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Abstract

Let ρ be an unknown Borel measure defined on the space Z := X × Y with
X ⊂ IRd and Y = [−M, M ]. Given a set z of m samples zi = (xi, yi) drawn according
to ρ, the problem of estimating a regression function fρ using these samples is
considered. The main focus is to understand what is the rate of approximation,
measured either in expectation or probability, that can be obtained under a given
prior fρ ∈ Θ, i.e. under the assumption that fρ is in the set Θ, and what are possible
algorithms for obtaining optimal or semi-optimal (up to logarithms) results. The
optimal rate of decay in terms of m is established for many priors given either in
terms of smoothness of fρ or its rate of approximation measured in one of several
ways. This optimal rate is determined by two types of results. Upper bounds
are established using various tools in approximation such as entropy, widths, and
linear and nonlinear approximation. Lower bounds are proved using Kullback-
Leibler information together with Fano inequalities and a certain type of entropy.
A distinction is drawn between algorithms which employ knowledge of the prior in
the construction of the estimator and those that do not. Algorithms of the second
type which are universally optimal for a certain range of priors are given.

1 Introduction

We shall be interested in the problem of learning an unknown function defined on a
set X which takes values in a set Y . We assume that X is a compact domain in IRd

and Y = [−M,M ] is a finite interval in IR. The setting we adopt for this problem is
called distribution free non-parametric estimation of regression. This problem has a long
history in statistics and has recently drawn much attention in the work of Cucker and
Smale [10] and amplified upon in Poggio and Smale [31]. We shall use the introduction to
describe the setting and to explain our viewpoint of this problem which is firmly oriented
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Contract DAAD 19-02-1-0028; the AFOSR Contract UF/USAF F49620-03-1-0381; and NSF contracts
DMS-0221642 and DMS-0200187
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in approximation theory. Later in this introduction, we shall explain the new results
obtained in this paper. We have written the paper to be as self contained as possible
and accessible to researchers in various disciplines. As such, parts of the paper may seem
pedestrian to some researchers but we hope that they will find other aspects of the paper
to be of interest.

1.1 The learning problem

There are many examples of learning problems given in [31]. We shall first describe one
such problem whose sole purpose is to aid the reader to understand the setting and the
assumptions we put forward. Consider the problem of a bank wanting to decide whether
or not to give an individual a loan. The bank will ask the potential client to answer
several questions which are deemed to be related to how he will perform in paying back
the loan. Sample questions could be age, income, marital status, credit history, home
ownership, amount of the loan, etc. The answer to these questions form a point in IRd,
where d is the number of questions. We assume that d is fixed and each potential client is
asked the same questions. The bank will have a data set (history) of past customers and
how they have performed in paying back their loans. We denote by y the profit (or loss if
negative) the bank has made on a particular loan. Thus a point z := (x, y) ∈ Z := X ×Y
represents a (potential) client’s answers (x) and the (potential) profit y the bank has made
(or would make) on the loan. The data collection will be denoted by z and consists of
points (xi, yi) ∈ IRd+1 where xi is the answers given by the i-th customer and yi is the
profit or loss the bank made from that loan.

Notice there are two distributions lurking in the background of this problem. The
first is the distribution of answers x ∈ X. Typically, several potential customers would
have the same answers x and some x are more likely than others. So our first distribution
is on X. The second distribution relates to the profit (y) the bank will make on the
loan. Given an x there will be several different customers with these same answers and
therefore there will be several different values y associated to this x. Thus sitting over x
there is a probability distribution in Y . The bank is interested in learning the function f
defined on X which describes the expected profit f(x) over the collection of all potential
customers with answers x. It is this function f that we wish to learn. What we have
available are the past records of loans. This corresponds to the set z = {(xi, yi)}m

i=1 which
is a subset of Zm. This set incorporates all of the information we have about the two
unknown distributions. Our problem then is to estimate f by a function fz determined
in some way from the set z.

A precise mathematical formulation of this type of problem (see [19] or [10]) incor-
porates both probability distributions into one (unknown) Borel probability measure ρ
defined on Z = X × Y . The conditional probability measure ρ(y|x) represents the prob-
ability of an outcome y given the data x. The marginal probability measure ρX defined
for S ⊂ X by ρX(S) = ρ(S × Y ) describes the distribution on X. The function fρ we are
trying to learn is then

fρ(x) :=

∫

Y

ydρ(y|x). (1.1)
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The function fρ is known in statistics as the regression function of ρ. One should note
that fρ is the minimizer of

E(f) := Eρ(f) :=

∫

Z

(f(x) − y)2dρ (1.2)

among all functions f : X → Y . This formula will motivate some of the approaches to
constructing an fz.

Notice that if we put ε = Y − f(X), then we are not assuming that ε and X are
independent although there is a large body of statistical literature which makes this
assumption. While these theories do not directly apply to our setting, they utilize several
of the same techniques we shall encounter such as the utilization of entropy and the
construction of estimators through minimal risk.

There may be other settings in which fρ is not the function we wish to learn. For
example, if we replace the L2 norm in (1.2) by the L1 norm then in place of the mean
fρ(x) we would want to learn the median of y|x. In this paper, we shall be interested in
learning fρ or some variant of this function.

Our problem then is given the data z, how to find a good approximation fz to fρ. We
shall call a mapping IEm that associates to each z ∈ Zm a function fz defined on X to
be an estimator. By an algorithm, we shall mean a family of estimators {IEm}∞m=1. To
evaluate the performance of estimators or algorithms, we must first decide how to measure
the error in the approximation of fρ by fz. The typical candidates to measure error are
the Lp(X, ρX) norms 1:

‖g‖Lp(X,ρX) :=






(∫

X

|g(x)|pdρX

)1/p

, 1 ≤ p < ∞,

esssupx∈X |g(x)|, p = ∞.

(1.3)

Other standard choices in statistical litterature correspond to taking measures other than
ρX in the Lp norm, for instance the Lebesgue measure. In this paper, we shall have as
our goal to obtain approximations to fρ with the error measured in the L2(X, ρX) norm.
However, as we shall see estimates in the C(X) norm 2 are an important tool in such an
analysis.

Having set our problem, what kind of estimators fz could we possibly construct? The
most natural approach (and the one most often used in statistics) is to choose a class of
functions H which is to be used in the approximation, i.e. fz will come from the class
H. This class of functions is called the hypothesis space in learning theory. A typical
choice for H is a ball in a linear space of finite dimension n or in a nonlinear manifold of
dimension n. (The best choice for the dimension n (depending on m) will be a critical
issue which will emerge in the analysis.) For example, in the linear case, we might choose
a space of polynomials, or splines, or wavelets, or radial basis functions. Candidates in the
nonlinear case could be free knot splines or piecewise polynomials on adaptively generated

1The space Lp = Lp(X) will always be understood to be with respect to Lesbesgue measure. Spaces
with respect to other measures will always have further amplification such as Lp(X, ρX)

2Here and later C(X) denotes the space of continuous functions defined on X
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partitions or n-term approximation from a basis of wavelets, or radial basis functions, or
ridge functions (a special case of this would correspond to neural networks). Once this
choice is made, the problem is then given z how do we find a good approximation fz to
fρ from H. We will turn to that problem in a moment but first we want to discuss how
to measure the performance of such an approximation scheme.

As mentioned earlier, we shall primarily measure the approximation error in the
L2(X, ρX) norm. If we have a particular approximant fz to fρ in hand, the quality
of its performance is measured by

‖fρ − fz‖. (1.4)

Throughout the paper, we shall use the default notation ‖g‖ := ‖g‖L2(X,ρX). Other norms
will have an apropriate subscript. The error (1.4) clearly depends on z and therefore has
a stochastic nature. As a result, it is generally not possible to say anything about (1.4)
for a fixed z. Instead, we can look at behavior in probability as measured by

ρm{z : ‖fρ − fz‖ > η}, η > 0 (1.5)

or the expected error

Eρm(‖fρ − fz‖) =

∫

Zm

‖fρ − fz‖dρm, (1.6)

where the expectation is taken over all realizations z obtained for a fixed m and ρm is the
m-fold tensor product of ρ.

If we have done things correctly, this expected error should tend to zero as m → ∞
(the law of large numbers). How fast it tends to zero depends on at least three things: (i)
the nature of fρ, (ii) the approximation properties of the space H, (iii) how well we did in
constructing the estimators fz. We shall discuss each of these components subsequently.

The probability
ρm{z : ‖fz − fρ‖ > η} (1.7)

measures the confidence we have that the estimator is accurate to tolerance η. We are
interested in the decay of (1.7) as m → ∞ and η increases.

Notice that we really do not know the norm ‖·‖ because we do not know the measure ρ.
This does not prevent us from formulating theorems in this norm however. An important
observation is that for any probability measure ρX , we have

‖f‖L2(X,ρX) ≤ ‖f‖C(X). (1.8)

Thus, bounds on the goodness of fit in C(X) imply the same bounds in L2(X, ρX). While
obtaining estimates through C(X) provides a quick fix to not knowing ρ, it may be a
nonoptimal approach.

1.2 The role of approximation theory

The expected error (1.6) has two components which are standard in statistics. One is how
well we can approximate fρ by the elements of H (called the bias) and the second is the
stochastic nature of z (the variance). We discuss the first of these now and show how it
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influences the form of the results we can expect. We phrase our discussion in the context of
approximation in a general Banach space B even though our main interest will be the case
B = L2(X, ρX). Understanding how well H does in approximating functions is critical to
understanding the advantages and disadvantages of such a choice. The performance of
approximation by the elements of H is the subject of approximation theory. This subject
has a long and important history which we cannot give in its entirety. Rather we will
give a coarse resolution of approximation theory in order to not inundate the reader with
a myriad of results that are difficult to absorb on first exposure. We will return to this
subject again in more detail in §2.3.

Given a set H ⊂ B, and a function f ∈ B, we define

dist(f,H)B := inf
S∈H

‖f − S‖B. (1.9)

More generally, for any compact set K ⊂ B, we define

dist(K,H)B := sup
f∈K

dist(f,H)B. (1.10)

Certainly, fz will never approximate fρ (in the B sense) with error better than (1.9).
However, in general it will do (much) worse for two reasons. The first is that we only have
(partial) information about fρ from the data z. The second is that the data z is noisy in
the sense that for each x the value y|x is stochastic.

Approximation theory seeks quantitative descriptions of approximation given by se-
quence of spaces Sn, n = 1, 2, . . ., which will be used in the approximation. The spaces
could be linear of dimension n or nonlinear depending on n parameters. A typical result
is that given a compact set K ⊂ B, approximation theory determines the best exponent
r = r(K) > 0 3 for which

dist(K,Sn)B ≤ CKn−r, n = 1, 2, . . . . (1.11)

Such results are known in all classical settings in which B is one of the Lp spaces (with
respect to Lebesgue measure) and K is given by a smoothness condition. Sometimes
it is even possible to describe the functions which are approximated with a specified
approximation order. The approximation class Ar := Ar((Sn),B) consists of all functions
f such that

dist(f,Sn)B ≤ Mn−r, n = 1, 2, . . . . (1.12)

The smallest M = M(f) for which (1.12) is valid is by definition the semi-norm |f |Ar in
this space.

To orient the reader let us give a classical example in approximation theory in which
we approximate continuous functions f in the C(X) norm (i.e the uniform norm on X).
For simplicity, we take X to be [0, 1]. We consider first the case when Sn is the linear n-
dimensional space consisting of all piecewise constant functions on the uniform partition of
X into n disjoint intervals. (Notice that the approximating functions are not continuous.)
In this case the space Ar, for 0 < r ≤ 1, is precisely the Lipshitz space Lip r 4 (see e.g.

3We shall exclusively use the parameter r to denote a rate of approximation in this paper.
4If the reader is unfamiliar with the space Lip r then he may wish to look forward to §2 where we give

a general discussion of smoothness spaces
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[16]). The semi-norm for Ar is equivalent to the above Lip r semi-norm. In other words,
we can get an approximation rate dist(f,Sn)C(X) = O(n−r) if and only if f ∈ Lip r.

Let us consider a second related example of nonlinear approximation. Here we again
approximate in the norm C(X) by piecewise constants but allow the partition of [0, 1] to
be arbitrary except that the number of intervals is again restricted to be n. The corre-
sponding space Sn is now a nonlinear manifold which is described by 2n − 1 parameters
(the n − 1 breakpoints and the n constant values on the intervals). In this case, the
approximation classes are again known (see [16]), but we mention only the case r = 1. In
this case, A1 = BV ∩C(X), where BV is the space of functions of bounded variation on
[0, 1]. Here we can see the distinction between linear and nonlinear approximation. The
class BV is much larger than Lip 1. So we obtain the performance O(n−1) for a much
larger class in the nonlinear case. Note however that if f ∈ Lip 1, then the nonlinear
method does not improve the approximation rate; it is still O(n−1). On the other hand,
for general functions in BV ∩C, we can say nothing at all about the linear approximation
rate while the nonlinear rate is O(n−1).

The problem with using these approximation results directly in our learning setting is
that we do not know the function fρ. Nevertheless, a large portion of statistics and learning
theory proceeds under the assumption that fρ is in a known set Θ. Such assumptions are
known as priors in statistics. We shall denote such priors by fρ ∈ Θ. Typical choices of
Θ are compact sets determined by some smoothness condition or by some prescribed rate
of decay for a specific approximation process. We shall denote generic smoothness spaces
by W . Given a normed (or quasi-normed) space B, we denote its unit ball by u(B). We
denote a ball of radius R different from one by bR(B). 5 If we do not wish to specify the
radius we simply write b(B).

If we assume that fρ is in some known compact set K and nothing more, then the
best estimate we can give for the bias term is

dist(fρ,H)B ≤ dist(K,H)B. (1.13)

The question becomes what is a good set H to use in approximating the elements of K.
These questions are answered by concepts in approximation theory known as widths or
entropy numbers as we shall now describe.

Suppose that we decide to use linear spaces in our construction of fz. We might
then ask what is the best linear space to choose. The vehicle for making this decision is
the concept of Kolmogorov widths. Given a centrally symmetric compact set K from a
Banach space B, the Kolmogorov n-width is defined by

dn(K,B) := inf
Ln

dist(K,Ln)B (1.14)

where infLn is taken over all n-dimensional linear subspaces Ln of B. In other words, the
Kolmogorov n-width gives the best possible error in approximating K by n-dimensional
linear subspaces. Thus, the best choice of Ln (from the viewpoint of approximation
theory) is to choose Ln as a space that gives (or nearly gives) the infimum in (1.14). It is
usually impossible to find the best n-dimensional approximating subspace for K and we

5We use lower case b for balls in order to not have confusion with the other uses of B in this paper.
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have to be satisfied with a near optimal sequence (Ln) of subspaces by which we mean

dist(K,Ln) ≤ Cdn(K,B), n = 1, 2, . . . , (1.15)

with C an absolute constant.
For bounded sets in any of the classical smoothness spaces W and for approximation

in B = Lp (with Lebesgue measure), the order of decay of the n-widths is known. How-
ever, we should caution that in some of the deeper theorems, (near) optimizing spaces
are not known explicitly. As an example, for any ball in one of the Lipschitz spaces Lip s,
0 < s ≤ 1, introduced above, the n-width is known to behave like O(n−s) and there-
fore piecewise constants on a uniform partition form a sequence of near optimal linear
subspaces. There is a similar concept of nonlinear widths (see [1, 14]) to describe best n-
dimensional manifolds for nonlinear approximation. We give one formulation of nonlinear
widths in §4.2

Another way of measuring the approximability of a set is through covering numbers.
Given a compact set K in a Banach space B, for each ε > 0 the covering number N(ε, K)B
is the smallest number of balls in B of radius ε which cover K. We shall use the default
notation

N(ε, K) = N(ε, K)C(X) (1.16)

for the covering numbers in C(X). The logarithm

H(ε, K) := H(ε, K)B := log2 N(ε, K)B (1.17)

of the covering number is the Kolmogorov entropy of K in B. From the Kolmogorov
entropy we obtain the entropy numbers of K defined by

εn(K) := εn(K,B) := inf{ε : H(ε, K)B ≤ n}. (1.18)

The entropy numbers are very closely related to nonlinear widths. For example, if B is
chosen as any of the Lp spaces, 1 ≤ p ≤ ∞, and K is a unit ball of an isotropic smoothness
space (Besov or Sobolev) which is compactly embedded in B, then the nonlinear width of
K decays like O(n−r) if and only if εn(K) = O(n−r). Moreover, one can obtain this ap-
proximation rate through a simple nonlinear approximation method such as either wavelet
thresholding or piecewise polynomial approximation on adaptively generated partitions
(see [13]).

1.3 Measuring the quality of the approximation

We have already discussed possible norms to measure how well fz approximates fρ. We
shall almost always use the L2(X, ρX) norm and it is our default norm (denoted simply
by ‖ ·‖ ). Given this norm one then considers the expected error (1.6) as a measure of how
well the fz approximates fρ. We have also mentioned measuring accuracy in probability.
Given a bound for ρm{z : ‖fρ − fz‖ > η}, we can obtain a bound for the expected error
from

Eρm(‖fρ − fz‖) =

∞∫

0

ρm{z : ‖fρ − fz‖ > η}dη. (1.19)
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Bounding probabilities like ρm utilizes concentration of measure inequalities. Let ρ
be a Borel probability measure on Z = X × Y . If ξ is a random variable (a real valued
function on Z) then

E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ (1.20)

are its expectation and variance respectively. The law of large numbers says that drawing
samples z from Z, the sum 1

m

∑m
i=1 ξ(zi) will converge to E(ξ) with high probability

as m → ∞. There are various quantitative versions of this, known as concentration
of measure inequalities. We mention one particular inequality (known as Bernstein’s
inequality) which we shall employ in the sequel. This inequality says that if |ξ(z)−E(ξ)| ≤
M0 a.e. on Z, then for any η > 0

ρm{z ∈ Zm : | 1

m

m∑

i=1

ξ(zi) − E(ξ)| ≥ η} ≤ 2 exp(− mη2

2(σ2(ξ) + M0η/3)
). (1.21)

1.4 Constructing estimators: empirical risk minimization

Suppose that we have decided on a set H which we shall use in approximating fρ, i.e. fz

should come from H. We need still to address the question of how to find an estimator
fz to fρ. We shall use empirical risk minimization (least squares data fitting). This is of
course a widely studied method in statistics. This subsection describes this method and
introduces some fundamental concepts as presented in Cucker and Smale [10].

Empirical risk minimization is motivated by the fact that fρ is the minimizer of

E(f) := Eρ(f) :=

∫

Z

(f(x) − y)2dρ. (1.22)

That is (see [2]),
E(fρ) = inf

f∈L2(X,ρX)
E(f). (1.23)

Notice that for any f ∈ L2(X, ρX), we have

E(f) − E(fρ) =

∫

Z

{(y − f)2 − (y − fρ)
2}dρ =

∫

Z

{f 2 − 2y(f − fρ) − f 2
ρ}dρ

=

∫

X

{f 2 − 2fρf + f 2
ρ} dρX = ‖f − fρ‖2. (1.24)

We use this formula frequently when we try to assess how well a function f approximates
fρ.

Properties (1.22) and (1.23) suggest to consider the problem of minimizing the empir-
ical variance

Ez(f) :=
1

m

m∑

i=1

(f(xi) − yi)
2 (1.25)
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over all f ∈ H. We denote by

fz := fz,H = arg min
f∈H

Ez(f), (1.26)

the so-called empirical minimizer. We shall use this approach frequently in trying to find
an approximation fz to fρ. Given a finite ball in a linear or nonlinear finite dimensional
space, the problem of finding fz is numerically executable.

We turn now to the question of estimating ‖fρ − fz‖ under this choice of fz. There
is a long history in statistics of using entropy of the set H in bounding this error in one
form or another. We shall present the core estimate of Cucker and Smale [10] which we
shall employ often in this paper.

Our first observations center around the minimizer

fH := arg min
f∈H

E(f). (1.27)

From (1.24), it follows that fH is the best approximation to fρ from H:

‖fρ − fH‖ = dist(f,H). (1.28)

If H were a linear space then fH is unique and fρ − fH is orthogonal to H. We shall
typically work with bounded sets H and so this kind of orthogonality needs more care.
Suppose that H is any closed convex set. Then for any f ∈ H and g := f − fH, we have
(1 − ε)fH + εf = fH + εg is in H and therefore,

0 ≤ ‖fρ − fH − εg‖2 − ‖fρ − fH‖2 = −2ε

∫

X

(fρ − fH)g dρX + ε2
∫

X

g2 dρX . (1.29)

Letting ε → 0, we obtain the following well-known result:
∫

X

(fρ − fH)(f − fH) dρX ≤ 0, f ∈ H. (1.30)

Then letting ε = 1 we see that ‖fρ − f‖ > ‖fρ − fH‖ whenever f ,= fH and so fH is
unique. Also, (1.30) gives

‖fH − fz‖2 ≤ ‖fρ − fz‖2 − ‖fρ − fH‖2 = E(fz) − E(fH). (1.31)

Of course, we cannot find fH but it is useful to view it as our target in the construction
of the fz.

We are left with understanding how well fz approximates fH or said in another way how
the empirical minimization compares to the actual minimization (1.27). For f : X → Y ,
the defect function

Lz(f) := Lz,ρ(f) := E(f) − Ez(f)

measures the difference between the true and empirical variances. Since Ez(fH) ≥ Ez(fz),
returning to (1.31), we find

‖fH − fz‖2 ≤ Lz(fz) − Lz(fH). (1.32)
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The approach to bounding quantities like Lz(f) is to use Bernstein’s inequality. If
the random variable (y − f(x))2 satisfies |y − f(x)| ≤ M0 for x, y ∈ Z, then σ2 :=
σ2((y − f(x))2) ≤ M4

0 and Bernstein’s inequality gives

ρm{z ∈ Zm : |Lz(f)| ≥ η} ≤ 2 exp(− mη2

2(M4
0 + M2

0 η/3)
), η > 0. (1.33)

The estimate (1.33) suffices to give a bound for the second term Lz(fH) in (1.32).
However, it is not sufficient to bound the first term because the function fz is changing
with z. Cucker and Smale utilize covering numbers to bound Lz(fz) as follows. They
assume that H is compact in C(X). Then, under the assumption

|y − f(x)| ≤ M0, (x, y) ∈ Z, f ∈ H, (1.34)

it is shown in [10] (see Theorem B) that

ρm{z : sup
f∈H

|Lz(f)| ≥ η} ≤ N(η/(8M0),H)C(X) exp(− mη2

4(2σ2
0 + M2

0 η/3)
), η > 0, (1.35)

where σ2
0 := supf∈H σ2((y − f(x))2). Note again that from (1.34) we derive σ2

0 ≤ M4
0 .

Putting all of this together (see [10] for details), one obtains the following theorem:
Theorem C [[10]: Let H be a compact subset in C(X). If (1.34) holds, then, for all

η > 0,

ρm{z ∈ Zm : ‖fH − fz,H‖2 ≥ η} ≤ 2N(η/(16M0),H)C(X) exp(− mη2

8(4σ2
0 + M2

0 η/3)
), (1.36)

where σ2
0 := supf∈H σ2((f(x) − y)2).

A second technique of Cucker and Smale gives an improved estimate to (1.36). This
second approach makes the stronger assumption that either fρ ∈ H or the minimizer fH
and all of the estimators fz come from a set H which is not only compact but also convex
in C(X).

Theorem C∗ [10] Let H be either a compact and convex subset of C(X) or a compact
subset of C(X) for which fρ ∈ H. If (1.34) holds, then, for all η > 0

ρm{z ∈ Zm : ‖fH − fz,H‖2 ≥ η} ≤ 2N(η/(24M0),H) exp(− mη

288M2
0

). (1.37)

There is a long history in statistics of obtaining bounds, like those given above, through
entropy and concentration of measure inequalities. It would be impossible for us to give
proper credit here to all of the relevant works. However, a good start would be to look at
the books of S. Van de Geer [38] and L. Györfi, M. Kohler, A. Krzyzak, and H. Walk [19]
and the references therein. In this paper, we will, partly for the sake of simplicity, restrict
the exposition to concentration bounds related to Bernstein’s inequality. However, many
refinements, in particular functional ones, can be found in the probability literature and
used with profit (see e.g. Ledoux and Talagrand [28] and Talagrand [34]).
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1.5 Approximating fρ: first bounds for error

For the remainder of this paper, we shall limit ourselves to the following setting. We
assume that X is a bounded set in IRd which we can always take to be a cube. We
also assume as before that Y is contained in the interval [−M,M ]. It follows that fρ is
bounded: |fρ(x)| ≤ M , x ∈ X.

Let us return to the estimates of the previous section. We know that fH is the best
approximation from H to fρ in L2(X, ρX) and so the bias term satisfies

‖fρ − fH‖ = dist(fρ,H)L2(X,ρX) =: dist(fρ,H). (1.38)

To apply Theorem C, we need to know that

|f(x) − y| ≤ M0, (x, y) ∈ Z, f ∈ H. (1.39)

If this is the case then we have for any η > 0,

ρm{z ∈ Zm : ‖fz − fH‖ ≥ η} ≤ 2N(η2/(8M0),H)e
− mη4

8(4σ2
0+M2

0 η2/3) . (1.40)

This gives that for any η > 0

‖fρ − fz‖ ≤ dist(fρ,H) + η, z ∈ Λm(η), (1.41)

for a set Λm(η) which satisfies

ρm{z /∈ Λm(η)} ≤ 2N(η2/(8M0),H)e
− mη4

8(4σ2
0+M2

0 η2/3) . (1.42)

Since σ2
0 ≤ M2

0 , this last estimate can be restated as

ρm{z /∈ Λm(η)} ≤ 2Ne−c1mη4
, η > 0, (1.43)

with N := N(η2/(8M0),H) and c1 := [32M2
0 (1+M2

0 /3)]−1. Indeed, if η > 2M0, then from
(1.39) we conclude ‖fH−fz‖ ≤ η for all z ∈ Zm, so that (1.43) trivially holds. On the other
hand, if η ≤ 2M0 then the denominator in the exponential (1.42) is ≤ 32M2

0 (1 + M2
0 /3).

If we do a similar analysis using Theorem C* in place of Theorem C, we derive that

‖fρ − fz‖ ≤ dist(fρ,H) + η, z ∈ Λm(η), (1.44)

where
ρm{z /∈ Λm(η)} ≤ 2Ne−c2mη2

. (1.45)

The game is now clear. Given m, we need to choose the set H. This set will typically
depend on m. The question is what is a good choice for H and what type of estimates
can be derived from (1.41) for this choice. Notice the two competing issues. We would
like H to be large in order that the bias term dist(fρ,H) is small. On the other hand, we
would like to keep H small so that its covering numbers N(η2/(8M0),H) are small. This
is a common situation in statistical estimation, leading to the desire to balance the bias
and variance terms.
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Cucker and Smale [10] mention two possible settings in which to apply Theorems C
and C*. We want to carry their line of reasoning a little further to see what this gives
for the actual approximation error. In the first setting, we assume that Θ is a compact
subset of C(X) and therefore Θ is contained in a finite ball in C(X). Given m, we choose
H = Θ. This means that (1.39) will be satisfied for some M0. Since Θ is compact in
C(X), its entropy numbers εn(Θ) tend to zero with n → ∞. If these entropy numbers
behave like

εn(Θ) ≤ Cn−r, (1.46)

then N(η,Θ) ≤ ec0η−1/r
and dist(fρ,Θ) = 0, and (1.41) gives

‖fρ − fz‖ ≤ η, z ∈ Λm(η), (1.47)

where
ρm{z /∈ Λm(η)} ≤ ec0η−2/r−c1mη4

. (1.48)

In other words, for any η > 0, we have

ρm{z : ‖fρ − fz‖ ≥ η} ≤ ec0η−2/r−c1mη4
. (1.49)

The critical value of η occurs when c1mη4 = c0η−2/r, i.e. for η = ηm = ( c0
c1m)

r
4r+2 and we

obtain

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C{ e−cmη4
, η ≥ 2ηm,

1, η ≤ 2ηm,
(1.50)

in particular,
Eρm(‖fρ − fz‖) ≤ Cm− r

4r+2 . (1.51)

This situation is improved if we use Theorem C* in place of Theorem C in the above
analysis. This allows us to replace e−c1mη4

by e−c2mη2
in the above estimates and now the

critical value of η is η∗
m = cm− r

2r+2 and we obtain the following Corollary.

Corollary 1.1 Let Θ be either a compact subset of C(X) or a compact subset of C(X)
for wich fρ ∈ Θ and

εn(Θ) ≤ Cn−r, n = 1, 2 . . . . (1.52)

Then, by taking H := Θ, we obtain the estimate for m = 1, 2, . . .,

ρm{z : ‖fρ − fz,Θ‖ ≥ η} ≤ C{ e−cmη2
, η ≥ cm− r

2r+2 ,
1, η ≤ cm− r

2r+2 ,
(1.53)

In particular,
Eρm(‖fρ − fz,Θ‖) ≤ Cm− r

2r+2 . (1.54)

Example: The simplest example of a prior Θ which satisfies the asumptions of the
corollary is Θ := b(W ) where W is the Sobolev space W s(L∞(X)) (with respect to
Lebesgue measure). The entropy numbers for this class satisfy εn(b(W s(L∞(X))) =
O(n−s/d). Thus, if we assume fρ ∈ Θ and take H = Θ, then (1.53) and (1.54) are
valid with r replaced by s/d. We can improve this by taking the larger space W s(Lp(X)),
p > d, in place of W s(L∞(X)). This class has the same asymptotic behavior of its entropy

12



numbers for its finite balls, and therefore whenever fρ ∈ Θ := b(W s(Lp(X)), p > d, then
taking H = Θ, we have

Eρm(‖fρ − fz‖) ≤ Cm− s
2s+2d , m = 1, 2, . . . . (1.55)

We stress that the spaces W s(Lp(X)) are defined with respect to Lebesgue measure; they
do not see the measure ρX .

1.6 The results of this paper

The purpose of the present paper is to make a systematic study of the rate of decay of
learning algorithms as the number of samples increases and to understand what types of
estimators will result in the best decay rates. In particular, we are interested in under-
standing what is the best rate of decay we can expect under a given prior fρ ∈ Θ.

There are two sides to this story. The first is to establish lower bounds for the decay
rate under a given prior. We let M(Θ) be the class of all Borel measures ρ on Z such
that fρ ∈ Θ. Recall that we do not know ρ so that the best we can say about it is that it
lies in M(Θ). We enter into a competition over all estimators IEm : z → fz and define

em(Θ) := inf
IEm

sup
ρ∈M(Θ)

Eρm(‖fρ − fz‖L2(X,ρX)). (1.56)

We note that in regression theory they usually study Eρm(‖fρ − fz‖2
L2(X,ρX)). From our

probability estimates we can derive estimates for Eρm(‖fρ − fz‖q
L2(X,ρX)) for the whole

range 1 ≤ q < ∞. For the sake of simplicity we formulate our expectation results only in
the case q = 1.

We give in §3 a method to obtain lower bounds for em(Θ) for a variety of different
choices for the priors Θ. The main ingredients in this lower bound analysis are a different
type of entropy (called tight entropy) and the use of concepts from information theory such
as the Kullback-Leibler information and Fano inequalities. As an example, we recover the
following result of Stone (see Theorem 3.2 in [19]): for Θ := b(W s(Lp(X))),

em(b(W s(Lp(X))) ≥ csm
− s

2s+d , m = 1, 2, . . . . (1.57)

Notice that the best estimate we have obtained so far in (1.55) does not give this rate of
decay.

We determine lower bounds for many other priors Θ. For example, we determine lower
bounds for all the clasical Sobolev and Besov smoothness spaces. We phrase our analysis
of lower bounds in such a way that it can be applied to non classical settings. It is our
contention that the correct prior classes to analyze in learning should be smoothness (or
approximation) classes that depend on ρX and we have formulated our analysis so as to
possibly apply to such situations.

One of the points of emphasis of this paper is to formulate the learning problem in
terms of probability estimates and not just expectation estimates. In this direction, we
are following the lead of Cucker and Smale [10]. We shall now give a formal way to
measure the performance of algorithms in probability which can be a useful benchmark.
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Given our prior Θ and the associated class M(Θ) of measures, we define for each η > 0
the accuracy confidence function

ACm(Θ, η) := inf
IEm

sup
ρ∈M(Θ)

ρm{z : ‖fρ − fz‖ > η}. (1.58)

We shall prove lower bounds for AC of the following form

ACm(Θ, η) ≥ C min(1/2,
√

N̄(Θ, η)e−cmη2
). (1.59)

Let η∗
m be the value of η where the two terms in the minimum occuring in (1.59) are equal.

Then, this minimum is 1/2 for η ≤ η∗
m and then the exponential term dominates. One

can incorporate the term
√

N̄(Θ, η) into the exponential and thereby obtain (see Figure
1.1)

ACm(Θ, η) ≥ C ′
{

e−c′mη2
η ≥ η∗

m(Θ)/2
1, η ≤ η∗

m(Θ)/2
(1.60)

for appropriately chosen constants c′, C ′.

1

!*
m 1

Figure 1.1: The typical graph of a majorant of AC function.

These lower bounds for AC are our vehicle for proving expectation lower bounds. We
obtain the expectation lower bound em(Θ) ≥ Cη∗m(Θ).

The use of Kullback-Leibler information together with Fano inequalities is well known
in statistics and goes back to Le Cam [27] and Ibragimov and Hasminskii [21] (see also e.g.
[20]). What seems to separate our results from previous works is the generality in which
this approach can be executed and the fact that our bounds (lower bounds and upper
bounds) are obtained in terms of probability which go beyond bounds for the expected
error.

The major portion of this paper is concerned with establishing upper bounds for em(Θ)
and related probabilities and to understand what types of estimators will yield good upper
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bounds. Typically we shall construct estimators that do not depend on η and show that
they yield upper bounds for ACm(Θ, η) that have the same graphical behavior as in
Figure 1.1:

ACm(Θ, η) ≤
{

Ce−cmη2
η ≥ ηm(Θ)

1, η ≤ ηm(Θ).
(1.61)

By integrating such probabilistic upper bounds we derive the upper bound em(Θ) ≤
Cηm(Θ). Notice that if ηm(Θ) and η∗

m(Θ) are comparable then we have a satisfactory
description of ACm(Θ, η) save for the constants c, C.

It is possible to give estimators which provide upper bounds (both in terms of expecta-
tion and probability) that match the lower bounds for all of the Sobolev and Besov classes
that are compactly embedded into C(X). The way to accomplish this is to use hypothesis
classes H with smaller entropy. For example, choosing for each class a proper ε-net (de-
pending on m) will do the job. This is shown in the follow up paper [25]. In particular,
it implies the corresponding expectation estimates. Apparently, as was pointed out to
us by Lucien Birgé, similar expectation estimates can also be derived from the results in
[4]. Also, we should mention that for the Sobolev classes W k(L∞(X)) and expectation
estimates, this was also proved by Stone (see again [19]).

The ε net approach, while theoretically powerful, is not numerically implementable.
We shall be interested in using other methods to construct estimators which may prove
to be more numerically friendly. In particular, we want to see what we can expect from
estimators based on other methods of approximation including widths and nonlinear ap-
proximation.

The estimation algorithms we construct in this paper will choose a hypothesis space H
(which will generally depend on m) and take for fz the empirical least squares estimator
(1.26) to the data z from H. There will be two types of choices for H:

Prior dependent estimators: These will start with a prior class Θ and construct
an estimator using the knowledge of Θ. Such an estimator, tailored to Θ will typically
not perform well on other prior classes.

Prior independent estimators: These estimators will be built independent of any
prior classes with the hope that they will perform well on a whole bunch of prior classes.

We shall say that an estimation algorithm (IEm) is universally convergent if fz con-
verges in expectation to fρ for each Borel measure ρ on X. Such algorithms are sometimes
called consistent in statistics. We shall say that the algorithm is optimal in expectation
for the prior class Θ if

Eρm(‖fρ − fz‖) ≤ C(Θ)em(Θ), m = 1, 2, . . . . (1.62)

We say that the algorithm is optimal in probability if

sup
ρ∈M(Θ)

ρm{z : ‖fρ − fz‖ > δ} ≤ C1ACm(Θ, C2δ), m = 1, 2, . . . , δ > 0, (1.63)

with C1, C2 constants that may depend on Θ. We say that a learning algorithm is uni-
versally optimal (in expectation or probability) for a class P of priors if it is optimal
for each Θ ∈ P. We shall often construct estimators which are not optimal because of
the appearance of an additional logarithmic term (log m)ν for some ν > 0 in the case of
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expectation estimates. We shall call such estimators semi-optimal. This is in particular
the case when we construct estimators that are effective for a wide class of priors (see e.g.
§4.4): estimators that are effective for large classes of priors are called adaptive in the
statistics literature.

The simplest example of the type of upper bounds we establish is given in Theorem 4.1
which uses Kolmogorov n-widths to build prior dependent estimators. If Θ is a compact
set in C(X) whose Kolmogorov widths satisfy dn(Θ, C(X)) ≤ cn−r, then we choose H as
Ln ∩ b(C(X)), where Ln is a near optimal n dimensional subspace for Θ. We show in §4.1

that when n := ( m
ln m)

1
2r+1 this will give an estimator fz = fz,H such that

Eρm(‖fρ − fz‖) ≤ C(
ln m

m
)

r
2r+1 , (1.64)

with C a constant depending only on r. That is, these estimators are semi-optimal in their
expectation bounds. A corresponding inequality in probability is also established. The
estimate (1.64) applies to finite balls in Sobolev spaces, i.e. Θ = b(W s(Lp)) in which case
r = s/d. It is shown that this again produces estimators which are semi-optimal provided
s > d/2 and p ≥ 2. The logarithm can be removed (for the above mentioned Sobolev
spaces) by other methods (see [25] and in the case of expectation estimates Chapter 19
of [19]).

One advantage of using Kolmogorov widths is that with them we can construct a
universal estimator. For example, we show in §4.4 that there is a single estimator that
gives the inequalities (1.64) provided a ≤ r < b with a > 0 an arbitrary but fixed constant.
The constant b can be chosen arbitrarily in case of estimation in expectation but we only
establish this for r ≤ 1/2 for estimates in probability. It remains an open problem whether
this restriction on r can be removed in the case of probability estimates.

Another method for constructing universal estimators based on adaptive partitioning
is given in [5]. The estimator there is semi-optimal for a range of Besov spaces with
smoothness less than one (a restriction which comes about because the method uses
piecewise constants for the construction of fz).

In §4.2, we show how to use nonlinear methods to construct estimators. These esti-
mators can be considered as generalizations of thresholding operators based on wavelet
decompositions. Recall that thresholding has proven to be very effective in a variety of
settings in statistical estimation [17, 18]. For a range of Besov spaces, these esimators are
proven to be semi-optimal.

In summary, as pertains to upper bounds, this paper puts forward a variety of tech-
niques to obtain upper bounds and discusses their advantages and disadvantages. In
some cases these estimators provide semi-optimal upper bounds. In some cases they can
be modified (as reported on in subsequent papers) to obtain optimal upper bounds. We
also highlight partial results on obtaining universally optimal estimators which we feel is
an important open problem.

In (§5) we consider a variant of the learning problem in which we approximate a variant
fµ of fρ. Namely, we assume that dρX = µ dx is absolutely continuous and approximate
the function fµ := µfρ from the given data z. We motivate our interest in this function
fµ with the above banking problem. One advantage gained in estimating fµ is that we
can provide estimates in Lp without having to go through L∞.
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We consider the results of this paper to be theoretical but some of the methods put
forward could potentially be turned into numerical methods. At this point, we do not
address the numerical feasibility of our algorithms. Our main interest is to understand
what is the best performance we can expect (in terms of accuracy-confidence or expected
error decay with m) for the regression problem with various linear and nonlinear methods.

The use of entropy has a long history in statistical estimation. The use of entropy
as proposed by Cucker and Smale [10] and also used here is similar in both flavor and
execution to other uses in statistics (see for example the articles [4], the book of Sara van
de Geer [38] or the book of Györfi, Kohler, Krzyżak, and Walk [19]). We have tried to
explain the use of these concepts in a fairly accessible way, especially for researchers from
the variious communities that relate to learning (statistics, functional analysis, probability
and approximation) and moreover to show how other concepts of approximation such as
Kolmogorov widths or nonlinear widths can be employed in learning. They have some
advantages and disadvantages that we shall point out.

2 Priors described by smoothness or approximation
properties

The purpose of this section is to introduce the types of prior sets Θ that we shall employ.
Since we are interested in priors for which em(Θ) tends to zero as m tends to infinity, we
must necessarily have Θ compact in L2(X, ρX) for each ρ ∈ M(Θ). It is well known that
compact subsets in Lp spaces (or C(X)) have a uniform smoothness when measured in
that space. Therefore, they are typically described by smoothness conditions. Another
way to describe compact sets is through some type of uniform approximability of the
elements of Θ. We shall use both of these approaches to describe prior sets. These two
ways of describing priors are closely connected. Indeed, a main chapter in approximation
theory is to characterize classes A of functions which have a prescribed approximation
rate by showing that A is a certain smoothness space. Space will not allow us to describe
this setting completely - in fact it is a subject of several books. However, we wish to
present enough discussion for the reader to understand our viewpoint and to be able to
understand the results we put forward in this paper. The reader may wish to skim over
this section and return to it only as necessary to understand our results on learning theory.

2.1 Smoothness spaces

We begin by discussing smoothness spaces in C(X) or in Lp(X) equipped with Lebesgue
measure. This is a classical subject in mathematical analysis. The simplest and best
known smoothness spaces are the Sobolev spaces W k(Lp(X)), 1 ≤ p ≤ ∞, k = 1, 2, . . ..
The space W k(Lp(X)) is defined as the set of all functions g ∈ Lp(X) whose distributional
derivatives Dνg, |ν| = k, are also in Lp. The semi-norm on this space is

|g|W k(Lp(X)) :=
∑

|ν|=k

‖Dνg‖Lp(X). (2.1)
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We obtain the norm ‖g‖W k(Lp(X)) for this space (and all other smoothness spaces in Lp(X))
by adding ‖g‖Lp(X) to the semi-norm.

The family of Sobolev spaces is insufficient for most problems in analysis because of
two reasons. The first is that we would like to measure smoothness of order s when s > 0
is not an integer. The second is that in some cases, we want to measure smoothness in
Lp(X) with p < 1. There are several ways to define a wider family of spaces. We shall
use the Besov spaces because they fit best with approximation and statistical estimation.

A Besov space Bs
q(Lp(X)) has three parameters. The parameter 0 < p ≤ ∞ plays the

same role as in Sobolev spaces. It is the Lp(X) space in which we measure smoothness.
The parameter s > 0 gives the smoothness order and is the analogue of k for Sobolev
spaces. The parameter 0 < q ≤ ∞ makes subtle distinctions in these spaces.

The usual definition of Besov spaces is made by either using moduli of smoothness or
by using Fourier transforms and can be found in many texts (we also refer to the paper
[15]). For example, for 0 < s < 1, and p = ∞, the Besov space Bs

∞(L∞(X)) is the same
as the Lipschitz space Lip s whose semi-norm is defined by

|f |Lip s := sup
x1,x2∈X

|f(x1) − f(x2)|
|x1 − x2|s

. (2.2)

We shall not give the general definition of Besov spaces in terms of moduli of smooth-
ness or Fourier transforms but rather give, later in this section, an equivalent definition
in terms of wavelet decompositions (see §2.2) since this latter description is useful for un-
derstanding some of our estimation theorems using wavelet decompositions.

It is well known when a finite radius ball b(W ) of a Sobolev or Besov spaces W is
compactly embedded in Lp(X). This is connected to what are called Sobolev embedding
theorems. To describe these results, it will be convenient to have a pictorial description
of smoothness spaces. We shall use this pictorial description often in describing our
results. We shall identify smoothness spaces with points in the upper right quadrant of
IR2. We write each such point as (1/p, s) and identify this point with a smoothness space
of smoothness order s in Lp; this space may be the Sobolev space W k(Lp(X)) in the case
s = k is an integer or the Besov space Bs

q(Lp(X)) in the general case s ≥ 0. The points
(1/p, 0) correspond to Lp(X) when p < ∞ and to C(X) when p = ∞. The compact
subsets of Lp(X) are easy to describe using this picture. We fix the value of p and we
consider the line segment whose coordinates (1/µ, s) satisfy 1/µ = s

d + 1
p . This is the

so-called Sobolev embedding line for Lp(X). For any point (1/τ, s) to the left of this line,
any finite ball in the corresponding smoothness space is compactly embedded in Lp(X).
Figure 2.1 depicts the situation for p = ∞, i.e. the spaces compactly embedded in C(X).
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1/p

s

Sobolev
embedding line

C(X)

Figure 2.2: The shaded region depicts the smoothness spaces embedded in C(X) when
d = 2. The Sobolev embedding line has equation s = 2/p in this case.

Thus far, we have only described isotropic smoothness spaces, i.e. the smoothness
is the same in each coordinate. There are also important anistropic spaces which mea-
sure smoothness differently in the coordinate directions. We describe one such family of
smoothness spaces known as the Hölder-Nikol’skii classes NHs

p , defined for s = (s1, . . . , sd)
and 1 ≤ p ≤ ∞. This class is the set of all functions f ∈ Lp(X) such that for each
lj = [sj] + 1, j = 1, . . . , d, we have

‖f‖p ≤ 1, ‖∆lj ,j
t f‖Lp(X) ≤ |t|sj , j = 1, . . . , d, (2.3)

where ∆l,j
t is the l-th difference with step size t in the variable xj. In the case d = 1,

NHs
p coincides with the standard Lipschitz (0 < s < 1) or Hölder (s ≥ 1) classes. If

s1 = . . . = sd = s these classes coincide with the Besov classes Bs
∞(Lp(X)) (see §2.2).

2.2 Wavelet decompositions

In this section, we shall introduce wavelets and wavelet decompositions. These will be
important in the construction of estimators later in this paper. Also, we shall use them
to define the Besov spaces. There are several books which discuss wavelet decompositions
and their characterization of Besov spaces (see e.g. Meyer [30] or the survey [16]). We
also refer to the article of Daubechies [13] for the construction of wavelet bases of the type
we want to use.
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Let ϕ be a univariate scaling function which generates a univariate wavelet ψ which
has compact support . For specificity, we take ϕ and ψ to be one of the Daubechies’ pairs
(see [13]) which generate orthogonal wavelets. We define ψ0 := ϕ and ψ1 := ψ. Let E ′

be the set of vertices of the unit cube [0, 1]d and let E := E ′ \ {(0, . . . , 0)} be the set of
nonzero vertices. We also let D denote the set of dyadic cubes in IRd and Dj the set of
dyadic cubes of side length 2−j. Each I ∈ Dj is of the form

I = 2−j[k1, k1 + 1] × · · · × 2−j[kd, kd + 1], k = (k1, . . . , kd) ∈ ZZd. (2.4)

For each 0 < p ≤ ∞, the wavelet functions

ψe
I(x) := ψe

I,p(x) := 2jd/pψe1(2jx1 − k1) · · ·ψed(2jxd − kd), I ∈ D, e ∈ E, (2.5)

(normalized in Lp(IR
d)) form an orthogonal system. Each locally integrable function f

defined on IRd has a wavelet decomposition

f =
∑

I∈D

∑

e∈E

f e
I ψ

e
I , f e

I := f e
I,p := 〈f,ψe

I,p′〉, 1/p + 1/p′ = 1. (2.6)

Here f e
I = f e

I,p depends on the p-normalization that has been chosen but f e
I ψ

e
I is the same

regardless of p. We shall usually be working with L2 normalized wavelets. If this is not
the case, we shall indicate the dependence on p. The series (2.6) converges absolutely to
f in the Lp(IR

d) norm in the case f ∈ Lp(IR
d) and 1 < p < ∞ and conditionally in the

case p = ∞ with L∞(IRd) replaced by C(IRd).
For any cube J , we shall denote by +(J) the side length of J . The wavelet functions

ψe
I all have compact support. We take Ī as the smallest cube that contains the support

of this wavelet. Then,
+(Ī) ≤ A0+(I), (2.7)

where A0 depends only on the initial choice of the wavelet ψ.
In order to define Besov spaces in terms of wavelet coefficients, we let k be a positive

integer such that the mother wavelet ψ is in Ck(IRd) and has k vanishing moments. If
0 < p, q ≤ ∞ and 0 ≤ s < k, then, for the p normalized basis {ψe

I},

|f |Bs
q(Lp(IRd)) :=






(∑∞
j=−∞ 2jsq

(∑
I∈Dj

∑
e∈E |f e

I |p
)q/p

)1/q

, 0 < q < ∞,

sup−∞<j<∞ 2js
(∑

I∈Dj
∑

e∈E
|f e

I |p
)1/p

, q = ∞.

(2.8)

defines the (quasi-semi)-norm for the Besov space Bs
q(Lp(IR

d)). These spaces and norms
are equivalent for different choices of k (provided s < k) and are equivalent to the classical
definitions using moduli of smoothness as long as 1 ≤ p < ∞ or 0 < p < 1 and s/d >
1/p − 1. The quasi-norm in Bs

q(Lp(IR
d)) is defined by

‖f‖Bs
q(Lp(IRd)) := ‖f‖Lp(IRd) + |f |Bs

q(Lp(IRd)). (2.9)

If s is not an integer, we define W s(Lp(X)) := Bs
p(Lp(X)) which serves to extend the

scale of Sobolev spaces to all s.
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The wavelet decomposition (2.6) runs over all dyadic levels. There is an analogous
decomposition that runs only over j ≥ j0 where j0 is any fixed integer. Let D+ := ∪j≥j0Dj.
Each locally integrable function on IRd has the wavelet decomposition

f =
∑

j≥j0

∑

I∈Dj

∑

e∈Ej

f e
I ψ

e
I , f e

I := 〈f,ψe
I,p′〉. (2.10)

where Ej0 := E ′, and Ej := E, j > j0. Here, for the case j = j0, the wavelets ψe
I are

replaced by the corresponding scaling functions ϕe
I .

We can also describe Besov norms using this decomposition:

‖f‖Bs
q(Lp(IRd)) :=






(∑∞
j=j0

2jsq
(∑

I∈Dj

∑
e∈E |f e

I |p
)q/p

)1/q

, 0 < q < ∞,

supj≥j0 2js
(∑

I∈Dj
∑

e∈E
|f e

I |p
)1/p

, q = ∞.

(2.11)

There are also wavelet decompositions for domains Ω ⊂ IRd. For our purposes, it will
be sufficient to describe such a basis for Ω = [0, 1]d. We start with a usual wavelet basis
for IR and construct a basis for [0, 1]. The bases for [0, 1] will contain all of the usual
IR wavelet basis functions when these basis functions have supports strictly contained in
[0, 1]. The other wavelets in this basis are obtained by modifying the IR wavelets whose
supports overlap [0, 1] but are not contained completely in [0, 1]. Notice that on any
dyadic level there are only a finite number of wavelets that need to be modified. For
details on this construction see [6]. To get the basis [0, 1]d we take the tensor product of
the [0, 1] basis. For the [0, 1]d wavelet system one has the same characterization of Besov
spaces as given above.

2.3 Approximation spaces

Another way to describe priors is by imposing decay conditions on rates of approximation.
One situation that we have already encountered is to impose a condition on entropy
numbers. For example, for r > 0, we can consider a class Θ such that

εn(Θ) ≤ Cn−r. (2.12)

Such conditions are closely related to smoothness.
Let us first describe this for entropy conditions in C(X). For the Sobolev spaces

W k(Lp(X)) (with respect to Lebesgue measure), we have

εn(b(W k(Lp(X)))C(X) ≤ Cn−k/d, n = 1, 2, . . . , (2.13)

provided k > d/p. Equivalently, this can be stated as

N(δ, b(W k(Lp(X)))C(X) ≤ Cec0δ
− d

k , δ > 0. (2.14)

Similar results hold for any of the Lipschitz or Besov spaces which are compactly embedded
into C(X). If s > 0 and Bs

q(Lτ (X)) is a Besov space corresponding to a point to the left
of the Sobolev embedding line for C(X) then

εn(b(Bs
q(Lτ (X)))C(X) ≤ Cn−s/d, n = 1, 2, . . . , (2.15)
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where the constant C depends on the distance of (1/τ, s) to the embedding line. We shall
also use priors that utilize Kolmogorov widths in place of entropy numbers. These are
formulated in §4.1.

2.4 Approximation using a family of linear spaces

We introduce in this subsection a typical way of describing compact sets using approxima-
tion. Let B be a Banach space and let Ln, n = 1, 2, . . ., be a sequence of linear subspaces
of B with Ln of dimension ≤ n. For simplicity we assume that Ln ⊂ Ln+1. Typical
choices for B are the Lp(X) spaces with respect to Lebesgue measure. Possible choices
for Ln are space of algebraic or trigonometric polynomials. Note, that to maintain the
condition on the dimension of Ln, we would need to repeat these spaces of polynomials.

In this setting, we define for f ∈ B

En(f) := En(f)B := inf
g∈Ln

‖f − g‖B (2.16)

which is the error in approximating f in the norm of B when using the elements of Ln.
For any r > 0, we define the approximation class Ar := Ar(B, (Ln)) to be the set of

all f ∈ B such that
|f |Ar := sup

n
nrEn(f). (2.17)

The functions in Ar can be approximated to accuracy |f |Arn−r when using the elements
of Ln.

There are slightly more sophisticated approximation classes Ar
q which make subtle

distinctions in approximation order through the index q ∈ (0, ∞]. The seminorms for
these classes are defined by

|f |Ar
q

:= ‖(nrEn(f))‖&q∗, (2.18)

where ‖(αn)‖q
&q∗ :=

∑∞
n=1 |αn|q 1

n when q < ∞ and is the usual +∞ norm when q = ∞.
A typical prior on the functions fρ is to assume that fρ is in a finite ball in Ar

q(B, (Ln))
for a specific family of approximation spaces. The advantage of such priors over priors on
smoothness spaces is they can be defined for B = L2(µ) for arbitrary µ.

A large and important chapter of approximation theory characterizes approximation
spaces as smoothness spaces in the case approximation takes place in Lp(X) with re-
spect to Lebesgue measure. For example, consider the case of approximating 2π-periodic
functions on IT d by trigonometric polynomials of degree ≤ n which is a linear space of
dimension (2n + 1)d. Then, for any 1 ≤ p ≤ ∞ (with the case p = ∞ corresponding to
C), we have

Ar
q((Ln), Lp(X))) = 0Brd

q (Lp), r > 0, 0 < q ≤ ∞, (2.19)

where the 0B indicates we are dealing with periodic functions. A similar result holds if we
replace trigonometric polynomials by spline functions of degree k on dyadic partitions with
k ≥ s − 1. The corresponding results for wavelet approximation will be discussed in the
following subsection. The characterizations (2.19) provide a useful way of characterizing
Besov spaces. It also shows that for many approximation methods the approximation
classes are identical.
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2.5 Approximation using orthogonal systems

We discuss in this subsection the important case where approximation comes from an
orthonormal system (we could equally well consider Riesz bases). Let us suppose thatΨ :=
{ψj}∞j=1is a complete orthonormal system for L2(X) with respect to Lebesgue measure.
The classical settings here are the Fourier and orthonormal wavelet bases. There are two
types of approximation that we want to single out corresponding to linear and nonlinear
methods.

Any integrable function g has an expansion

g =
∞∑

j=1

cj(g)ψj; cj(g) :=

∫

X

gψjdx. (2.20)

For a function g, we define

Sn(g) :=
n∑

j=1

cj(g)ψj. (2.21)

This is the orthogonal projection of g onto the first n terms of the orthogonal basis Ψ. It
is a linear method of approximation in that, for each n, we approximate from the linear
space Ln := span{ψ1, . . . ,ψn} The error we incur in such an approximation is

En(g)p := ‖g − Sn(g)‖Lp(X). (2.22)

As we have already noted in the previous section for the Fourier or wavelet bases, the
approximation classes Ar

q(Lp) are identical to the Besov spaces Bs
q(Lp(X)), s = r/d (see

§2). In the case of the Fourier basis under lexicographic ordering, it is known that the
projector Sn is bounded on Lp(X), 1 < p < ∞. Therefore, for r > 0 and 1 < p < ∞,

g ∈ Ḃr
∞(Lp(X)) iff ‖g − Sn(g)‖Lp(X) ≤ Cn−r/d, n = 1, 2 . . . , (2.23)

and the constant C is comparable with the norm of g in Ḃr
∞(Lp(X)).

In the case of a wavelet orthonormal system (with their natural ordering from coarse to
fine and lexicographic at a given dyadic scale), we have the same result as in (2.23) except
that the functions are no longer required to be periodic and the range of r is restricted
to r ≤ r0 where r0 depends on the smoothness and number of vanishing moments of the
mother wavelet.

There is a second way that we can approximate g from the orthogonal system {ψj}
which corresponds to nonlinear approximation. We define Σn to be the set of all functions
S which can be written as a linear combination of at most n of the ψj:

S =
∑

j∈Λ

cjψj, #(Λ) ≤ n. (2.24)

In numerical considerations, we want to restrict the indices in Σn in order to make the
search for good approximations reasonable. We define Σn,a as the set of S in (2.24) with
the added restriction Λ ⊂ {1, . . . , na}. For 0 < p ≤ ∞,we define the error

σn.a(f)p := inf
S∈Σn,a

‖f − S‖Lp(X). (2.25)
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Now, let us consider the special case of approximation in L2(X). A best approximation
from Σn,a to a given g is simply given by

Gn,a(g) :=
∑

j∈Γn,a

cj(g)ψj, (2.26)

where Γn,a is the set of indices corresponding to the n largest (in absolute value) coefficients
|cj(g)| with j ≤ na Here we do not have uniqueness because of possible ties in the size of
the coefficients; these ties can be treated in any way to construct a Γn,a. Thus,

σn,a(g)2
2 =

∑

j /∈Γn,a

|cj(g)|2. (2.27)

Another way to describe the process of creating best approximations from Σn,a is by
thresholding. If λ > 0, we denote by Γ(g,λ, a) the set of those indices j ≤ na such that
|cj(g)| ≥ λ. Then,

Tλ,a(g) :=
∑

j∈Γ(λ,a,g)

cj(g)ψj (2.28)

is a best approximation from Σn,a to g in L2(X) where n := #(Γ(λ, a, g)).
It is also very simple, in the L2(X) approximation case, to describe the approximation

classes. For example, a function g ∈ Ar
∞(L2(X)), i.e. σn,a(g)2 ≤ C0n−r, n = 1, 2, . . ., if

and only if the following hold:

#(Γ(λ, a, g)) ≤ C1λ
−τ , λ > 0,

1

τ
= r +

1

2
(2.29)

and
Ena(g)2 ≤ C1n

−r, n = 1, 2, . . . (2.30)

and the constants C1 and C0 are comparable.
A case of special interest to us will be when Ψ is a wavelet basis (see §2). In this case,

the characterizations (2.29), (2.30) are related to Besov spaces. For example, whenever
g ∈ Brd

τ (Lτ (X)), the condition (2.29) is satisfied. As we have already noted, the condition

(2.30) is characterized by g ∈ Brd/a
∞ (L2(X)). Because of the Sobolev embedding theorem,

both conditions will be satisfied if g ∈ Brd
µ (Lµ(X)) provided

r +
1

2
− 1

µ
≥ r

a
. (2.31)

In other words, if the mother wavelet for Ψ is in Ck and has k vanishing moments, then
we have

Remark 2.1 If a > 0, then conditions (2.29) and (2.30) are satisfied for all f ∈ Brd
µ (Lµ(X))

provided rd < k and (2.31) holds.
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2.6 Universal methods of approximation

In evaluating a particular approximation process, one can look at the classes of functions
for which the approximation process gives optimal or near optimal performance. For
example, if we use a sequence (Ln) of linear spaces of dimension n, we say this sequence
is near optimal for approximating the elements of the compact set K in the norm of the
Banach space B if

dist(K,Ln)B ≤ Cdn(K,B) (2.32)

where dn is the Kolmogorov width of K. The same notion can be given for nonlinear
methods of approximation except now we would compare performance against nonlinear
widths.

Some approximation systems are near optimal for a large collection of compact sets K.
We say that a sequence (Ln) of linear spaces of dimension n are universally near optimal for
the collection K of compact sets K if (2.32) holds for each K ∈ K with a universal constant
C > 0. That is, the one sequence of linear space (Ln) is simultaneously near optimal for
all these compact sets. There is the analogous concept of universally near optimal with
respect to nonlinear methods. In this case, one replaces in (2.32) the linear space Ln

by nonlinear spaces depending on n parameters and replaces the Kolmogorov width by
the corresponding nonlinear width. In the learning problem we shall introduce a similar
universal concept for learning algorithms. Therefore we want to briefly describe what is
known about universality in the approximation setting for the purposes of comparison
with our later results.

Let us begin the discussion by considering a wavelet system of compactly supported
wavelets from Ck(X) which have vanishing moments up to k. The Besov space Bs

q(Lτ )
is compactly embedded in Lp if and only if s > (d/τ − d/p)+. For any fixed δ > 0, let K
be the set consisting of all unit balls u(Bs

q(Lp)) with s − d/τ + d/p ≥ δ and 0 < s < k.
Then, nonlinear wavelet approximation based on thresholding is near optimal for Lp(X)
approximation (Lebesgue measure) for all of the sets K ∈ K.

The standard wavelet system is suitable only to approximate isotropic classes. It is a
more subtle problem to find systems that are universal for both isotropic and anisotropic
classes. We shall discuss this topic in the case of multivariate periodic functions.

We have introduced earlier in §2.1 the collection of anisotropic Hölder-Nikol’skii classes
NHs

q . It is known (see for instance [36]) that the Kolmogorov n-widths of these classes
behave asymptotically as follows:

dn(NHs
q , Lq) 1 n−g(s), 1 ≤ q ≤ ∞, (2.33)

where

g(s) := (
d∑

j=1

s−1
j )−1.

In the case of periodic functions, we can find for each s a near optimal subspace Ln of
dimension n for NHs

q in Lq, i.e. it satisfies (2.32). The space Ln can be taken for example
as the set of all trigonometric polynomials with frequencies k satisfying the inequalities

|kj| ≤ 2g(s)l/sj , j = 1, . . . , d, (2.34)
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where l is the largest integer such that the number of vectors k satisfying the above
inequalities is ≤ n.

Notice that the subspaces Ln described by (2.34) are different for different s and
therefore do not satisfy our quest for a universally near optimal approximating method.
For given a,b with 0 < aj < bj, j = 1, . . . , d, and a given p, we consider the class

Kq,p([a,b]) := {u(NHs
q ) : aj ≤ sj ≤ bj, j = 1, 2, . . . , d, g(a) > (1/q − 1/p)+}. (2.35)

Each of the sets in Kp,p is compact in Lp(X). It can be shown that there does not exist
a sequence (Ln) of linear space Ln of dimension n which is universally optimal for this
collection of compact sets. In fact, it is proved in [36] that for a sequence of linear spaces
(Ln) to satisfy (2.32) for Kp,p then one must necessarily have dim(Ln) ≥ c(log n)d−1n.
Moreover, this result is optimal in the sense that we can create a sequence of spaces with
this dimension that satisfy (2.32).

If we turn to nonlinear methods then we can achieve universality for the class (2.35).
We describe one such result. We consider the library O consisting of all orthonormal bases
O on X. For each n and O, we consider the error σn(f,O)p of n term approximation when
using the orthogonal basis O (see the definition (2.25) with a = ∞). Given a set K, we
define

σn(K,O)p := sup
f∈K

σn(f,O)p. (2.36)

and
σn(K,O)p := sup

f∈K
inf
O∈O

σn(f,O)p. (2.37)

We say that the basis O is near-optimal for the class K if

σn(K,O)p ≤ Cσn(K,O)p, n = 1, 2, . . . . (2.38)

In analogy to the linear setting, we say that O is universally near-optimal for a collection
K of compact sets K if (2.38) holds for all K ∈ K with an absolute constant. It is shown
in [37] that there exists an orthogonal basis which is universally near-optimal for the
collection Kq,p defined in (2.35) for 1 < q < ∞, 2 ≤ p < ∞. Also, for each K = u(NHs

q ),
σn(K,O)p ≈ n−g(s), 1 < q < ∞, 2 ≤ p < ∞.

3 Lower bounds

In this section, we shall establish lower bounds for the accuracy that can be attained in
estimating the regression function fρ by any learning algorithm. We will establish our
lower bounds in the case X = [0, 1]d, Y = [−1, 1] and Z = X × Y . In going further in
this paper, these lower bounds will serve as a guide for us in terms of how we would like
specific algorithms to perform.

We let Θ be a given set of functions defined on X which corresponds to the prior we
assume for fρ. We define, as in the introduction, the class M(Θ) of all Borel measures ρ
on Z for which fρ ∈ Θ and define em(Θ) by (1.56). We shall even be able to prove lower
bounds with weaker assumptions on the learning algorithms IEm. Namely, in addition
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to allowing the learning algorithm to know Θ, we shall also allow the algorithm to know
the marginal ρX . To formulate this, we let µ be any Borel measure defined on X and let
M(Θ, µ) denote the set of all ρ ∈ M(Θ) such that ρX = µ and consider

em(Θ, µ) := inf
IEm

sup
ρ∈M(Θ,µ)

Eρm(‖fρ − fz‖L2(X,µ)). (3.1)

We shall give lower bounds for em and related probabilities. To prove these lower bounds
we introduce a different type of entropy.

3.1 Tight entropy

We shall establish lower bounds for em in terms of a certain variant of the Kolmogorov
entropy of Θ which we shall call tight entropy. This type of entropy has been used to
prove lower bounds in approximation theory. Also, a similar type of entropy was used by
Yang and Barron [41] in statistical estimation. The entropy measure that we shall use is
in general different from the Kolmogorov entropy, but, as we shall show later, for classical
smoothness sets Θ, it is equivalent to the Kolmogorov entropy and therefore our lower
bounds will apply in these classical settings.

We assume that Θ ⊂ L2(X,µ). Let 0 < c0 ≤ c1 < ∞, be two fixed real numbers. We
define the tight packing numbers

N̄(Θ, δ, c0, c1) := sup{N : ∃ f0, f1, ..., fN ∈ Θ, with c0δ ≤ ‖fi −fj‖L2(X,µ) ≤ c1δ, ∀i ,= j}.
(3.2)

We will use the abbreviated notation N̄(δ) := N̄(Θ, δ, c0, c1), when there is no ambiguity
on the choice of the other parameters. Obviously, if Θ is a subset of a normed space, then
for all R > 0, N̄(RΘ, δ, c0, c1) = N̄(Θ, δ

R , c0, c1).

3.2 The main result

Let us fix any set Θ and any Borel measure µ defined on X. We set M := M(Θ, µ) as
defined above. We also take c0 < c1 in an arbitrary way but then fix these constants. For
any fixed δ > 0, we let {fi}N̄

i=0, with N̄ := N̄(δ), be a net of functions satisfying (3.2). To
each fi, we shall associate the measure

dρi(x, y) := (ai(x)dδ1(y) + bi(x)dδ−1(y))dµ(x), (3.3)

where ai(x) := (1 + fi(x))/2, bi(x) := (1 − fi(x))/2 and dδξ denotes the Dirac delta with
unit mass at ξ. Notice that (ρi)X = µ and fρi = fi and hence each ρi is in M(Θ, µ).

We have the following theorem.

Theorem 3.1 Let 0 < c0 < c1 be fixed constants. Suppose that Θ is a subset of L2(µ)
with packing numbers N̄ := N̄(δ) := N̄(Θ, δ, c0, c1). In addition suppose that for δ > 0,
the net of functions {fi}N̄

i=0 in (3.2) satisfies ‖fi‖C(X) ≤ 1/4, i = 0, 1, . . . , N̄ . Then for
any estimator fz we have for c2 := e−3/e and some i ∈ {0, 1, . . . , N̄}

ρm
i {z : ‖fz − fi‖L2(X,µ) ≥ c0δ/2} ≥ min(1/2, c2

√
N̄(δ)e−2c21mδ2

), ∀δ > 0, m = 1, 2, . . . ,

(3.4)
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and for some ρ ∈ M(Θ, µ), we have

Eρm(‖fz − fρ‖L2(X,ρX)) ≥ c0δ
∗/4, (3.5)

whenever ln N̄(δ∗) ≥ 4c2
1m(δ∗)2.

The remainder of this subsection will be devoted to the proof of this theorem.
The first thing we wish to observe is that the measures ρi are close to one another. To

formulate this, we use the Kullback-Leibler information. Given two probability measures
dP and dQ defined on the same measure space and such that dP is absolutely continuous
with respect to dQ, we write dP = gdQ and define

K(P,Q) :=

∫
ln gdP =

∫
g ln gdQ. (3.6)

If dP is not absolutely continuous with respect to dQ then K(P,Q) := ∞.
It is obvious that

K(Pm, Qm) = mK(P,Q). (3.7)

Lemma 3.2 For any Borel measure µ and the measures ρi defined by (3.3), we have

K(ρi, ρj) ≤ 16

15
‖fi − fj‖2

L2(X,µ), i, j = 0, . . . , N̄ . (3.8)

Proof: We fix i and j. We have dρi(x, y) = g(x, y)dρj(x, y), where

g(x, y) =
1 + (sign y)fi(x)

1 + (sign y)fj(x)
= 1 +

(sign y)(fi(x) − fj(x))

1 + (sign y)fj(x)
. (3.9)

Thus,

2K(ρi, ρj) =

∫

X

Fi,j(x)dµ(x) (3.10)

where

Fi,j(x) := (1 + fi(x)) ln(1 +
fi(x) − fj(x)

1 + fj(x)
) + (1 − fi(x)) ln(1 − fi(x) − fj(x)

1 − fj(x)
). (3.11)

Using the inequality ln(1 + u) ≤ u, we obtain

Fi,j(x) ≤ (fi(x) − fj(x))

{
1 + fi(x)

1 + fj(x)
− 1 − fi(x)

1 − fj(x)

}

=
2|fi(x) − fj(x)|2

1 − fj(x)2
≤ (32/15)|fi(x) − fj(x)|2.

Putting this in (3.10), we deduce (3.8). !
To prove the lower bound stated in Theorem 3.1, we shall use the following version of

Fano inequalities which is a slight modification of that given by Birgé [41].
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Lemma 3.3 Let A be a sigma algebra on the space Ω. Let Ai ∈ A, i ∈ {0, 1, . . . , n}
such that ∀i ,= j, Ai ∩ Aj = ∅. Let Pi, i ∈ {0, 1 . . . , n} be n + 1 probability measures on
(Ω,A). If

p :=
n

sup
i=0

Pi(Ω \ Ai),

then either p > n
n+1 or

inf
j∈{0,1,...,n}

1

n

∑

i'=j

K(Pi, Pj) ≥ Ψn(p), (3.12)

where

Ψn(p) := (1 − p) ln (
1 − p

p
)(

n − p

p
) − p ln (

n − p

np
) = ln n + (1 − p) ln (

1 − p

p
) − p ln (

n − p

p
).

(3.13)

Proof The proof of this lemma follows the same arguments as Birgé and therefore we
shall only sketch the main steps. We begin with the following duality statement which
holds for probability measures P and Q:

K(P,Q) = sup{
∫

fdP,

∫
exp fdQ = 1}. (3.14)

This result goes back at least to the Sanov theorem (see a.e. Dembo-Zeitouni [12] ).
Taking f = λχA in (3.14), we find that for all A ∈ A and λ ∈ IR, we have

K(P,Q) ≥ λP (A) − log[(expλ − 1)Q(A) + 1] = λP (A) − φQ(A)(λ), (3.15)

where for 0 < q < 1, λ ∈ IR

φq(λ) := log[(expλ − 1)q + 1] = log[q expλ + 1 − q]

Note that φq(λ) is convex in λ, while it is concave and nondecreasing in q if λ ≥ 0.
If we apply (3.15) to Pi and P0 for each i = 1, . . . , n and then sum we obtain

1

n

n∑

i=1

K(Pi, P0) ≥ λ
1

n

n∑

i=1

Pi(Ai) − 1

n

n∑

i=1

φP0(Ai)(λ). (3.16)

Obviously, if λ ≥ 0, then

λ
1

n

n∑

i=1

Pi(Ai) ≥ λ
n

inf
i=0

Pi(Ai) = λ(1 − p).

Using convexity and monotonicity, we have for λ ∈ IR

− 1

n

n∑

i=1

φP0(Ai)(λ) ≥ −φ 1
n

∑n
i=1 P0(Ai)(λ) = −φ 1

n P0(∪n
i=1Ai)(λ).
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Using again the fact that q 6→ φq(λ) is non decreasing, together with P0(∪n
i=1Ai) ≤

(1 − P0(A0)) = P0(Ac
0) ≤ p gives that for λ ≥ 0,

−φ 1
n P0(∪n

i=1Ai)(λ) ≥ −φ p
n
(λ).

Therefore, ∀λ ≥ 0,
1

n

n∑

i=1

K(Pi, P0) ≥ λ(1 − p) − φ p
n
(λ)

To complete the proof, we define

sup
λ≥0

(λt − φq(λ) =: φ∗
q(t).

One easily checks that

φ∗
q(t) =






0 if t < q
t log( t

q ) + (1 − t) log( 1−t
1−q ) if q ≤ t ≤ 1

∞ if t > 1.

We now take q = p/n and t = 1 − p and use the above in (3.16), we obtain

1

n

n∑

i=1

K(Pi, P0) ≥ φ∗
p/n(1 − p). (3.17)

We can replace P0 by Pj for any j ∈ {0, 1, . . . , n} in the above argument. Using this we
easily derive (3.13) which completes the proof of the lemma . !

Proof of Theorem 3.1 We define Ai := {z : ‖fz − fi‖L2(µ) < c0δ/2}, i = 0, . . . , N̄ =
N̄(Θ, δ) with c0 the constant in (3.2). Then, the sets Ai are disjoint because of (3.2). We
apply Lemma 3.3 with our measures ρm

i and find that either p ≥ 1/2 or

2c2
1mδ2 ≥ ΨN̄(p) ≥ − ln p+(1−p) ln N̄+(1−p) ln (1 − p)+2p ln p ≥ − ln p+(1/2) ln N̄−3/e,

(3.18)
where we have used that x ln x has the minimum value −1/e on [0, 1]. From (3.18), we
derive (3.4). Now given δ∗ such that

√
N̄(δ∗) ≥ e2c1m(δ∗)2 , we have from (3.4) that for

this δ∗ there is an i such that with ρ = ρi, we have

ρm(‖fz − fρ‖L2(ρX) > c0δ
∗/2) ≥ 1/2. (3.19)

It follows that for any δ ≤ δ∗, (3.19) also holds. Integrating with respect to δ we obtain
(3.5). This completes the proof of the theorem. !

3.2.1 Lower bounds for Besov classes

In this subsection, we shall show how to employ Theorem 3.1 to obtain lower bounds for
the learning problem with priors given as balls in Besov spaces (with these spaces defined
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relative to Lebesgue measure). We first show how to obtain lower bounds for the prior
Θ = b(Bs

q(L∞(X)), s > 0, 0 < q ≤ ∞. We shall take X = [0, 1]d and dµ to be Lebesgue
measure. From this, one can deduce the same lower bounds for any minimally smooth
domains X with again dµ Lebesgue measure.

To construct an appropriate net for Θ we shall use tensor product B-splines on dyadic
partitions. We fix a δ > 0 and choose j as the smallest integer such that 2−js ≤ δ. For
any j = 1, 2, . . . and for k := 7s8, there are ≥ 2jd tensor product B-splines of degree k
at the dyadic level j. They each have support on a cube with side length 2−jk. We can
choose J ≥ c2jd of these B-splines with disjoint supports. We label these as {φi}J

i=1 and
normalize them in L2(X). Then , ‖φi‖L∞ ≤ c

√
J .

We construct a net of functions fi which satisfy (3.2). As was shown in [23], we can
choose at least eJ/8 subsets Λi ⊂ {1, . . . , J} such that for each i, j we have #((Λi \ Λj) ∪
(Λj \ Λi)) ≥ J/4. For each such Λi, we define

fi :=
δ√
J

∑

j∈Λi

φj. (3.20)

This net {fi} of functions satisfy

δ/2 ≤ ‖fi − fj‖L2(µ) ≤ δ. (3.21)

Also,
‖fi‖C(X) ≤ cδ (3.22)

where we used our remark on the supports of the φi. The inequality (3.22)means that our
condition ‖fi‖L∞(X) of Theorem 3.1 will be satisfied provided δ < δ0 for a fixed δ0 > 0.

We next want to show that each of the functions fi is in Θ provided we take the
radius of this ball sufficiently large (depending only on d). For this, we consider the
approximation of a given function f ∈ C(X) by linear combinations of all tensor product
B-splines from dyadic level n. If we denote by E ′

n(f) the error of approximation in C(X)
to f by this space of splines , then we have

E ′
n(fi) ≤ c

{
δ, n ≤ j
0, n > j.

(3.23)

This means that
∞∑

n=1

[2nsE ′
n(fi)]

q ≤ δq
j∑

n=1

2nsq ≤ Cqδq2jsq ≤ Cq, (3.24)

where C depends only on q and d. The convergence of the sum in (3.24) is a characteri-
zation of the Besov space Bs

q(L∞(X)) by linear approximation as noted in §2.3.
We have just proven that N̄(δ, Bs

q(L∞)) ≥ eJ/8 provided δ ≤ J−s/d. Equivalently, we

have proved that N̄(δ,Θ) ≥ c3eδ−
d
s for each 0 < δ < δ0. Let us now apply Theorem 3.1.

Estimate (3.5) gives that
em(Θ) ≥ em(Θ, dµ) ≥ c0δ

∗/4 (3.25)
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for any δ∗ which satisfies ln N̄(δ∗) ≥ 4c1m(δ∗)2 + 1, i.e. provided (δ∗)−d/s ≥ cm(δ∗)2.
From this, we obtain

em(Θ) ≥ em(Θ, dµ) ≥ cm− s
2s+d , m = 1, 2, . . . . (3.26)

A similar analysis shows that (3.4) gives that for any estimator fz,

sup
ρ∈M(Θ)

ρm{z : ‖fz − fρ‖L2(X,ρX) ≥ cδ} ≥
{

1/2, δ ≤ 2δ∗,
Ce−cδ2m, δ > 2δ∗,

(3.27)

where δ∗ = cm− s
2s+d is the turning value as described above. These are the lower bounds

we want for the Besov space Bs
q(L∞(X)). Because each Besov space Bs

q(Lp(X)) contains
the corresponding Bs

q(L∞(X)), we obtain the same lower bounds for these spaces.

4 Estimates for fρ

In this section, we shall introduce several methods for constructing estimators fz. Typi-
cally, we assume that fρ ∈ Θ where Θ = b(W ) is a ball in a space W which is assumed
to have a certain approximation property. We then use this approximation property to
choose a set H and define the estimator fz ∈ H as the least squares fit to the data z
from H. We then prove an estimate for the rate that fz approximates fρ (in L2(X, ρX)).
These estimates will typically give (save for a possible logarithmic term) the optimal rate
for this class.

4.1 Estimates for classes based on Kolmogorov widths.

In this subsection, we shall assume that Θ ⊂ bR0(C(X)) for some R0 and that its Kol-
mogorov widths (1.14) satisfy 6

dn(Θ, C(X)) ≤ Cn−r, n = 1, 2, . . . . (4.1)

This means that for each n, there is a linear subspace Ln of C(X) of dimension n such
that

dist(Θ,Ln)C(X) ≤ C1n
−r, n = 1, 2 . . . . (4.2)

There is an inequality of Carl [7] that compares entropy to widths. It says that whenever
(4.1) holds then

εn(Θ, C(X)) ≤ C2n
−r n = 1, 2, . . . . (4.3)

Therefore, the prior fρ ∈ Θ is typically stronger than the corresponding assumption (1.46).
The following theorem shows that under the assumption (4.1), we can derive a better

estimate than that given in Corollary 1.1

6We shall use the following convention about constants. Those constants whose value may be impor-
tant later will be denoted with subscripts. Constants with no subscript such as c, C can vary with each
occurrence even in the same line.
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Theorem 4.1 Let fρ ∈ Θ where Θ ⊂ bR0(C(X)) and Θ satisfies (4.2). Given m ≥ 2, we

take n := ( m
ln m)

1
2r+1 and define H := Hm := bR(C(X)) ∩ Ln where R := M + C1. Then,

the least squares estimator fz for this choice of H satisfies

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη2

η ≥ ηm

1, η ≤ ηm,
(4.4)

where ηm := C(ln m/m)
r

1+2r and the constants c, C depend only on C1 and M . In partic-
ular,

Eρm(‖fρ − fz‖) ≤ C(
ln m

m
)

r
2r+1 (4.5)

where C is also an absolute constant.

Proof: By our assumption, there is a φn ∈ Ln such that ‖fρ − φn‖L∞(X) ≤ C1n−r.
Since ‖fρ‖L∞(X) ≤ M , we have ‖φn‖L∞(X) ≤ M + C1n−r. This gives that φn ∈ H for our
choice of R = C1 + M . Therefore, with this choice of R, and H := bR(C(X)) ∩ Ln, we
have the estimate

dist(fρ,H)C(X) ≤ C1n
−r. (4.6)

It follows that
dist(fρ,H)L2(X,ρX) ≤ C1n

−r. (4.7)

For any η > 0, we have that the covering numbers of H satisfy (see p. 487 of [29])

N(H, η) ≤ (C/η)n. (4.8)

Combining this with (4.6), we obtain from (1.44)

‖fρ − fz‖ ≤ C1n
−r + η, z ∈ Λm(η), (4.9)

where
ρm{z /∈ Λm(η)} ≤ 2(C3/η

2)ne−c2mη2
. (4.10)

The critical turning value in (4.10) occurs when n[ln C3 + 2| ln η|] = c2mη2. This gives

ρm{z /∈ Λm(η)} ≤
{

Ce−cmη2
η ≥ ηm

1, η ≤ ηm,
(4.11)

where ηm as defined in the theorem. This proves (4.4). The estimate (4.5) follows by
integrating (4.4) (see (1.19)). !

Let us mention some spaces W which satisfy the property (4.1). If s > d/2 and p ≥ 2,
then a theorem of Kashin can be used to deduce (4.1) for W = W s(Lp(X)) where these
Sobolev spaces are defined with respect to Lebesgue measure. Note that the assumption
s > d/2 ≥ d/p guarantees that any ball b(W s(Lp(X)) is compact in C(X). We therefore
have the following corollary

Corollary 4.2 If W = W s(Lp(X)) with s > d/2 and p ≥ 2, then the assumptions and
conclusions of Theorem 4.1 hold for any ball b(W ).
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Figure 4.1 gives a graphical depiction of the smoothness spaces to which the Corollary
applies. In the next section, we shall expand on this class of spaces by using nonlinear
methods.

1/p

s

Sobolev
embedding line

(d/2,d)

Figure 4.3: The grey shaded region indicates the smoothness spaces to which Corollary
4.2 apply.

4.2 Estimates based on nonlinear widths

We can improve upon the results of the previous subsection by using nonlinear widths in
place of Kolmogorov widths. This will allow us to prove estimates like those in Theorem
4.1 but for a wider class of priors Θ.

We begin with the following setting for nonlinear widths given in [35]. Let N and n be
positive integers. Given a Banach space B, we shall look to approximate a given function
f ∈ B using a collection ΛN = {L1, . . . ,LN} where each of the Lj are linear spaces of
dimension n. This leads us to the following definition of (N , n)-width for a compact class
K ⊂ B:

dn(K,B,N ) := inf
ΛN ,#ΛN≤N

sup
f∈K

inf
L∈ΛN

inf
g∈L

‖f − g‖B. (4.12)

It is clear that
dn(K,B, 1) = dn(K,B). (4.13)

The new feature of dn(K,B,N ) (as compared to dn(K,B)) is that we have the ability
to choose a subspace L ∈ ΛN depending on f ∈ K. It is clear that the bigger the value of
N , then the more flexibility we have to approximate f . It turns out that, from the point
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of view of our applications, the following case

N 1 nan,

where a > 0 is a fixed number, plays an important role.
Let us assume that Θ is a compact subset of C(X) which satisfies Θ ⊂ bR0(C(X)),

for some R0 > 0 and also satisfies the following estimates for the nonlinear Kolmogorov
widths

dn(Θ, C(X), nan) ≤ C1n
−r, n = 1, 2, . . . . (4.14)

Then by [35]
εn(Θ, C(X)) ≤ C2(ln n/n)r, n = 2, 3, . . . . (4.15)

In the theorem that follows, we shall not be able to use Theorem C* directly since
the set H we shall choose for the empirical least squares minimization will not be convex.
Therefore, we first prove an extension of Theorem C* which deals with the nonconvex
setting.

Theorem 4.3 Let H be a compact subset of C(X). Assume that for all f ∈ H, f : X → Y
is such that |f(x) − y| ≤ M a.e. Then, for all η > 0

ρm{z : ‖fz,H − fH‖2 ≥ η} ≤ N(H, η/(24M))2e−
mη

C(M,K) (4.16)

provided ‖fρ − fH‖2 ≤ Kη.

Proof The proof is similar to the proof of Theorem C* from [CS]. In the proof of Theorem
C*, one uses the estimate (1.31) which we recall follows from the convexity assumption.
In its place we shall use the estimate

‖f − fH‖2 ≤ 2(E(f) − E(fH) + 2Kη), f ∈ H. (4.17)

To prove this we note that

‖f − fH‖2 ≤ 2{‖f − fρ‖2 + ‖fH − fρ‖2} = 2{E(f) − E(fH) (4.18)

+ E(fH) − E(fρ) + ‖fH − fρ‖2} = 2{E(f) − E(fH) + 2‖fH − fρ‖2}.

Thus, (4.17) follows by placing our assumption ‖fρ − fH‖2 ≤ Kη into (4.18). The proof
of Theorem 4.3 can now be completed in the same way as the proof of Theorem C*.

Theorem 4.4 Let Θ satisfy (4.14). If fρ ∈ Θ and m ∈ {1, 2, . . .}, then there exists an
estimator fz such that

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη2

η ≥ ηm

1, η ≤ ηm,
(4.19)

where ηm := C2(ln m/m)
r

1+2r . In particular,

Eρm(‖fρ − fz‖) ≤ C(
ln m

m
)

r
2r+1 (4.20)

where C is also an absolute constant.
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Proof: The proof is very similar to that of Theorem 4.1. Given m, we shall choose
n := ( m

ln m)
1

2r+1 . For this value of n let N := nan with a > 0 given in (4.14). For this N and
n there is a collection ΛN of n-dimensional subspaces which realizes the approximation
order (4.14). Here #(ΛN ) = N . Thus for any f ∈ b(W ) there is an L ∈ ΛN and a φn ∈ L
such that ‖f − φn‖C(X) ≤ C1n−r. It follows that ‖φn‖C(X) ≤ R0 + C1 =: R. We now
consider the following set

H := ∪L∈ΛNL ∩ bR(C(X)). (4.21)

Then, it is clear that the entropy numbers for H satisfy

N(H, η) ≤ N (C/ε)n. (4.22)

We define our estimator for z ∈ Zm by

fz := arg min
f∈H

Ez(f).

Using (4.22) with (4.14), we obtain from (4.16)

‖fρ − fz‖ ≤ C1n
−r + η, z ∈ Λm(η), (4.23)

where
ρm{z /∈ Λm(η)} ≤ 2N (C3/η

2)ne−c2mη2
(4.24)

The critical turning value in (4.24) occurs when an ln n+n[ln C3 +2| ln η|] = c2mη2. This
gives

ρm{z /∈ Λm(η)} ≤
{

Ce−cmη2
η ≥ ηm,n

1, η ≤ ηm,
(4.25)

with ηm,n := C2

√
n ln m

m provided we choose C2 large enough. This proves (4.19) and (4.20)

follows by integrating (4.19). !
We give next an illustrative setting in which Theorem 4.4 can be applied. Let Ψ :=

{ψj}∞j=1 be a Schauder basis for C(X). We fix an arbitrary a > 0 and consider for each
positive integer n, the space Σn,na of all functions

∑

j∈Γ

cjψj, Γ ⊂ {1, . . . , na}, #(Γ) ≤ n. (4.26)

Thus we are in the same situation as in §2.5 except that we do not necessarily use an
orthogonal system. As in §2.5, given any f ∈ C(X), we define

σn,na(f)∞ := inf
g∈Σn,na

‖f − g‖C(X). (4.27)

This is the error of n-term approximation using Ψ except that we have imposed the extra
condition on the indices.

We can realize this form of approximation as a special case of the approximation used
in the definition of (N , n) widths with N := nan. Namely we consider the set of all n
dimensional subspaces spanned by n elements of Ψ with the restriction that the indices
of these elements come from {1, . . . , na}. There are ≤ N of these subspaces.
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To carry this example further, we suppose that X = IRd and Ψ := {ψλ} is a wavelet
basis for IRd as described in §2.6. Approximation from Σn,na is then n-term wavelet
approximation but with the restriction on the indices of basis functions. This form of
approximation is used in encoding images and its approximation properties are well un-
derstood (see [9]).

Corollary 4.5 Suppose that fρ ∈ b(W ) with W = W s(Lp(X))) with s > d/p or that
W = Bs

q(Lp(X) with s > d/p and 0 < q ≤ ∞. Let H = Hm := Σn,na ∩ bR(C(X)) be

defined as above using the wavelet basis with n := ( m
ln m)

d
2s+d and a > s − d/p . Then, the

least squares estimator fz for this choice of H satisfies

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη2

η ≥ ηm

1, η ≤ ηm,
(4.28)

where ηm := C2(ln m/m)
s

2s+d . In particular,

Eρm(‖fρ − fz‖) ≤ C(
ln m

m
)

s
2s+d (4.29)

where C is also an absolute constant.

Proof: It was shown in [9] that for this choice of a, the above form of restricted approx-
imation satisfies

dist(f,H)C(X) ≤ C1n
− s

d . (4.30)

Therefore, we can apply Theorem 4.4 and derive the Corollary. !
Notice that the Corollary applies to each smoothness space that is compactly em-

bedded in C(X), i.e. to each smoothness space depicted in the shaded region of Figure
2.1.

4.3 Estimates for fρ using interpolation

We want to show in this section how techniques from the theory of interpolation of linear
operators can be used to derive estimators fz to fρ. The idea of using interpolation of
operators was suggested in the paper of Smale and Zhou [32] in the setting of Hilbert
spaces but they do not culminate this approach with concrete estimates since in the
Hilbert space setting we do not have the analog of Theorem C*. We shall see that this
approach falls a little short of giving the optimal decay (O(m− s

2s+d )) for Sobolev or Besov
spaces of smoothness s.

We shall use interpolation with C(X) (equivalently L∞(X)) as one of the end point
spaces. For the other end point space we can take W0 = W0(X) where W0 ⊂ C(X) is
a smoothness space embedded in C(X). A space V is called an interpolation space for
this pair (C(X),W0) if each linear operator T which is bounded on both C(X) and W0 is
automatically bounded on V . The real method of interpolation gives one way to generate
interpolation spaces by using what is called the K-functional:

K(f, t; C(X),W0) := inf
g∈W0

‖f − g‖C(X) + t|g|W0 . (4.31)
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We mention only one setting for this which will suffice for our analysis. Given 0 < θ < 1,
we define Vθ := (C(X),W0)θ,∞ to be the set of all f ∈ C(X) such that

|f |Vθ
:= sup

t>0
t−θK(f, t : C(X),W0) (4.32)

is finite. So, membership in Vθ means that f can be approximated by a g ∈ W0 to
accuracy Ctθ while the norm of g in W0 is ≤ Ctθ−1:

‖f − g‖C(X) + t|g|W0 ≤ |f |Vθ
tθ. (4.33)

We shall take for W0 any Besov space W0 = Bs
p(Lp(X)) which is compactly embedded

in C(X). As mentioned earlier, we get a compact embedding if and only if s > d/p. It is
known that the covering numbers for the unit ball u(W0) satisfy

N(η, u(W0)) ≤ C0e
c0η−d/s

, η > 0, (4.34)

with the constants depending only on W0.
Our main result of this section is the following.

Theorem 4.6 Let W0 be a Besov space Bs
p(Lp(X)) such that u(W0) is compactly em-

bedded in C(X). If fρ ∈ u(Vθ) where Vθ = (C(X),W0)θ,∞ and θ := r/s, then we take

H := bR(W0) with R := m
s−r

2r+d+rd/s . The least squares minimizer fz for this choice of H
satisfies

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη2

η ≥ ηm

1, η ≤ ηm,
(4.35)

where ηm := C2m
− r

2r+d+rd/s . In particular,

E(‖fρ − fz‖) ≤ Cm− r
2r+d+rd/s (4.36)

where C is a constant depending only on s and W0.

Remark 4.7 By rescaling, we can also treat the prior fρ ∈ bR0(Vθ) for any R0 > 0.

Proof: As usual, we only need to prove (4.35). We shall use the K-functional (4.31)
but leave the choice of t open at the beginning. From the definition of Vθ we know that
there is a function g ∈ W0 such that

‖fρ − g‖C(X) + t|g|W0 ≤ tθ|fρ|Vθ
≤ tθ. (4.37)

Since fH is a best approximation to fρ from H in the norm ‖ ·‖ , it follows that the bias
term satisfies

‖fρ − fH‖ ≤ ‖fρ − g‖ ≤ ‖fρ − g‖C(X) ≤ tθ. (4.38)

The function g is in bR1(W0) where R1 = tθ−1. Since N(η, bR1(W0)) = N(η/R1, u(W0)),
using (4.34) in (1.44) gives

‖fρ − fz‖ ≤ tθ + η, z ∈ Λm (4.39)
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where

ρm{z /∈ Λm} ≤ ec0( η2

R1
)−d/s−c1mη2

, η > 0. (4.40)

The turning value of η in (4.40) occurs when η∗ = cR
d

2s+2d
1 m− s

2s+2d . Setting tθ = η∗ to
balance the bias and variance gives

t = cm− s
2r+d+rd/s R1 = cm

s−r
2r+d+rd/s η∗ = cm− r

2r+d+rd/s (4.41)

Since we do not know c, it is better, as stated in the Theorem, to use R = m
s−r

2r+d+rd/s in
place of R1. This still leads to the estimate

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη2

η ≥ ηm

1, η ≤ ηm,
(4.42)

with ηm as stated in the Theorem. !
Any Besov space Br

q (Lp(X)) which is compactly embedded in C(X) is contained in Vθ

with W0 = Bs
τ (Lτ )X)) with s arbitrarily large (see [8]). It follows from Theorem 4.6 that

the estimates (4.35) and (4.36) hold for fρ ∈ Br
q (Lp) with s arbitrarily large. Still such

estimates are not as good as those we have obtained in §4.2.

4.4 Universal estimators

We turn now to the problem of constructing universal estimators. As a starting point,
recall the analysis of §4.1 of linear estimators. If we have a prior class Θ and we know
the parameter r of its approximation order, then we choose our estimator from the linear
space of dimension n := ( m

ln m)
1

2r+1 . Our goal now is to construct an estimator which
does not need to know r but is simultaneously optimal for all possible values of r. There
is a common technique in statistics, known as penalty methods for constructing such
estimators (see e.g. Chapter 12 of [19], see also [4] and [38]). The point of this section
is to analyze the performance of one such penalty method. In the first part of this
section, we shall bound the accuracy of this estimator in probability. Unfortunately, to
accomplish this we shall impose rather stringent assumptions on the parameter r; namely
that r ≤ 1/2. It would be of great interest to remove this restriction on r. In the second
part of this section, we shall consider bounds on our estimator in expectation rather
than probability. This will enable us to remove the restriction r ≤ 1/2. We should also
mention that universal estimators are given in [26] and also in [5] using a completely
different technique. The advantage of the estimators given in [5] is that they do not go
through L∞ and thereby apply to weaker smoothness conditions imposed on fρ. They
also have certain numerical advantages.

We shall put ourselves in the following setting. We suppose that we have in hand a
sequence (Ln) of linear subspaces of C(X) with Ln of dimension n. For each r > 0, we
denote by W r a normed linear space of functions such that

dist(u(W r),Ln)C(X) := sup
f∈u(W r)

inf
g∈Ln

‖f − g‖C(X) ≤ C0n
−r, n = 1, 2, . . . , (4.43)
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with C0 an absolute constant and with u(W r) denoting, as usual, the unit ball of this
space. Thus we are in a setting similar to our treatment of Kolmogorov’s n-widths. An
example will be given at the end of this section.

We want to give an estimator fz which will approximate fρ whenever fρ is in any
of the u(W r). However, the estimator should work without knowledge of r. As in the
discussion of estimators based on Kolmogorov’s widths, we know there is an R depending
only on C0 such that for Hn := Ln ∩ bR(C(X)), we have

dist(u(W r),Hn)C(X) := sup
f∈u(W r)

inf
g∈Hn

‖f − g‖C(X) ≤ C0n
−r, n = 1, 2, . . . . (4.44)

We define the estimator fz by the formula

fz := fz,Hk
(4.45)

with

k := k(z) := arg min
1≤j≤m

(Ez(fz,Hj) +
Aj ln m

m
) (4.46)

where A > 1 is a constant whose exact value will be spelled out below.
We want to analyze how well fz approximates fρ. For this we shall use the following

lemma.

Lemma 4.8 Let H be a compact and convex subset of C(X) and let ε > 0. Then for all
f ∈ H

E(f) − E(fH) ≤ 2(Ez(f) − Ez(fH)) + 2ε. (4.47)

holds for all z /∈ Λ(H, ε) where

ρmΛ(H, ε) ≤ N(H,
ε

24M
) exp(− mε

288M2
). (4.48)

Proof: This is an immediate consequence of Proposition 7 in [10] with α chosen to be
1/6 in that Proposition. !

Remark 4.9 If like in Lemma 4.8, we assume |f(x) − y| ≤ M , for all (x, y) ∈ Z and all
f ∈ H, then we can drop the assumption of convexity in the Lemma and draw the same
conclusion with fH replaced by fρ. This can be proved in the same way as Lemma 4.8 (see
[10]) and it also can be derived from Theorem 11.4 in [19] (with different constants).

Theorem 4.10 Let fz be defined by (4.45). There are suitably chosen constants C,A ≥ 1
and c > 0 such that whenever fρ ∈ u(W r), for some r ∈ [a, 1/2] then for all m ≥ 3,

ρm{z : ‖fρ − fz‖ ≥ η} ≤ C

{
e−cmη4

η ≥ ηm,r

1, η ≤ ηm,r,
(4.49)

where ηm,r :=
√

A(ln m/m)
r

2r+1 . In particular,

Eρm(‖fρ − fz‖) ≤ C(
ln m

m
)

r
2r+1 (4.50)

where C is again an absolute constant.
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Remark 4.11 Notice that when η ≥ ηm,r, then mη4 ≥ mη4
m,r ≥ A2(ln m)

4r
2r+1 m1− 4r

2r+1 ≥
A2(ln m) because ln m ≤ m and r ≤ 1/2. In particular, e−mη4

m,r tends to zero as m → ∞

Proof: The estimate (4.50) follows from (4.49). To prove (4.49), we fix r ∈ [a, 1/2]
and assume that fρ ∈ u(W r) . We note that we have nothing to prove when η ≤ ηm,r.
Also, we have nothing to prove if η > R + M because‖fρ‖ ≤ M and ‖fz‖ ≤ R. Also, the
estimate for 1 < η ≤ M + R will follow from the estimate for η = 1 (with an adjustment
in constants). Therefore, in going further, we assume that ηm,r ≤ η ≤ 1.

Let us begin by applying Bernstein’s inequality to the random variable (y − fHj(x))2

and find for any such η:

|E(fHj) − Ez(fHj)| ≤ η2, z /∈ Λ1(η, j), (4.51)

where
ρmΛ1(η, j) ≤ 2e−c1mη4

(4.52)

where c1 > 0 depends only on M and R. We define Λ1(η) := ∪m
j=1Λ1(η, j). Then, with a

view towards Remark 4.11, we see that

ρmΛ1(η) ≤ 2me−c1mη4 ≤ eln(2m)−c1mη4 ≤ e−cmη4
(4.53)

provided A2 > 2/c1 which is our first requirement on A.
Let us now define n as the smallest integer such that n ln m

m ≥ η2. Notice that n ≥ 2
because η ≥ ηm,r. For each 1 ≤ j ≤ m, we define

εj := A

{
η2, 1 ≤ j ≤ n,
j ln m

m , n < j ≤ m.
(4.54)

and define Λ2(η) := ∪m
j=1Λ(Hj, εj) where the sets Λ(Hj, εj) are those appearing in Lemma

4.8. From (4.8), we have N(Hj, εj/24M) ≤ (C2/εj)j for some constant C2 > 0. Hence,

ρmΛ2(η) ≤
∑

1≤j≤n

e−j(ln εj−ln C2)−c2mεj +
∑

n<j≤m

e−j(ln εj−ln C2)−c2mεj = Σ1 + Σ2, (4.55)

with c2 = (288M2)−1. We shall require that A ≥ C2 and A ≥ 4/c2. This finishes the
conditions on A and we now fix A as the smallest number satisfying the three requirements
we have stipulated.

With this choice of A, it follows that the exponent of each summand in Σ1 is ≤
−2j ln η−c2mAη2. This means that this sum is bounded by a geometric series dominated
by the term j = n. Since

−2n ln η ≤ n ln(
m

ln m
) ≤ n ln m ≤ 2mη2 < c2Amη2. (4.56)

This means that Σ1 ≤ e−cmη2
for an absolute constant c > 0.

We can use similar reasoning to derive the same bound for Σ2. Namely, the exponent
of each summand in Σ2 does not exceed

−j(ln εj − ln C2) − c2mεj ≤ j ln m − Ac2j ln m ≤ −Ac2j ln m/2. (4.57)
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So this sum is also bounded by a geometric series whose sum is in turn dominated by
Ce−Ac2n ln m/2 ≤ e−cmη2

with c another constant.
In summary, we have shown that

ρm(Λ1(η) ∪ Λ2(η)) ≤ e−cmη4
+ e−cmη2 ≤ e−cmη4

(4.58)

for some constant c > 0.
Going further, we shall only consider z /∈ Λ1(η) ∪Λ2(η). For any such z, we have from

(4.47)

E(fz) = E(fz,Hk
) ≤ 2Ez(fz) − E(fHk

) + 2(E(fHk
) − Ez(fHk

)) + 2εk (4.59)

≤ 2Ez(fz) − E(fHk
) + 2η2 + 2εk ≤ 2Ez(fz) − E(fρ) + 2η2 + 2εk,

where we used (4.51) and the fact that E(fρ) ≤ E(fHk
).

From the definition of k, we have (note that Ez(fz,Hn) ≤ Ez(fHn))

Ez(fz) ≤ Ez(fz,Hn) + A
(n − k) ln m

m
≤ Ez(fHn) + 2Aη2 − Ak ln m

m
. (4.60)

Therefore, returning to (4.59) we derive

‖fρ − fz‖2 = E(fz) − E(fρ)

≤ 2(Ez(fHn) − E(fρ)) + (4A + 2)η2 + 2εk − 2A
k ln m

m
≤ 2(Ez(fHn) − E(fρ)) + (6A + 2)η2

(4.61)

where the last inequality follows from the definition of εk. Since z /∈ Λ1(η), we can replace
Ez(fHn) by E(fHn) and in doing so we incur an error of most η2. This gives

‖fρ − fz‖2 ≤ 2(E(fHn) − E(fρ)) + (6A + 4)η2

= 2‖fρ − fHn‖2 + (6A + 4)η2

≤ 2C2
0n

−2r + (6A + 4)η2

≤ (2C2
0 + 6A + 4)η2. (4.62)

Here in bounding C2
0n

−2r, we have used the fact that

n ≥ η2 m

ln m
≥ A

( m

ln m

) 1
2r+1 ≥ A

2r+1
2r η−1/r ≥ η−1/r (4.63)

where the first inequality follows from the definition of n and the next two from the
restriction η ≥ ηm,r. The theorem now follows easily from (4.62) together with (4.58). !

We shall next consider bounds in expectation for the estimator (4.45). In this setting,
we shall be able to replace the assumption that a ≤ r ≤ 1/2 by a ≤ r ≤ b for any b > 0.

Theorem 4.12 Let fz be defined by (4.45) with A ≥ 1 chosen sufficiently large. If fρ ∈
u(W r), for some r > 0, then for all m ≥ 3,

Eρm(‖fρ − fz‖2) ≤ C(r)

(
ln m

m

) 2r
2r+1

(4.64)

where C(r) is bounded on any interval [a, b] with 0 < a < b < ∞.
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Proof: Let k = k(z) be as in 4.46 and let εj := Aj ln m
m for each j = 1, 2, . . . , m.

Throughout this proof the expectation E is with respect to ρm. For the set Λ(Hk, εk)
given by Lemma 4.8,

E(‖fρ − fz‖2) = E(E(fz) − E(fρ))

=

∫

Λ(Hk,εk)

(E(fz) − E(fρ)) dρm +

∫

Zm\Λ(Hk,εk)

(E(fz) − E(fρ)) dρm

= I1 + I2. (4.65)

Using the boundedness of fz and fρ, we obtain from Remark 4.9,

I1 ≤ Cρm(Λ(Hk, εk) ≤ CN(Hk, εk/24M)e−
mεk

288M2 ≤ C(C2/εk)
ke−

Ak ln m
288M2 ≤ Cm−1 (4.66)

provided we take A sufficiently large.
To estimate I2, we again use Remark 4.9 and find

I2 ≤ 2

∫

Zm\Λ(Hk,εk)

(Ez(fz) − Ez(fρ) + εk) dρm ≤ 2E(Ez(fz) − Ez(fρ) + εk)). (4.67)

Now notice that

E((Ez(fρ)) =
1

m

m∑

i=1

∫

Zm

(fρ(xi) − yi)
2dρm = E(fρ). (4.68)

Also, by the definition of k and fz, we have

Ez(fz) + εk = Ez(fz,Hk
) + εk = min

1≤j≤m
(Ez(fz,Hj) + εj) (4.69)

Therefore,
E(Ez(fz) + εk) ≤ min

1≤j≤m
(E(Ez(fz,Hj)) + εj). (4.70)

Since by the definition of fz,Hj , we have Ez(fz,Hj) = inff∈Hj Ez(f), it follows that

E(Ez(fz,Hj)) ≤ inf
f∈Hj

E(Ez(f)) = inf
f∈Hj

E(f). (4.71)

To complete our estimate of I2, we use the definition of W r and obtain

inf
f∈Hj

E(f) − E(fρ) = inf
f∈Hj

‖f − fρ‖2 ≤ C2
1j

−2r. (4.72)

Combining (4.68), (4.70), and (4.71), we obtain

E(Ez(fz) + εk) ≤ min
1≤j≤m

(
C2

1j
−2r +

Aj ln m

m

)
+ E(fρ) ≤ C

(
ln m

m

) 2r
2r+1

+ E(fρ), (4.73)

where the last inequality was obtained by choosing j as close to ( m
ln m)

1
2r+1 as possible.

Substituting (4.68) and (4.73) into (4.67), we obtain I2 ≤ C( ln m
m )

2r
2r+1 . When this estimate

is combined with (4.66) we complete the proof of the Theorem. !
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It is quite straight forward to extend Theorem 4.12 to apply to nonlinear methods as
described in §4.2. Instead of using linear spaces, for each n, we define N(n) := 7nan8 and

now take a collection Λn := {Lj(n)}N(n)
j=1 of linear spaces Lj(n), each of dimension n. In

place of W r, r > 0, we use the class W r({Λn)) which is defined as the set of all f such
that ‖f‖C(X) ≤ R0 and

inf
1≤j≤N(n)

dist(f,Lj(n))C(X) ≤ C0n
−r, n = 1, 2, . . . . (4.74)

As our hypothesis class, we take Hn := ∪N(n)
j=1 (Lj(n)∩bR(C(X))) with R := R0 +C0. Then

we define fz by the formula (4.45) with this choice for the Hn. We obtain that Theorem
4.12 now holds with these choices and the same proof.

Let us mention an example of how Theorem 4.10 can be applied. We consider the
Sobolev spaces W s(C(X)) with X = [0, 1]d and a ≤ s ≤ d/2. We can take for Ln one
of several classical approximation spaces. For example, we could use Ln to be an n-
dimensional space spanned by the first n wavelets from a wavelet orthogonal system or
we could take piecewise polynomials of degree ≥ d/2 on a uniform subdivision of X into
cubes. It is well known that in either of these two settings, we have

dist(u(W s(C(X)),Ln)C(X)) ≤ Cn−s/d. (4.75)

Therefore, Theorem 4.10 applies and we have a universal estimator for this family of
Sobolev spaces. When we seek estimates in expectation as in Theorem 4.12, we can
remove the restriction that s ≤ d/2.

By using nonlinear methods of approximation we can widen the applicability of Theo-
rem 4.12 to any Besov space which compactly embeds into C(X). Here for Λn, we take the
wavelet system as described in §4.2 which corresponds to n-term wavelet approximation.
Namely, if p > d/s and 0 < q ≤ ∞ then for any ball Θ in the Besov space Bs

q(Lp(X)),
Theorem 4.12 holds with r = s/d.

5 A variant of the regression problem

In this section, we shall treat a variant of the regression problem. We shall now assume
that X is a cube in IRd. Without loss of generality we can take X = [0, 1]d. We will also
assume that ρX is an absolutely continuous measure with density µ(x), that is, dρX = µdx.
We continue to assume that |y| ≤ M . Thus, we are slightly more restrictive than earlier
where we had no restrictions on ρX .

In place of estimating the regression function fρ, we shall instead estimate the function

fµ := µfρ (5.1)

in one of the Lp norms (quisi-norms)

‖g‖Lp :=




∫

X

|g(x)|p dx




1/p

, 0 < p < ∞ (5.2)
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where now these norms are taken with respect to Lebesgue measure.
In order to explain our original motivation for estimating fµ, we return to the problem

of bank loans that was described in the introduction. A possible goal of the bank is to
find Ω ⊂ X that maximizes ∫

Ω

fρ(x)dρX

since this is related to maximizing profit. The optimal choice for such Ω is given by

Ω0 = {x : fρ(x) ≥ 0}.

The mathematical question in this regard is how to utilize the available data z to find an
empirical Ωz that gives a good approximation to Ω0.

We suggest the following way to solve this problem. From the definition of fµ we have

∫

Ω

fρ(x)dρX =

∫

Ω

fµ(x)dx.

Suppose we have found fz such that

ρm{z : ‖fµ − fz‖L1 ≥ ε} ≤ δ.

Define
Ωz := {x : fz(x) ≥ 0}.

Then with the above estimate on the probability we have
∫

Ωz

fρ(x)dρX =

∫

Ωz

fµ(x)dx ≥
∫

Ωz

fz(x)dx − ε

≥
∫

Ω0

fz(x)dx − ε ≥
∫

Ω0

fρ(x)dρX − 2ε.

Therefore, the empirical set Ωz provides an optimal profit within an error 2ε with proba-
bility ≥ 1 − δ.

We shall construct estimators for fµ based on linear approximation from orthogonal
systems and prove they are semi-optimal for certain smoothness space priors. In classical
settings, we can take either Fourier or wavelet orthogonal systems. We shall measure
the error in L2 but note that a similar analysis could be applied for Lp estimation. We
will not have to go through L∞ to derive our estimates as we did in the treatment of
fρ. Therefore, the range of smoothness conditions that apply to fµ correspond to any
smoothness space compactly embedded in L2. In our estimates for fρ , the embedding
had to be into L∞ even though we were measuring discrepancy with respect to L2(X, ρX)
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5.1 Estimators based on orthogonal systems.

In this section, we shall construct linear estimators based on orthogonal systems. Let
{ψj}∞j=1 be an orthonormal system for L2(X) with respect to Lebesgue measure. We
assume that fµ ∈ b(Wr) where this class has the property that g ∈ b(Wr) implies

‖g − Sj(g)‖L2 ≤ C0j
−r, j = 1, 2, . . . , (5.3)

where Sj is given by (2.21). We have already mentioned that in the case of the Fourier or
wavelet bases, we can take Wr := Brd

∞(L2(X)) where the latter is the Besov space on X.

We assume that r is known to us. Given m, we define n := : m
C1 ln m;

1
2r+1 with C1 > 1

specified below. Our estimator is

fz :=
n∑

j=1

ĉj(z)ψj, (5.4)

where

ĉj(z) :=
1

m

m∑

i=1

yiψj(xi), j = 1, 2, . . . , n. (5.5)

We shall first deal with the case that the bases functions ψj are uniformly bounded
‖ψj‖L∞ ≤ C2. In this case, the random variable yψj(x) has variance ≤ C2

2M
2 and L∞

norm ≤ C2M , and Bernstein’s inequality gives

ρm{z : |ĉj(z) − cj| ≥ η} ≤ 2ε
− mη2

2(C2
2M2+C2Mη/3) , (5.6)

for each η > 0.

Theorem 5.1 Suppose that the basis functions ψj are uniformly bounded by C2. If fµ ∈
b(Wr), r > 0, then whenever the constant C1 is chosen sufficiently large, the estimator fz

defined by (5.4) satisfies

ρm{z : ‖fµ − fz‖L2 ≥ η} ≤






1, η ≤ ηm,

e−
cmη2

n , ηm ≤ η ≤ 1/
√

n,

e−
cmη√

n , η > 1/
√

n,

(5.7)

where ηm := (C1 ln m/m)
r

2r+1 . In particular,

E(‖fµ − fz‖L2) ≤ C(
ln m

m
)

r
2r+1 (5.8)

where C is an absolute constant.

Proof: The estimate (5.8) follows from (5.7) (see (1.19)). Therefore, we concentrate
on proving (5.7). We can assume that η ≥ ηm. We write fµ−fz = fµ−Sn(fµ)+Sn(fµ)−fz.
The L2 norm of the first term is bounded by C0n−r (see (5.3). Thus we have

‖fµ − fz‖L2 ≤ C0n
−r +

(
n∑

j=1

|ĉj(z) − cj|2
)1/2

. (5.9)
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Given η > 0, we define Λj(η) := {z : |cj − ĉj(z)| ≥ η/
√

n} and Λ(η) := ∪n
j=1Λj(η). For

z /∈ Λ(η) we have from (5.9)

‖fµ − fz‖L2 ≤ C0n
−r + η ≤ (C0 + 1)η. (5.10)

From (5.6), we know that for ηm ≤ η ≤ 1/
√

n,

ρm{z ∈ Λ(η)} ≤ 2ne−c1
mη2

n ≤ e−
cmη2

n , (5.11)

where in the last inequality we used the fact that c1mη2
m/n ≥ c1C1(ln m) to absorb the

factor 2n into the exponent by an appropriate choice of c. This can be done provided
c1C1 ≥ 3 which is a condition we impose on C1. When η > 1/

√
n, we have

ρm{z ∈ Λ(η)} ≤ 2ne−c2
mη√

n ≤ e−c mη√
n (5.12)

where we again absorb the factor 2m into the exponential. From these two probability
estimates and (5.10), we easily complete the proof of the theorem. !

We shall next show how to modify the above ideas to give a similar result in the case
of the wavelet basis. We shall use the notation ψe

I , I ∈ D+, e ∈ E, which was given in
§2.6. Recall that ψe

I is supported on a cube Ĩ which is a fixed expansion of I. At a given
dyadic level j, any point x ∈ X is in at most C3 cubes Ĩ, I ∈ Dj and therefore

∑

I∈Dj

χĨ(x) ≤ C3. (5.13)

For each basis function ψe
I , we have that the random variable yψe

I(x) satisfies

‖yψe
I(x)‖L∞ ≤ C2M |I|−1/2 and σ2(yψe

I(x)) ≤ C2
2M

2|I|−1ρ(Ĩ). (5.14)

It follows therefore from Bernstein’s inequality applied to this random variable that for
any of the first n coefficients ce

I we have

ρm{z : |ĉe
I(z) − ce

I | ≥ ε} ≤ 2e
− mε2

2(C2
2M2nρ(Ĩ)+C2M

√
nε/3) , (5.15)

for each η > 0.
As before, we denote by b(Wr) a class of functions g that satisfy (5.3). Given m, we

define n := 7 m
C1 ln m8

1
2r+1 and the estimator

fz :=
∑

(I,e)∈Γn

ĉe
I(z)ψe

I (5.16)

where Γn is the set of indices corresponding to the first n wavelets and the ĉj(z) are
defined in (5.5).

Theorem 5.2 Suppose that {ψe
I} is a wavelet basis for [0, 1]d. If fµ ∈ b(Wr), r > 0, then

whenever the constant C2 is chosen sufficiently large, the estimator fz defined by (5.16)
satisfies

ρm{z : ‖fµ − fz‖L2 ≥ η
√

ln m} ≤
{

1, η ≤ ηm,

e−
cmη min(η,1)

n , ηm ≤ η,
(5.17)
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for m = 3, 4, . . ., where ηm := (C1 ln m/m)
r

1+2r . In particular,

E(‖fµ − fz‖L2) ≤ C
√

ln m(
ln m

m
)

r
2r+1 (5.18)

where C is an absolute constant.

Proof: As in Theorem 5.1, we only have to prove (5.17) for η ≥ ηm since the rest of
the theorem follows easily from this. We define λI := max(ρ(Ĩ), n−1). Given η, we define

Λe
I(η) := {z : |ce

I − ĉe
I(z)| ≥ η

√
λI}, (I, e) ∈ Γn (5.19)

and Λ(η) := ∪(I,e)∈ΓnΛ
e
I(η). Further, we define Γ+

n to be the set of those indices (I, e) ∈ Γn

for which λI = ρ(Ĩ) and Γ−
n := Γn \ Γ+

n . Then, whenever z /∈ Λ(η) and (I, e) ∈ Γ−
n , we

have |ce
I − ĉe

I(z)| ≤ η/
√

n,and therefore
∑

(I,e)∈Γ−
n

|ĉe
I(z) − ce

I |2 ≤ η2. (5.20)

On Γ+
n we have |ĉe

I(z) − ce
I | ≤ η

√
ρ(Ĩ) whenever z /∈ Λ(η). Let Γ+

n (j) := Γ+
n ∩ Dj be

the collection of those indices corresponding to dyadic level j. Then,
∑

(I,e)∈Γ+
n (j)

|ĉe
I(z) − ce

I |2 ≤ C3η
2, (5.21)

where we have used the overlapping property (5.13) and the fact that ρX(X) = 1. Note
that there are at most C ln n dyadic levels active in Sn. Therefore, summing over all these
dyadic levels we obtain

∑

(I,e)∈Γn

|ĉe
I(z) − ce

I |2 ≤ (1 + C3 ln n)η2. (5.22)

This leads to the estimate
‖fµ − fz‖L2 ≤ Cη(

√
ln m) (5.23)

with C > 0 an absolute constant. This is the estimate we want for the error.
Now, we estimate the probability that z ∈ Λ(η). Looking at (5.15), the first term in the

denominator dominates when η ≤ C4
√

nρ(Ĩ)/
√

λI with C4 a fixed constant. Therefore,
we obtain

ρm{z ∈ Λe
I(η)} ≤





e
− c1mη2λI

nρI , η ≤ C4
√

nρ(Ĩ)/
√

λI ,

e−
c1mη

√
λI√

n , η > C4
√

nρ(Ĩ)/
√

λI ,
(5.24)

In other words,

ρm{z ∈ Λe
I(η)} ≤ e

−c1
mη
n min(

ηλI
ρI

,
√

λIn) ≤ e−c1
mη
n min(η,1) (5.25)

This gives that for η ≥ ηm,

ρm{z ∈ Λ(η)} ≤ ne−c1
mη
n min(η,1) ≤ e−c mη

n min(η,1) (5.26)

where we have absorbed the factor n into the exponential in the usual way.
From these two probability estimates and (5.23), we easily complete the proof of the

theorem. !

48



References

[1] P.S. Alexandroff, Combinatorial Topology, Vol. 1, Graylock Press, Rochester, NY,
1956.

[2] S. Berntein, The theory of Probabilities, Gastehizdat Publishing house, Moscow, 1946
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