|

1€D

s, < ell(@)il . (38)

Since S~'U is a frame for F;,, we also have

1S~ )y < BilS Ny (3.9)

Finally, we use that (f,S™'r) = >, pds{ps, S W) = > ;cpdsbry =
(Bd); and (3.8)-(3.9) to obtain

i = 1A S 00

|Bd

f2a < C||f| Fg, < CHd

e
O

We next prove that if ¥ satisfies A1-2 for sufficiently small £ > 0, then
B is indeed a bounded operator on by, and f; .

Theorem 3.4. Suppose s € R, 0 < p,q < oo, and let U := {1 }1ep be a
family of functions satisfying A1-2 for some r,k > max{[s|,N'} and M >
max{J,d + s}. If € > 0 is sufficiently small, then S~'U is a frame for B;q
and FS | if p < 0.

pg’

Proof. According to Theorem 3.3 we need to establish that for sufficiently
small € > 0 the operator B defined in (3.3) is bounded on f;, or b , respec-
tively.

13



We begin by showing that the operator S~! is bounded on F;q. To this
end it suffices to show that

1= 5]

: s < L.
Fpq—Fpq

In particular, we shall show that there exists a constant ¢ > 0 independent

of € such that for f € F,

11 =5)f]

According to (2.12) it suffices to prove that the operator D with matrix

D= (dIJ)I,JED7 where d[J = <(I - S)SOJ7901>7

(3.10)

hs <
qu

is bounded on and

IDd||;

s
prq

for d € f3,. (3.11)
Using that p; = > (@1, 9Q)pq and Sy =3 4 (p1,¥q)Yq, we have

dry = (I —S)ps 1) = Z (e, La)eq; 1) — Z (01, %q) (Yo, 1)

Q Q
= ) {5, 09){(q — g, o) + > _ (1,09 — ¥q)(¥q, e1).
Q Q

Setting now

D, = (d}J)I,JeDa where d}J (o1 — s, 01),

D, := (d3,)1.5ep, Wwhere d7, := (ps,¢1),

Ds = (d3,)1.5ep, where di, = (¥, ¢1),

D, = (d3;)1.5ep, where di; = (ps, 01 — V1),
we obtain

D =D;D; + D3;Dy.

The operators associated with all four matrices are bounded on f? . Indeed,

note that Dy, Dy, and D3 give rise to bounded operators as for the operator
C in (2.9) because the families ®, ¥, and {e (o7 —17) }rep consist of smooth

molecules. In particular, the last famlly gives us that for d € [},

ID1d

i, = (3.12)

14



As far as Dy is concerned, since {e 1(yp; — ¥;) }rep is a norming family, then
as for the operator A defined in (2.3) we obtain that for d € f;

PO
||D4d £, < CE“d fse (3.13)
Taking into account (3.12)-(3.13) it follows that for d € ;q,
IDd]| 5 < e([[Dal[[[Daf| + [IDs[IDslDlldll z5, < celldl s,

which establishes (3.11). Consequently, (3.10) holds and hence for sufficiently

small € > 0 the operator S~! is bounded on F;., ie for f € F;q,

15 fllie < ellflli, (3.14)

Finally, in order to show that the operator B is bounded on ;q we recall
from (2.10) that if d := (dr)sep € f3, and f = 3, dror, then

/]

i, <clldllg - (3.15)
Clearly, for I € D,

(ST fbr) =) di(S M ps ) =) dylps, S r) = (Bd)r.

JeD JeD

Therefore,

|Bd

b = IS 00

. -1
js, < eSS

i, < ellfllz, < clld

fpa’

Here for the first inequality we used that V¥ is a frame for Fz'fq ife >0is
sufficiently small, which follows by Theorem 3.1; we also used (3.14)-(3.15).
([
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