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Abstract

This paper is concerned with the construction and analysis of a universal es-
timator for the regression problem in supervised learning. Universal means that
the estimator does not depend on any a priori assumptions about the regression
function to be estimated. The universal estimator studied in this paper consists of
a least-square fitting procedure using piecewise constant functions on a partition
which depends adaptively on the data. The partition is generated by a splitting
procedure which differs from those used in CART algorithms. It is proven that this
estimator performs at the optimal convergence rate for a wide class of priors on the
regression function. Namely, as will be made precise in the text, if the regression
function is in any one of a certain class of approximation spaces (or smoothness
spaces of order not exceeding one - a limitation resulting because the estimator uses
piecewise constants) measured relative to the marginal measure, then the estimator
converges to the regression function (in the least squares sense) with an optimal rate
of convergence in terms of the number of samples. The estimator is also numerically
feasible and can be implemented on-line.

1 Introduction

This paper addresses the problem of using empirical samples to derive probabilistic or
expectation error estimates for the regression function of some unknown probability mea-
sure ρ on a product space Z := X × Y . It will be assumed here that X is a bounded
domain of IRd and Y = IR. Given the data z = {z1, . . . , zm} ⊂ Z of m independent
random observations zi = (xi, yi), i = 1, . . . , m, identically distributed according to ρ,
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19-02-1-0028; the AFOSR Contract UF/USAF F49620-03-1-0381; the NSF contracts DMS-0221642 and
DMS-0200187; and EEC Human Potential Programme under contract HPRN-CT-2002-00286, “Breaking
Complexity”.
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we are interested in estimating the regression function fρ(x) defined as the conditional
expectation of the random variable y at x:

fρ(x) :=

∫
Y

ydρ(y|x) (1.1)

with ρ(y|x) the conditional probability measure on Y with respect to x. In this paper, it
is assumed that this probability measure is supported on an interval [−M, M ] :

|y| ≤ M, (1.2)

almost surely. It follows in particular that |fρ| ≤ M .
We denote by ρX the marginal probability measure on X defined by

ρX(S) := ρ(S × Y ). (1.3)

We shall assume that ρX is a Borel measure on X. We have

dρ(x, y) = dρ(y|x)dρX(x). (1.4)

It is easy to check that fρ is the minimizer of the risk functional

E(f) :=

∫
Z

(y − f(x))2dρ, (1.5)

over f ∈ L2(X, ρX) where this space consists of all functions from X to Y which are
square integrable with respect to ρX . In fact one has

E(f) = E(fρ) + ‖f − fρ‖2, (1.6)

where
‖ · ‖ := ‖ · ‖L2(X,ρX). (1.7)

Our objective is therefore to find an estimator fz for fρ based on z such that the quantity
‖fz − fρ‖ is small.

A common approach to this problem is to choose an hypothesis (or model) class H
and then to define fz, in analogy to (1.5), as the minimizer of the empirical risk

fz := argmin
f∈H

Ez(f), with Ez(f) :=
1

m

m∑
i=1

(yi − f(xi))
2. (1.8)

Typically, H = Hm depends on a finite number N = N(m) of parameters. In many cases,
the number N is chosen using an a priori assumption on fρ. In other procedures, the
number N is adapted to the data and thereby avoids any a priori assumptions. We shall
be interested in estimators of the latter type.

The usual way of evaluating the performance of the estimator fz is by studying its
convergence either in probability or in expectation, i.e. the rate of decay of the quantities

Prob{‖fρ − fz‖ ≥ η}, η > 0 or E(‖fρ − fz‖2) (1.9)
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as the sample size m increases. Here both the expectation and the probability are taken
with respect to the product measure ρm defined on Zm. An estimation of the above
probability will automatically give an estimate in expectation by integrating with respect
to η. Estimates for the decay of the quantities in (1.9) are usually obtained under certain
assumptions (called priors) on fρ.

It is important to note that the measure ρX which appears in the norm (1.7) is un-
known and that we want to avoid any assumption on this measure. This type of regression
problem is referred to as random design or distribution-free. A recent survey on distri-
bution free regression theory is provided in the book [20], which includes most existing
approaches as well as the analysis of their rate of convergence in the expectation sense.

Priors on fρ are typically expressed by a condition of the type fρ ∈ Θ where Θ is a
class of functions that necessarily must be contained in L2(X, ρX). If we wish the error,
as measured in (1.9), to tend to zero as the number m of samples tends to infinity then we
necessarily need that Θ is a compact subset of L2(X, ρX). There are three common ways
to measure the compactness of a set Θ: (i) minimal coverings, (ii) smoothness conditions
on the elements of Θ, (iii) the rate of approximation of the elements of Θ by a specific
approximation process. In the learning problem, each of these approaches has to deal
with the fact that ρX is unknown.

To describe approach (i), for a given Banach space B which contains Θ, we define
the entropy number εn(Θ,B), n = 1, 2 . . . as the minimal ε such that W can be covered
by at most 2n balls of radius ε in B. The set Θ is compact in L2(X, ρX) if and only
if εn(Θ, L2(X, ρX)) tends to zero as n → ∞. One can therefore quantify the level of
compactness of Θ by an assumption on the rate of decay of εn(Θ, L2(X, ρX)). A typical
prior condition would be to assume that the the entropy numbers satisfy 1

εn(Θ,B) <∼ n−r, n = 1, 2, · · · (1.10)

for some r > 0.
Coverings and entropy numbers has a long history in statistics for deriving optimal

bounds for the rate of decay in statistical estimation (see e.g. [4]). Several recent works
[8, 12, 22] have used this technique to bound the error for the regression problem in
learning. It has been communicated to us by Lucien Birgé that one can derive from one
of his forthcoming papers [3] that for any class Θ satisfying (1.10) with B = L2(X, ρX),
there is an estimator fz satisfying

E(‖fρ − fz‖2) <∼ m− 2r
2r+1 , m = 1, 2, . . . (1.11)

whenever fρ ∈ Θ. Lower bounds which match (1.11) have been given in [12] using a
slightly different type of entropy.

The estimators constructed using this approach are made through ε nets and are more
of theoretical interest (in giving the best possible bounds) but are not practical since ρX is
unknown and therefore these ε nets are also unknown. Another deficiency in this approach
is that the estimator typically requires the knowledge of the prior class Θ. One would like
to avoid knowledge of Θ in the construction of an estimator since we do not know fρ and

1Throughout this paper, we use the notation A <∼ B to mean that there exists a constant C such that
A ≤ CB independently of the primary variables.
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hence would generally not have any information about Θ. One can also use ε nets to give
bounds for Prob(‖fρ − fz‖). This is one of the main points in [8] and is carried further in
[12, 21, 22].

One way to circumvent the problem of not knowing the marginal ρX is to use coverings
in C(X) rather than L2(X, ρX) since a good covering for Θ in C(X) gives bounds for the
covering in L2(X, ρX). In this approach one would assume that Θ satisfies (1.10) for
B = C(X) and then build estimators which satisfy (1.11) using ε nets for C(X). Again
this does not lead to practical estimators. But the main deficiency of this approach is
that the assumption that Θ is a compact subset of C(X) is too severe and does not give
a full spectrum of compact subsets of L2(X, ρX).

There is no general approach to defining smoothness spaces with respect to general
Borel measures which precludes the direct use of classification according to (ii). One way
to circumvent this is to define smoothness in C(X) but then this suffers from the same
deficiency of not giving a full array of compact subsets in L2(X, ρX).

The classification of compactness according to approximation properties (iii) begins
with a specific method of approximation and then defines the classes Θ in terms of a rate of
approximation by the specified method. The simplest example is to take a sequence (Xn)
of linear spaces of dimension n and define Θ as the class of all functions f in L2(X, ρX)
which satisfy

inf
g∈Xn

‖f − g‖ ≤ Cαn (1.12)

where C is a fixed constant and (αn) is a sequence of positive real numbers tending to
zero. Natural choices for this sequence are αn = n−r, where r > 0. Classes defined in such
a way will not give a full spectrum of compact subsets in L2(X, ρX). But this deficiency
can be removed by using nonlinear spaces Σn in place of the linear spaces Xn (see the
discusssion in [12]). An illustrative example is approximation by piecewise polynomials
on partitions. If the partitions are set in advance this corresponds to the linear space
approximation above. In nonlinear methods the partitions are allowed to vary but their
size is specfied. We discuss this in more detail later in this paper.

We should mention that in classical settings, for example when ρX is Lebesgue measure
then the three approaches to measuring compactness are closely related and in a certain
sense equivalent. This is the main chapter of approximation theory.

Concrete algorithms have been constructed for the regression problem in learning by
using approximation from specific linear spaces such as piecewise polynomial on uniform
partitions, convolution kernels, and spline functions. The rate of convergence of the
estimators built from such a linear approximation process is related to the approximation
rate of the corresponding process on the class Θ. A very useful method for bounding the
performance of such estimators was provided in [20] (see Theorem 11.3). For example, if
H is taken a linear space of dimension N and if the least-square estimator (1.8) is post-
processed by application of the truncation operator y 
→ TM (y) = sign(y) min{|y|, M},
then

E(‖fρ − fz‖2) <∼
N log(m)

m
+ inf

g∈H
‖fρ − g‖2. (1.13)

From this, one can derive specific rates of convergence in expectation by balancing both
terms. For example, if Θ is a ball of W r(L∞) and H is taken as a space of piecewise
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polynomial functions of degree larger than r − 1 on uniform partitions of X, one derives

E(‖fρ − fz‖2) <∼ (
m

log m
)−

2r
d+2r . (1.14)

This estimate is optimal for this class Θ, up to the logarithmic factor.
The deficiency in this approach is twofold. First, it usually chooses the hypothesis

classes in advance and typically assumes knowledge of the prior for this choice. Secondly, it
uses linear methods of approximation and therefore misses our goal of giving an estimator
which performs optimally for the full range of smoothness spaces in L2(X, ρX). To obtain
the full range would necessarily require the use of nonlinear methods as noted above.
An example in this second approach would be to use piecewise polynomials on partitions
for the hypothesis class. It requires choosing the partitions in advance (e.g. uniform
partitions) and therefore does not give optimal rates for general compact subsets of C(X)
and certainly not for general compact subsets of L2(X, ρX).

An in depth discussion of the approximation theory approach to building estimators
for the regression problem in learning is given in [12] and the follow up papers [21] and
[22].

In summary, the deficiency in the current array of practical estimators for learning the
regression function lies in three directions: (i) they use knowledge of Θ in building the
estimator, (ii) they circumvent the absence of knowledge of ρX by assuming Θ is compact
in C(X) rather than L2(X, ρX), (iii) if they use linear methods, then they do not give the
full array of compact subsets of L2(X, ρx).

The motivations for our work is to construct practical estimators which address
these drawbacks by (i) not requiring the knowledge of any prior, (ii) being
optimal for a full range of relevant compact subsets Θ of L2(X, ρX), even though
the marginal is unknown. In the case where the marginal ρX is Lebesgue measure,
the estimator would necessarily have to be optimal for all Besov classes which compactly
embed into L2(X, ρX). These Besov spaces correspond to smoothness spaces of order s in
Lp whenever s > d

p
− d

2
(see [10]). One can view this problem in another way. We want

to construct estimators which perform optimally on the widest class of priors. Thus, we
take the viewpoint of the maxiset theory formalized for statistical estimation [7, 14].

To obtain estimators which satisfy (i) and (ii), we utilize the notion of adaptivity
or universality : the estimation algorithm should be able to exhibit the optimal rate
without the knowledge of the exact amount of smoothness r in the regression function
fρ. A classical way to reach this goal is to perform model selection using a complexity
penalty term in the empirical risk minimization, see [1, 4], Chapter 12 in [20], and [12].
In particular, one can construct one estimator which simultaneously obtains the optimal
rate (1.14) for all finite balls in each of the class W r(L∞), 0 < r ≤ k where k is arbitrary
but fixed. Of course, as we have stressed before, this class of priors is not a full spectrum
of compact sets in L2(X, ρX).

Let us also note that the penalty approach is not always compatible with the practical
requirement of on-line computations, by which we mean that the estimator for the sample
size m can be derived by a simple update of the estimator for the sample size m−1, since
the optimization problem needs to be globally re-solved when adding a new sample.

Finally, we are interested in deriving optimal estimates in probability, rather than only

5



in expectation. Such estimates would in turn allow us to derive more general expectation
estimates of the type E(‖fz − fρ‖p).

In the present paper we propose a class of concrete estimation schemes with the fol-
lowing properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line updates
when the sample size m is increased.

(ii) The error estimates do not require any regularity in C(X) but only in the natural
space L2(X, ρX).

(iii) The proven rates are optimal in probability and expectation for the largest possible
range of smoothness classes in L2(X, ρX).

(iv) The scheme is universal in that it does not involve any a-priori knowledge concerning
the regularity of fρ.

In two slightly different contexts, namely density estimation and denoising on a fixed
design, it is well known that estimation procedures based on wavelet thresholding fulfill
these requirements [15, 16, 17, 18]. In the learning theory context, the wavelet thresholding
has also been used in [11] for estimation of a modification of the regression function fρ,
namely, for estimating (dρX/dx)fρ, where ρX is assumed to be absolutely continuous with
regard to the Lebesgue measure. The main difficulty in generalizing such procedures to
the distribution-free regression context is due to the presence of the marginal probability
ρX in the L2(X, ρX) norm. This typically leads to the need of using wavelet-type bases
which are orthogonal (or biorthogonal) with respect to this inner product. Such bases
might be not easy to handle numerically and cannot be constructed exactly since ρX is
unknown.

In this paper, we propose an approach which allows us to circumvent these difficulties,
while staying in spirit close to the ideas of wavelet thresholding. In our approach, the
hypothesis classes H are spaces of piecewise constant functions associated to partitions Λ.
The key to realizing universality lies in the choice of Λ and H which are not simply fixed
depending on the number of samples m and some a-priori knowledge on the smoothness
properties of fρ. Rather, Λ is chosen adaptively based on the data z. The partition is
chosen within a set of admissible partitions based on a tree structured splitting rule.

Our partitions have the same tree structure as those used in a CART algorithm [5], yet
the selection of the appropriate partition is operated quite differently: while the CART
algorithm will typically minimize the empirical risk with a complexity penalty over all
partitions, our algorithm selects the partition through a thresholding procedure applied
to empirical quantities computed at each node of the tree which play a role similar to
wavelet coefficients. While the equivalence between CART and thresholding in one or
several orthonormal bases is well understood in a fixed design context [13], it is not
clear to us that our main convergence result - Theorem 2.5 - is obtainable with a CART
algorithm (see in particular [19] for risk bounds obtained for CART in the distribution
free bounded regression context, also with piecewise constant functions).

The present choice of piecewise constant functions limits the optimal rate to classes
of low or no pointwise regularity. While the extension of our method to higher order
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piecewise polynomial approximations is almost straightforward, its analysis in this more
general context becomes significantly more difficult and will be given in a forthcoming
paper.

Our paper is organized as follows. The learning algorithm as well as the convergence
results are described in section 2. The next two sections 3 and 4 are devoted to the proofs
of the two main results which deal respectively with the error estimates for non-adaptive
and adaptive partitions.

2 The basic strategy and the main results

2.1 Partitions and adaptive approximation

We say that a finite collection Λ of Borel subsets of X is a partition if the sets in Λ are
pairwise disjoint and their union is all of X. The typical way of generating such partitions
is through a refinement strategy. We first describe the prototypical example of dyadic
partitions. For this, we assume that X = [0, 1]d and denote by Dj = Dj(X) the collection
of dyadic subcubes of X of sidelength 2−j and D := ∪∞

j=0Dj . These cubes are naturally
aligned on a tree T = T (D). Each node of the tree T is a cube I ∈ D. If I ∈ Dj, then its
children are the 2d dyadic cubes of J ⊂ Dj+1 with J ⊂ I. We denote the set of children
of I by C(I). We call I the parent of each such child J and write I = P (J). A proper
subtree T0 of T is a collection of nodes of T with the properties: (i) the root node I = X
is in T0, (ii) if I �= X is in T0 then its parent and all of its siblings are also in T0.

We obtain (dyadic) partitions Λ of X from finite proper subtrees T0 of T . Given any
such T0 the outer leaves of T0 consist of all J ∈ T such that J /∈ T0 but P (J) is in T0.
The collection Λ = Λ(T0) of outer leaves of T0 is a partition of X into dyadic cubes.

A uniform partition of X into dyadic cubes consists of all dyadic cubes in Dj(X) for
some j ≥ 0. Thus, each cube in a uniform partition has the same measure 2−jd. Another
way of generating partitions is through some refinement strategy. One begins at the root
X and decides whether to refine X (i.e. subdivide X) based on some refinement criteria.
If X is subdivided then one examines each child and decides whether or not to refine such
a child based on the refinement strategy. Partitions obtained this way are called adaptive.

The results given in this paper can be described for more general refinement. We shall
work in the following setting. We assume that a ≥ 2 is a fixed integer. We assume that
if X is to be refined then its children consist of a subsets of X which are a partition
of X. Similarly, for each such child there is a rule which spells out how this child is
refined. We assume that the child is also refined into a sets which form a partition of the
child. (We could actually work with more generality and allow the number of children
to depend on the cell to be refined.) Such a refinement strategy also results in a tree T
(called the master tree) and children, parents, and partitions are defined as above for the
special case of dyadic partitions. The refinement level j of a node is the smallest number
of refinements (starting at root) to create this node. We denote by Tj the proper subtree
consisting of all nodes with level ≤ j and we denote by Λj the partition corresponding to
Tj.

Given a partition Λ, let us denote by SΛ the space of piecewise constant functions
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subordinate to Λ. Each S ∈ SΛ can be written

S =
∑
I∈Λ

aIχI , (2.1)

where for G ⊂ X we denote by χG the indicator function, i.e. χG(x) = 1 for x ∈ G and
χG(x) = 0 for x �∈ G. We shall consider approximation of a given function f ∈ L2(X, ρX)
by the elements of SΛ. The best approximation to f in this space is given by

PΛf :=
∑
I∈Λ

cIχI (2.2)

where cI = cI(f) is given by

cI :=
αI

ρI
, with αI :=

∫
I

fdρX and ρI := ρX(I). (2.3)

In the case where ρI = 0, both fρ and its projection are undefined on I. For notational
reasons, we set in this case cI := 0.

We shall be interested in two types of approximation corresponding to uniform refine-
ment and adaptive refinement. We first discuss uniform refinement. Let

En(f) := ‖f − PΛnf‖, n = 0, 1, . . . (2.4)

which is the error for uniform refinement. The decay of this error to zero is connected with
the smoothness of f as measured in L2(X, ρX). We shall denote by As the approximation
class consisting of all functions f ∈ L2(X, ρX) such that

En(f) ≤ M0a
−ns, n = 0, 1, . . . . (2.5)

Notice that #(Λn) = an so that the decay in (2.5) is like N−s with N the number of
elements in the partition. The smallest M0 for which (2.5) holds serves to define the
semi-norm |f |As on As. The space As can be viewed as a smoothness space of order s > 0
with smoothness measured with respect to ρX .

For example, if ρX is the Lebesgue measure and we use dyadic partitioning then
As/d = Bs

∞(L2), 0 < s ≤ 1, with equivalent norms. Here Bs
∞(L2) is the Besov space

which can be described in terms of differences as

||f(· + h) − f(·)‖L2 ≤ M0|h|s, x, h ∈ X. (2.6)

Instead of working with a-priori fixed partitions there is a second kind of approximation
where the partition is generated adaptively and will vary with f . Adaptive partitions are
typically generated by using some refinement criterion that determines whether or not to
subdivide a given cell. We shall use a refinement criteria that is motivated by adaptive
wavelet constructions such as those given in [6] for image compression. The criteria we
shall use to decide when to refine is analogous to thresholding wavelet coefficients. Indeed,
it would be exactly this criteria if we were to construct a wavelet (Haar like) bases for
L2(X, ρX).
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For each cell I in the master tree T and any f ∈ L2(X, ρX) we define

εI(f)2 :=
∑

J∈C(I)

(∫
J

fdρX

)2

ρJ
−

(∫
I

fdρX

)2

ρI
, (2.7)

which describes the amount of L2(X, ρX) energy which is increased in the projection of
fρ onto SΛ when the element I is refined. It also accounts for the decreased projection
error when I is refined. In fact, one easily verifies that

εI(f)2 = ‖f − cI‖2
L2(I,ρX) −

∑
J∈C(I)

‖f − cJ‖2
L2(J,ρX). (2.8)

If we were in a classical situation of Lebesgue measure and dyadic refinement, then εI(f)2

would be exactly the sum of squares of the Haar coefficients of f corresponding to I.
We can use εI(f) to generate an adaptive partition. Given any η > 0, we let T (f, η)

be the smallest proper tree that contains all I ∈ T for which εI(f) > η. Corresponding to
this tree we have the partition Λ(f, η) consisting of the outer leaves of T (f, η). We shall
define some new smoothness spaces Bs which measure the regularity of a given function f
by the size of the tree T (f, η). These spaces are related to Besov spaces in the case that
ρX is Lebesgue measure.

Given s > 0, we let Bs be the collection of all f ∈ L2(X, ρX) such that the following
is finite

|f |pBs := sup
η>0

ηp#(T (f, η)), where p := (s + 1/2)−1 (2.9)

We obtain the norm for Bs by adding ‖f‖ to |f |Bs. One can show that

‖f − PΛ(f,η)‖ ≤ Cs|f |Bsη
2s

2s+1 ≤ Cs|f |BsN−s, N := #(T (f, η)), (2.10)

where the constant Cs depends only on s. For the proof of this fact we refer the reader
to [6] where a similar result is proven for dyadic partitioning. It follows that every
function f ∈ Bs can be approximated to order O(N−s) by PΛf for some partition Λ
with #(Λ) = N . This should be contrasted with As which has the same approximation
order for the uniform partition. It is easy to see that Bs is larger than As. In classical
settings, the class Bs is well understood. For example, in the case of Lebesgue measure
and dyadic partitions we know that each Besov space Bs

q(Lτ ) with τ > (s/d+1/2)−1 and

0 < q ≤ ∞ arbitrary, is contained in Bs/d (see [6]). This should be compared with the As

where we know that As/d = Bs
∞(L2) as we have noted earlier.

The distinction between these two forms of approximation is that in the first, the
partitions are fixed in advance regardless of f but in the second form the partition can
adapt to f .

We have chosen here one particular refinement strategy (based on the size of εI(f)) in
generating our adaptive partitions. According to (2.10), it provides optimal convergence
rates for the class Bs. There is actually a slightly better strategy described in [2] which
is guaranteed to give near optimal adaptive partitions (independent of the refinement
strategy and hence not necessarily of the above form) for each individual f . We have
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chosen to stick with the present refinement strategy since it extends easily to empirical
data (see §2.2) and it is much easier to analyze the convergence properties of this empirical
scheme.

2.2 Least-squares fitting on partitions

We now return to the problem of estimation fρ from the given data. We shall use the
functions in SΛ for this purpose. Let us first observe that

PΛfρ = argmin
f∈SΛ

E(f) = argmin
f∈SΛ

∫
Z

(y − f(x))2dρ. (2.11)

Indeed, for all f ∈ L2(X, ρX) we have

E(f) = E(fρ) + ‖f − fρ‖2 (2.12)

so that minimizing E(f) over SΛ is the same as minimizing ‖fρ − f‖ over f ∈ SΛ. Note
that PΛfρ is obtained by solving N independent problems minc∈R

∫
I

(fρ − c)2dρX for each

element I ∈ Λ.
As in (1.8) we define the estimator fz,Λ of fρ on SΛ as the empirical counterpart of

PΛfρ obtained as the solution of the least-squares problem

fz,Λ := argmin
f∈SΛ

Ez(f) = argmin
f∈SΛ

1

m

m∑
i=1

(yi − f(xi))
2. (2.13)

We can view our data as a multivalued function y with y(xi) = yi. Then in analogy
to PΛfρ, we can view fz,Λ as an orthogonal projection of y onto SΛ with respect to the
empirical norm

‖y‖2
L2(X,δX ) :=

1

m

m∑
i=1

|y(xi)|2, (2.14)

and we can compute it by solving #(Λ) independent problems

min
c∈R

1

m

m∑
i=1

(yi − c)2χI(xi), (2.15)

for each element I ∈ Λ. The minimizer cI(z) is now given by the empirical average

cI(z) =
αI(z)

ρI(z)
, where αI(z) :=

1

m

m∑
i=1

yiχI(xi), ρI(z) :=
1

m

m∑
i=1

χI(xi). (2.16)

Thus, we can rewrite the estimator as

fz,Λ =
∑
I∈Λ

cI(z)χI . (2.17)
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In the case where I contains no sample xi (which may happen even if ρI > 0), we set
cI(z) := 0.

A natural way of assessing the error ‖fρ − fz,Λ‖ is by splitting it into a bias and
stochastic part : since fρ − PΛfρ is orthogonal to SΛ,

‖fρ − fz,Λ‖2 = ‖fρ − PΛfρ‖2 + ‖PΛfρ − fz,Λ‖2 =: e1 + e2. (2.18)

Concerning the variance term e2, we shall establish the following probability estimate.

Theorem 2.1 For any partition Λ and any η > 0,

Prob {‖PΛfρ − fΛ,z‖ > η} ≤ 4Ne−c mη2

N , (2.19)

where N := #(Λ) and c depends only on M .

As will be explained later in detail, the following estimate of the variance term in
expectation is obtained by integration of over η > 0.

Corollary 2.2 If Λ is any partition, the mean square error is bounded by

E
(
‖PΛfρ − fΛ,z‖2

)
≤ C

N log N

m
, (2.20)

where N := #(Λ) and the constant C depends only on M .

Let us consider now the case of uniform refinement. We can equilibrate the bias
term with the variance term described by Theorem 2.1 and Corollary 2.2 and obtain the
following result.

Theorem 2.3 Assume that fρ ∈ As and define the estimator fz := fΛj ,z with j chosen as

the smallest integer such that aj(1+2s) ≥ m
log m

. Then, given any β > 0, there is a constant

c̃ = c̃(M, β, a) such that

Prob

{
‖fρ − fz‖ > (c̃ + |fρ|As)

( log m

m

) s
2s+1

}
≤ Cm−β, (2.21)

and

E
(
‖fρ − fz‖2

)
≤ (C + |fρ|2As)

( log m

m

) 2s
2s+1

. (2.22)

where C depends only on a and M .

Remark 2.4 It is also possible to prove Corollary 2.2 using Theorem C* of [8]. The
expectation estimate (2.22) in Theorem 2.3 can also be obtained as a consequence of
Theorem 11.3 in [20] quoted in our introduction. In order to prepare for the subsequent
developments direct proofs of these results are given later in §3.
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Theorem 2.3 is satisfactory in the sense that it is obtained under no assumption
on the measure ρX and the assumption fρ ∈ As is measuring smoothness (and hence
compactness) in L2(X, ρX), i.e. the compactness assumption is done in L2(ρX) rather
than in L∞. Moreover, the rate ( m

log m
)−

s
2s+1 is known to be optimal (or minimax) over the

class As save for the logarithmic factor. However, it is unsatisfactory in the sense that
the estimation procedure requires the a-priori knowledge of the smoothness parameter
s which appears in the choice of the resolution level j. Moreover, as noted before, the
smoothness assumption fρ ∈ As is too severe.

In the context of density estimation or denoising, it is well known that adaptive meth-
ods based on wavelet thresholding [15, 16, 17, 18] allow one to treat both defects. Our
next goal is to define similar strategies in our learning context, in which two specific fea-
tures have to be taken into account : the error is measured in the norm L2(X, ρX) and
the marginal probability measure ρX is unknown.

2.3 A universal algorithm based on adaptive partitions

The main feature of our algorithm is to adaptively choose a partition Λ = Λ(z) depending
on the data z. It will not require a priori knowledge of the smoothness of fρ but rather
will learn the smoothness from the data. Thus, it will automatically choose the right size
for the partition Λ.

Our starting point is the adaptive procedure introduced in §2.1 applied to the function
fρ. We use the notation εI := εI(fρ) in this case. Then, by (2.7),

ε2
I :=

∑
J∈C(I)

α2
J

ρJ
− α2

I

ρI
. (2.23)

The selection of the partition Λ in our learning scheme will be based on the empirical
coefficients

ε2
I(z) :=

∑
J∈C(I)

α2
J(z)

ρJ(z)
− α2

I(z)

ρI(z)
. (2.24)

We define the threshold

τm := κ

√
log m

m
, (2.25)

where the constant κ is absolute and will be fixed later in the proof of Theorem 2.5 stated
below. Let γ > 0 be an arbitrary but fixed constant. We define j0 = j0(m, γ) as the

largest integer j such that aj ≤ τ
−1/γ
m . We next consider the smallest tree T (z, m) which

contains the set
Σ(z, m) := {I ∈ ∪j≤j0Λj ; εI(z) ≥ τm}. (2.26)

We then define the partition Λ = Λ(z, m) associated to this tree and the corresponding
estimator fz := fΛ,z. In summary, our algorithm consists in the following steps:

(i) Compute the εI(z) for I ∈ ∪j≤j0Λj.

(ii) Threshold these quantities at level τm to obtain the set Σ(z, m).
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(iii) Complete Σ(z, m) to the tree T (z, m).

(iv) Compute the estimator fz by empirical risk minimization on the partition Λ(z, m).

Further comments on the implementation will be given in the next section. The main
result of this paper is the following theorem.

Theorem 2.5 Let β, γ > 0 be arbitrary. Then, there exists κ0 = κ0(β, γ, M) such that if
κ ≥ κ0, then whenever fρ ∈ Aγ ∩Bs for some s > 0, the following concentration estimate
holds

Prob

{
‖fρ − fz‖ ≥ c̃

( log m

m

) s
2s+1

}
≤ Cm−β , (2.27)

as well as the following expectation bound

E(‖fρ − fz‖2) ≤ C
( log m

m

) 2s
2s+1

, (2.28)

where the constants c̃ and C are independent of m.

Theorem 2.5 is more satisfactory than Theorem 2.3 in two respects: (i) the optimal
rate ( log m

m
)

s
2s+1 is now obtained under weaker smoothness assumptions on the regression

function, namely, fρ ∈ Bs in place of fρ ∈ As, with the extra assumption of fρ ∈ Aγ

smoothness with γ > 0 arbitrarily small, (ii) the algorithm is universal. Namely, the value
of s does not enter the definition of the algorithm. Indeed, the algorithm automatically
exploits this unknown smoothness through the samples z. We note however that the
algorithm does require the knowledge of the parameter γ which can be arbitrarily small.
It is actually possible to build an algorithm without assuming knowledge of a γ > 0
by using the adaptive tree algorithm in [2]. However, the implementation of such an
algorithm would involve complications we wish to avoid in this presentation.

2.4 Remarks on algorithmic aspects and on-line implementation

Our first remarks concern the construction of the adaptive partition Λ(z, m) for a fixed
m which requires the computation of the numbers εI(z) for I ∈ Λj when j satisfies

aj ≤ τ
−1/γ
m . This would require the computation of O(m lnm) coefficients. One can

actually save a substantial amount of computation by remarking that by definition we
always have

εI(z)2 ≤ EI(z) (2.29)

with EI(z) := ‖y − cI(z)‖2
L2(δX ,I) the least-square error on I. In contrast to εI(z), the

quantity EI(z) is monotone with respect to inclusion:

J ⊂ I ⇒ EJ(z) ≤ EI(z). (2.30)

This allows one to organize the search for those I satisfying εI(z) ≥ τm from coarse to
fine elements. In particular, one no longer has to check those descendants of an element
I for which EI(z) is less than τm.

13



Our next remarks concern the on-line implementation of the algorithm. Suppose that
we have computed ρI(z), αI(z) and the εI(z) where z contains m samples. If we now add
a new sample (xm+1, ym+1) to z to obtain z+, the new ρI and αI are

ρI(z
+) =

m

m + 1
(ρI(z) + χI(xm+1)) (2.31)

and
αI(z

+) =
m

m + 1
(αI(z) + ym+1χI(xm+1)). (2.32)

In particular, we see that at each level j, only one I is affected by the new sample.
Therefore, if we store the quantities ρI(z) and αI(z) in the current partition, then this
new step requires at most j0 additional computations in the case where j0 is not increased.
In the case where j0 is increased to j0 +1 (this may happen because τm is decreased), the
computations of the quantities ρI(z) and αI(z) need to be performed, of course, for all
the elements in the newly added level.

3 Proof of the results on non-adaptive partitions

We first give the proof of Theorem 2.1. Let Λ be any partition. By (2.2) and (2.17), we
can write

‖PΛfρ − fΛ,z‖2 =
∑
I∈Λ

|cI − cI(z)|2ρI . (3.1)

According to their definitions (2.3), (2.16), both cI and cI(z) are bounded in modulus by
M . Therefore, given η > 0, if we define

Λ− := {I ∈ Λ : ρI ≤ η2

8NM2
}, (3.2)

we clearly have ∑
I∈Λ−

|cI − cI(z)|2ρI ≤ η2

2
. (3.3)

We next consider the complement set Λ+ = Λ \ Λ−. In order to prove (2.19), it now
suffices to establish that for all I ∈ Λ+

Prob

{
|cI(z) − cI |2 ≥

η2

2NρI

}
≤ 4e−c mη2

N . (3.4)

To see this, we write ρI(z) = (1 + µI)ρI and remark that if |µI | ≤ 1/2 we have

|cI(z) − cI | =

∣∣∣∣αI(z)

ρI(z)
− αI

ρI

∣∣∣∣ =
1

ρI(1 + µI)
|αI(z) − αI − µIαI |

≤ 2ρ−1
I (|αI(z) − αI | + |αIµI |). (3.5)

It follows that |cI(z) − cI | ≤ η√
2NρI

provided that we have jointly

|αI(z) − αI | ≤
η
√

ρI

4
√

2N
, (3.6)
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and (since αIµI = αI(ρI(z) − ρI)/ρI)

|ρI(z) − ρI | ≤ min

{
1

2
ρI ,

ηρ
3/2
I

4
√

2N |αI |

}
(3.7)

and therefore

Prob

{
|cI(z) − cI |2 ≥

η2

2NρI

}
≤ Prob

{
|αI(z) − αI | ≥

η
√

ρI

4
√

2N

}

+ Prob

{
|ρI(z) − ρI | ≥ min

{
1

2
ρI ,

ηρ
3/2
I

4
√

2N |αI |

}}
.

In order to estimate these probabilities, we shall use Bernstein’s inequality which says
that for m independent realizations ζi of a random variable ζ such that |ζ(z)−E(ζ)| ≤ M0

and Var(ζ) = σ2, one has for any ε > 0

Prob

{∣∣∣∣∣ 1

m

m∑
i=1

ζ(zi) − E(ζ)

∣∣∣∣∣ ≥ ε

}
≤ 2e

− mε2

2(σ2+M0ε/3) . (3.8)

In our context, we apply this inequality to ζ = yχI(x) for which E(ζ) = αI , M0 ≤ 2M
and σ2 ≤ M2ρI , and to ζ = χI(x) for which E(ζ) = ρI , M0 ≤ 1, and σ2 ≤ ρI .

We first obtain that

Prob

{
|αI(z) − αI | ≥

η
√

ρI

4
√

2N

}
≤ 2e

− mη2ρI
64N(M2ρI+2Mη

√
ρI/2N/12)

≤ 2e
− mη2ρI

64N(M2ρI+4M2ρI/12)

≤ 2e−c mη2

N ,

with c = [256
3

M2]−1, where we have used in the second inequality that I ∈ Λ+ to bound the
second term in the denominator of the exponential by the first term in the denominator.

We next obtain in the case where 1
2
ρI ≤ ηρ

3/2
I

4
√

2N |αI |

Prob

{
|ρI(z) − ρI | ≥

1

2
ρI

}
≤ 2e

− mρ2
I

8(ρI+ρI/6) = 2e−
3
28

mρI ≤ 2e−c mη2

N

with c = [224
3

M2]−1 where we have used in the last line that I ∈ Λ+. Finally, in the case

where 1
2
ρI ≥ ηρ

3/2
I

4
√

2N |αI | , we obtain

Prob

{
|ρI(z) − ρI | ≥

ηρ
3/2
I

4
√

2NρI |αI |

}
≤ 2e

− mη2ρ3
I

64NρI |αI |2(7ρI/6) ≤ 2e−c mη2

N

with c = [448
6

M2]−1 since |αI | ≤ MρI . Therefore, we obtain (3.4) with the smallest of the
three values of c namely c = [256

3
M2]−1, which concludes the proof of Theorem 2.1.
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Remark 3.1 The constant c in the estimate behaves like 1/M2 and therefore degenerates
to 0 as M → +∞. This is due to the fact that we are using Bernstein’s estimate as
a concentration inequality since we are lacking any other information on the conditional
law ρ(y|x). For more specific models where we have more information on the conditional
law ρ(y|x), one can avoid the limitation |y| ≤ M . For instance, in the Gaussian regres-
sion problem yi = fρ(xi) + gi where gi are i.i.d. Gaussian (and therefore unbounded)
variables N (0, σ2), the probabilistic estimate (2.19) can be obtained by a direct use of the
concentration property of the gaussian.

The proof of Corollary 2.2 follows by integration of (2.19) over η:

E
(
‖PΛfρ − fΛ,z‖2

L2(X,ρX )

)
=

+∞∫
0

η Prob
{
‖PΛfρ − fΛ,z‖L2(ρX) > η

}
dη

≤
+∞∫
0

η min{1, 4Ne−c mη2

N }dη

=
η0∫
0

η dη +
+∞∫
η0

4Nη e−c mη2

N dη

=
η2
0

2
+ 2N2

cm
e−c

mη2
0

N ,

where η0 is such that 4Ne−c
mη2

0
N = 1, or equivalently η2

0 = N log(4N)
cm

. This proves the
estimate (2.20).

Finally, to prove the estimates in Theorem 2.3, we first note that, by assumption,

N = #(Λj) ≤ aj+1 ≤ a2
(

m
log m

) 1
2s+1

. Further, from the definition of As, we have

‖fρ − PΛjfρ‖ ≤ |fρ|Asa−js ≤ |fρ|As

(
log m

m

) s
2s+1

. (3.9)

Hence, using Theorem 2.1, we see that the probability on the left of (2.21) is bounded
from above by

Prob

{
‖PΛfρ − fΛ,z‖ > c̃

(
log m

m

) s
2s+1

}
≤ 4a2me−

cc̃2 log m

a2 (3.10)

which does not exceed Cm−β provided c̃2c > a2(1 + β). The proof of (2.22) follows in a
similar way from Corollary 2.2.

4 Proof of Theorem 2.5

The remainder of this paper is devoted to a proof of Theorem 2.5. We begin with our
notation. Recall that the tree T (fρ, η) is the smallest tree which contains all I for which
εI = εI(fρ) is larger than η. Λ(fρ, η) is the partition induced by the outer leaves of
T (fρ, η). We use τm as defined in (2.25) and j0 = j0(m) is the largest integer such that

aj0 ≤ τ
−1/γ
m . For any partition Λ we write fz,Λ =

∑
I∈Λ cI(z)χI .
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If Λ0 and Λ1 are two adaptive partitions respectively associated to trees T0 and T1

we denote by Λ0 ∨ Λ1 and Λ0 ∧ Λ1 the partitions associated to the trees T0 ∪ T1 and
T0 ∩ T1, respectively. Given any η > 0, we define the partitions Λ(η) := Λ(fρ, η) ∧ Λj0

and Λ(η, z) associated with the smallest trees containing those I such that εI ≥ η and
εI(z) ≥ η, respectively, and such that the refinement level j of any I in either one of these
two partitions satisfies j ≤ j0. In these terms our estimator fz is given by

fz = fz,Λ(τm,z). (4.1)

With this notation in hand, we begin now with the proof of the Theorem. Using the
triangle inequality, we have

‖fρ − fz,m‖ ≤ e1 + e2 + e3 + e4 (4.2)

with each term defined by

e1 := ‖fρ − PΛ(τm,z)∨Λ(bτm)fρ‖,
e2 := ‖PΛ(τm,z)∨Λ(bτm)fρ − PΛ(τm,z)∧Λ(τm/b)fρ‖,
e3 := ‖PΛ(τm,z)∧Λ(τm/b)fρ − fz,Λ(τm,z)∧Λ(τm/b)‖,
e4 := ‖fz,Λ(τm,z)∧Λ(τm/b) − fz,Λ(τm,z)‖,

with b := 2
√

a − 1 > 1.
The first term e1 can be treated by a deterministic estimate. Namely, since Λ(τm, z)∨

Λ(bτm) is a finer partition than Λ(bτm), we have with probability one

e1 ≤ ‖fρ − PΛ(bτm)fρ‖ ≤ ‖fρ − PΛ(fρ,bτm)fρ‖ + ‖PΛ(fρ,bτm)fρ − PΛ(bτm)fρ‖
≤ ‖fρ − PΛ(fρ,bτm)fρ‖ + ‖fρ − PΛj0

fρ‖
≤ Cs(bτm)

2s
2s+1 |fρ|Bs + a−γj0 |fρ|Aγ

≤ Cs(bτm)
2s

2s+1 |fρ|Bs + aγτm|fρ|Aγ .

Therefore we conclude that

e1 ≤ Cs(κ
2s

2s+1 + aγκ) max{|fρ|Aγ , |fρ|Bs}
( log m

m

) s
2s+1

, (4.3)

whenever f ∈ Bs ∩Aγ.
The third term e3 can be treated by the estimate (2.19) of Theorem 2.1:

Prob{e3 > η} ≤ 4Ne−c mη2

N , (4.4)

with
N = #(Λ(τm, z) ∧ Λ(τm/b)) ≤ #(Λ(τm/b)) ≤ #(Λ(fρ, τm/b)).

Hence we infer from (2.9) that

N ≤ bpτ−p
m |fρ|pBs = bpτ

− 2
2s+1

m |fρ|pBs = bpκ− 2
2s+1 |fρ|pBs

( m

log m

) 1
2s+1

, (4.5)
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where we have used that 1/p = 1/2 + s.
Concerning the two remaining terms e2 and e4, we shall prove that for a fixed but

arbitrary β > 0, we have

Prob{e2 > 0} + Prob{e4 > 0} ≤ Cm−β, (4.6)

whenever κ ≥ κ0 with κ0 depending on β, γ, and M and with C depending only on a.
Before proving this result, let us show that the combination (4.3) , (4.4) and (4.6)

imply the validity of the estimates (2.27) and (2.28) in Theorem 2.5. We fix the value
of β and we fix any constant κ for which (4.6) holds. Let η1 := c̃( log m

m
)

s
2s+1 with c̃ from

(2.27) and η2 := c0(
log m

m
)

s
2s+1 with c0 := Cs(κ

2s
2s+1 + aγκ) max {|fρ|Aγ , |fρ|Bs}. From (4.3)

it follows that for c̃ > c0 we have Prob{‖fρ − fz,m‖ > η1} ≤ Prob{e2 + e3 + e4 > η1 − η2}.
Hence, defining η = (c̃ − c0)(

log m
m

)
s

2s+1 , the probability on the left side of (2.27) does not
exceed

Prob{e2 > 0} + Prob{e3 > η} + Prob{e4 > 0} ≤ Prob{e3 > η} + Cm−β ,

Moreover, on account of (4.4) and (4.5), we can estimate Prob{e3 > η} by

Prob{e3 > η} ≤ C
( m

log m

) 1
2s+1

e
−cmη2b−pκ

− 2
2s+1 |fρ|−p

Bs

(
log m

m

) 1
2s+1

= C
( m

log m

) 1
2s+1

e
−cD2m

(
log m

m

)

= C
( m

log m

) 1
2s+1

m−cD2

≤ Cm1−cD2

where D2 := (c̃−c0)2

κ
2

2s+1 bp|f |pBs

. The concentration estimate (2.27) follows now by taking c̃ large

enough so that 1 − cD2 + β ≤ 0.
For the expectation estimate (2.28), we recall that according to Corollary 2.2, we have

E(e2
3) ≤ C

N log N

m
≤ C

(
m

log m

) 1
2s+1

log m

m
= C

( log m

m

) 2s
1+2s

. (4.7)

We then remark that we always have e2
2 ≤ 4M2, and therefore

E(e2
2) ≤ 4M2Prob{e2 > 0} ≤ Cm−β ≤ C

( m

log m

)− 2s
2s+1

, (4.8)

by choosing β larger than 2s/(2s + 1), for example β = 1. The same holds for e4 and
therefore we obtain (2.28).

It remains to prove (4.6). The main tool here is a probabilistic estimate of how
the empirical coefficient εI(z) may differ from εI with respect to the threshold. This is
expressed by the following lemma.

18



Lemma 4.1 For any η > 0 and any element I ∈ Λj0, one has

Prob{εI(z) ≤ η and εI ≥ bη} ≤ Ce−cmη2

(4.9)

and
Prob{εI ≤ η and εI(z) ≥ bη} ≤ Ce−cmη2

(4.10)

where the constant c depends only on M and the constant C depends only on a.

Before proving Lemma 4.1, let us show how this results implies (4.6). We first consider
the second term e2. Clearly e2 = 0 if Λ(τm, z)∨Λ(bτm) = Λ(τm, z)∧Λ(τm/b) or equivalently
T (τm, z) ∪ T (bτm) = T (τm, z) ∩ T (τm/b). Now if the inclusion T (τm, z) ∩ T (τm/b) ⊂
T (τm, z)∪T (bτm) is strict, then one either has T (τm, z) �⊂ T (τm/b) or T (bτm) �⊂ T (τm, z).
Thus, there either exists an I such that both εI(z) ≤ τm and εI ≥ bτm or there exists an
I such that both εI(z) ≥ τm and εI < τm/b. It follows that

Prob{e2 > 0} ≤
∑

I∈Λj0

Prob{εI(z) ≤ τm and εI ≥ bτm}

+
∑

I∈Λj0

Prob{εI(z) ≥ τm and εI ≤ τm/b}. (4.11)

Using (4.9) with η = τm yields

∑
I∈Λj0

Prob{εI(z) ≤ τm and εI ≥ bτm} ≤ #(Λj0)e
−cmτ2

m

≤ #(Λ0)a
j0e−cκ2 log m

≤ #(Λ0)τ
−1/γ
m m−cκ2

≤ Cm1/γ−cκ2
.

We can treat the second sum in (4.11) the same way and obtain the same bound as the
one for e4 bellow. By similar considerations, we obtain

Prob{e4 > 0} ≤
∑
I∈ΛJ

Prob{εI(z) ≥ τm and εI ≤ τm/b}, (4.12)

and we use (4.10) with η = τm/b which yields Prob{e4 > 0} ≤ Cm1/γ−cκ2/b2 . We therefore
obtain (4.6) by choosing κ ≥ κ0 with cκ2

0 = b2(β + 1/γ).

We are left with the proof of Lemma 4.1. As a first step, we show that the proof can be
reduced to the particular case a = 2. To this end, we remark that the splitting of I into
its a children {J1, · · · , Ja} can be decomposed into a − 1 steps consisting of splitting an
element into a pair of elements: defining In := I \ (J1 ∪ · · · ∪ Jn) we start from I = I0

and refine iteratively In−1 into the two elements In and Jn, for n = 1, · · · , a − 1. By
orthogonality, we can write

ε2
I :=

a−2∑
n=0

ε2
In

, (4.13)

19



where ε2
In

is the amount of L2(X, ρX) energy which is increased in the projection of fρ

when In+1 is refined into In and Jn. In a similar way, we can write for the observed
quantities

ε2
I(z) :=

a−2∑
n=0

ε2
In

(z), (4.14)

Now if ε2
I ≤ η2 and εI(z)2 ≥ b2η2 = 4(a−1)η2, it follows that there exist n ∈ {0, · · · , a−2}

such that ε2
In

≤ η2 and εIn(z)2 ≥ 4η2. Therefore,

Prob{εI ≤ η and εI(z) ≥ bη} ≤
a−2∑
n=0

Prob{εIn ≤ η and εIn(z) ≥ 2η}, (4.15)

and similarly

Prob{εI(z) ≤ η and εI ≥ bη} ≤
a−2∑
n=0

Prob{εIn(z) ≤ η and εIn ≥ 2η}, (4.16)

so that the estimates (4.9) and (4.10) for a > 2 follow from the same estimates established
for a = 2 in which case b = 2.

In the case a = 2, we denote by I+ and I− the two children of I. Note that if ρJ = 0
for J = I+ or for J = I−, there is nothing to prove, since in this case we find that
εI = εI(z) = 0 with probability one. We therefore assume that ρJ > 0 for J = I+ and
I−. We first rewrite εI as follows

ε2
I =

α2
I+

ρI+

+
α2

I−

ρI−
− α2

I

ρI

= ρI+c2
I+ + ρI−c2

I− − ρIc
2
I

= ρI+c2
I+ + ρI−c2

I− − ρI((ρI+cI+ + ρI−cI−)/ρI)
2

=
ρI+ρI−

ρI

(cI+ − cI−)2,

and therefore εI = |βI | with

βI :=

√
ρI+ρI−

ρI
(cI+ − cI−). (4.17)

In a similar way we obtain εI(z) = |βI(z)| with

βI(z) :=

√
ρI+(z)ρI−(z)

ρI(z)
(cI+(z) − cI−(z)). (4.18)

Introducing the quantities aI+ =
√

ρI−
ρIρI+

and aI− =
√

ρI+

ρIρI−
and their empirical counter-

part aI+(z) and aI−(z) we can rewrite βI and βI(z) as

βI = aI+αI+ − aI−αI− (4.19)

and
βI(z) = aI+(z)αI+(z) − aI−(z)αI−(z). (4.20)
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It follows that

|εI − εI(z)| ≤ |aI+αI+ − aI+(z)αI+(z)| + |aI−αI− − aI−(z)αI−(z)|. (4.21)

We next introduce the numbers δJ defined by the relation ρJ (z) = (1 + δJ)ρJ , for J =
I+, I− or I. It is easily seen that if |δJ | ≤ δ ≤ 1/4 for J = I+, I− and I, one has

aI+(z) = (1 + µ+
I )aI+ (4.22)

with |µ+
I | ≤ 3δ. This follows indeed from the basic inequalities

1 − 3δ ≤

√
(1 − δ)

(1 + δ)2
≤

√
(1 + δ)

(1 − δ)2
≤ 1 + 3δ (4.23)

which hold for 0 ≤ δ ≤ 1/4. Therefore if |δJ | ≤ δ ≤ 1/4 for J = I+, I− and I, we have

|aI+αI+ − aI+(z)αI+(z)| ≤ aI+(z)|αI+ − αI+(z)| + |αI+(aI+ − aI+(z))|
≤ 2aI+ |αI+ − αI+(z)| + 3δaI+ |αI+|.

By similar considerations, we obtain the estimate

|aI−αI− − aI−(z)αI−(z)| ≤ 2aI−|αI− − αI−(z)| + 3δaI−|αI−|,

and therefore
|εI − εI(z)| ≤

∑
K=I+,I−

2aK |αK − αK(z)| + 3δaK |αK |. (4.24)

We first turn to (4.9), which corresponds to the case where εI ≥ 2η and εI(z) ≤ η. In
this case, we remark that we have

η2 ≤ ε2
I

4
=

ρI+ρI−

ρI

(cI+ − cI−)2

4
≤ M2ρL, (4.25)

for L = I+, I− and I. Combining (4.24) and (4.25), we estimate the probability by

Prob{εI(z) ≤ η and εI ≥ 2η} ≤
∑

K=I+,I−

(
pK +

∑
J=I−,I+,I

qK,J

)
, (4.26)

with

pK := Prob{|αK − αK(z)| ≥ [8aK ]−1η given ρK ≥ η2

M2
}, (4.27)

and

qK,J := Prob{|ρJ − ρJ (z)| ≥ ρJ min{1

4
, η[12aK|αK |]−1} given ρJ ≥ η2

M2
}. (4.28)

Using Bernstein’s inequality, we can estimate pK as follows

pK ≤ 2e
− mη2

2(64a2
K

M2ρK+8aKηM/3) ≤ 2e
− mη2

2(64a2
K

M2ρK+8aK
√

ρKM2/3) ≤ 2e−cmη2

,
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with c = [(128 + 16/3)M2]−1, where we have used η2 ≤ ρKM2 in the second inequality
and the fact that a2

KρK ≤ 1 in the third inequality.
In the case where 12aK |αK | ≤ 4η, we estimate qK,J by

qK,J ≤ 2e
− mρJ

2(16+4/3) ≤ 2e−cmη2

,

with c = [(32 + 8/3)M2]−1, where we have used ρJ ≥ η2/M2.
In the opposite case 12aK |αK | ≥ 4η, we estimate qK,J by

qK,J ≤ 2e
−m

(
ρJη

12aK |αK |
)2

2

(
ρJ+

ρJη
36aK |αK |

)
≤ 2e

− mρJ η2

312a2
K

|αK |2

where in the last inequality we used 3aK |αK | ≥ η to bound the second term in the
denominator. Since |αK | ≤ MρK , we have a2

Kα2
K ≤ M2(ρI−ρI+/ρI) ≤ M2 min {ρI− , ρI+}

so that ρJ ≥ a2
Kα2

K/M2. Therefore, we obtain

qK,J ≤ e−cmη2

(4.29)

with c = [312M2]−1.
Using these estimates for pK and qK,J back in (4.26), we obtain (4.9).
We next turn to (4.10), which corresponds to the opposite case where εI ≤ η and

εI(z) ≥ 2η. In this case, we remark that we have

η2 ≤ ε2
I(z)

4
=

ρI+(z)ρI−(z)

ρI(z)

(cI+(z) − cI−(z))2

4
≤ M2ρL(z), (4.30)

for L = I+, I− and I. In this case, we do not have η2 ≤ M2ρL, but we shall use the fact
that η2 ≤ 2M2ρL with high probability, by writing

Prob{εI ≤ η and εI(z) ≥ 2η} ≤
∑

K=I+,I1

(
pK + p̃K +

∑
J=I−,I+,I

(qK,J + p̃J)
)
, (4.31)

where now

pK := Prob{|αK − αK(z)| ≥ [8aK ]−1η; given ρK ≥ η2

2M2
}, (4.32)

and

qK,J := Prob{|ρJ − ρJ (z)| ≥ ρJ min{1

4
, η[12aK|αK |]−1} given ρJ ≥ η2

2M2
} (4.33)

and the additional probability is given by

p̃J := Prob{η2 ≤ M2ρJ(z) given η2 ≥ 2M2ρJ}. (4.34)

Clearly, pK and qK,J are estimated as in the proof of (4.9). The additional probability is
estimated by

p̃J ≤ Prob{η2 ≥ M2ρJ and |ρJ − ρJ (z)| ≥ (η/M)2}

≤ 2e
− mη4

2(ρJ M4+M2η/3)

≤ 2e
− mη4

2(η2M2+M2η2/3)

≤ 2e−cmη2

,
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with c = (8M2/3)−1. Using these estimates in (4.31), we obtain (4.10), which concludes
the proof of the lemma. �
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