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Abstract

The theory of integer λ-labelings of a graph, introduced by Griggs and Yeh, seeks
to model efficient channel assignments for a network of transmitters. To prevent
interference, labels for nearby vertices must be separated by specified amounts ki

depending on the distance i, 1 ≤ i ≤ p. Here we expand the model to allow real
number labels and separations. The main finding (“D-set Theorem”) is that for
any graph, possibly infinite, with maximum degree at most ∆, there is a labeling of
minimum span in which all of the labels have the form

∑p
i=1 aiki, where the ai’s are

integers ≥ 0. We show that the minimum span is a continuous function of the ki’s,
and we conjecture that it is piecewise linear with finitely many pieces. Our stronger
conjecture is that the coefficients ai can be bounded by a constant depending only on
∆ and p. We offer results in strong support of the conjectures, and we give formulas
for the minimum spans of several graphs with general conditions at distance two.

Keywords channel assignment, graph labeling, generalized coloring

1 Integer Labelings with Distance Conditions

A steadily growing body of literature has evolved in the past 15 years on efficient integer
labelings of the vertices of a finite simple graph with restrictions not only on adjacent
vertices–as is the case with traditional graph coloring–but also on vertices at distance two.

∗Research supported in part by NSF grants DMS-0072187 and DMS-0302307. New address for second
author: Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405 USA
xiaohua.jin@uvm.edu . This research was also described in the second author’s dissertation [19].
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In the traditional Channel Assignment Problem, introduced by Hale [17] and studied
by Cozzens and Roberts [6] and many others, vertices of a graph G = (V, E) correspond to
transmitter locations, and their labels represent transmission channels. Adjacent vertices
correspond to pairs of transmitters that interfere with each other due to their proximity.
There is a given finite set T of integers ≥ 0, with 0 ∈ T , of forbidden differences in
channels for adjacent vertices. A vertex labeling f : V → Z is a T -coloring provided
that |f(v)− f(w)| /∈ T whenever vertices v and w are adjacent. Of course, one can select
channels f(v) that are very far apart, but this would require allocating a very large band
of the frequency spectrum to the network. To optimize the assignment f we seek to
minimize the span

sp(f) := max
v∈V

f(v) − min
v∈V

f(v).

Note that labels need not be distinct. The set of labels used may contain gaps in the
interval between the smallest and largest labels. It is the width of the interval, given by
sp(f), that we seek to minimize.

In 1988 Roberts [27] described a new channel assignment problem, suggested by Tim
Lanfear at NATO. This time we consider a given network of transmitters in the plane,
with two different levels of interference. An integer channel is to be assigned to each
transmitter such that channels for nearby transmitters (within, say, 100 miles) are distinct,
and for very close transmitters (within, say, 50 miles) they differ by at least two. There is
some spectral spreading of transmitters that decreases with distance between transmitters.
Again, the goal is to construct a feasible labeling with minimum span.

For instance, Figure 1 shows a transmitter location in the plane with some other
transmitters around it. The small circle is at 50 miles, while the large circle shows points
at 100 miles from the center. A possible real-number channel assignment is shown, in
which the central transmitter is assigned 0, two other very close transmitters have labels
at least two, and the two nearby transmitters that are not very close have labels at least
one. This labeling satisfies the distance-labeling conditions for every pair of vertices, not
just pairs involving the central transmitter. In the example, the label 0 is repeated, but
at distance more than 100 miles from the center.
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Figure 1: Labels for a planar transmitter network.
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Griggs [16] quickly discovered that this problem of labeling a planar transmitter net-
work is quite challenging. In order to develop some heuristics for the real problem, he
decided to investigate the natural graph analogue of the distance-labeling problem above,
in which the vertices are the transmitters and adjacent vertices correspond to transmitters
that are very close.

Specifically, for a finite simple graph G = (V, E), consider a labeling f : V → Z such
that for all vertices v, w ∈ V ,

|f(v) − f(w)| ≥

{

2, if d(v, w) = 1;
1, if d(v, w) = 2,

where d(v, w) is the distance between v and w in G (the minimum number of edges in
any path from v to w). For such labelings f , called λ-labelings of G, we seek to determine
the minimum span, denoted λ(G).

For instance, the 4-cycle can be labeled by nonnegative integers by assigning 0 to one
vertex and moving around the cycle, assigning each vertex the smallest label satisfying
the conditions above. We end up using 0, 2, 4, 6 at consecutive vertices, but this “greedy
first-fit” labeling is not optimal. We find that λ(C4) = 4 is achieved by labeling successive
vertices by 0, 4, 1, 3.

By converting a planar network of transmitters–the problem of Roberts–to the graph
problem, it is true that a pair of vertices at distance two in the graph corresponds to a
pair of transmitters that are nearby, but not very close (at distance between 50 and 100
miles). However, a pair of transmitters in the plane can be close, but not very close, while
their corresponding vertices in the graph are more than distance two apart. Their vertices
need not even belong to the same component of the graph! For instance, in Figure 1 the
transmitter labeled 1.1 is not very close to any other transmitter, so it would be isolated
in the corresponding graph, although it is actually close to the transmitter at the center
and to the one labeled 2.2.

Nonetheless, the study of λ(G) for graphs G should lead to good bounds and heuristics
for efficiently labeling planar networks. Also, for some natural arrays the problems are
equivalent. Especially, one particular array often used in practice for mobile communica-
tion networks assigns a hexagonal coverage region to each transmitter, with the hexagons
fitting together in a honeycomb tiling. This is efficient in the sense of using a small
number of transmitters. The graph corresponding to this example is called the triangular
lattice, Γ4 (see Figure 2). In this case the graph problem does properly represent the
real problem in the plane. Besides, the λ-labeling problem has turned out to be quite
interesting on its own as a generalized graph coloring problem.

The natural generalization of λ(G) to deal with multiple levels of interference was
introduced by Griggs in the original paper with Yeh [16]: Let N denote the set of nat-
ural numbers, {0, 1, 2, . . .} (note that 0 is included). Given integers k1, . . . , kp ∈ N, let
L(k1, . . . , kp) denote the set of labelings f : V → Z such that for all v, w ∈ V

|f(v) − f(w)| ≥ ki, if d(v, w) = i ≤ p.

We may abbreviate this by L(k), where k = (k1, k2, . . . , kp). Note that L(k) always
depends on the graph G being considered. We seek the optimal span of any labeling f ,
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Figure 2: The honeycomb of hexagonal coverage regions of the plane (left); The corre-
sponding triangular lattice Γ∆ of transmitters (right).

denoted by
λ(G; k1, . . . , kp) := min

f∈L(k)
sp(f).

We also denote this lambda number of G by λ(G;k). Alternate notation, also used by
many authors, is λk1,...,kp

(G). Another notation is in use for p = 2 [8], where λj
k(G)

represents our λ(G; j, k). However, we recommend against it, as it cannot be extended to
model conditions at distances more than two. Also, we allow k1 < k2, and their notation
does not make it easy to tell which of j and k refers to k1 or k2.

Translating a labeling f , by adding the same element to all labels f(v), preserves the
span. Hence, to determine λ(G;k), it suffices to consider labelings with smallest label 0.
For such labelings f , sp(f) = maxv∈V f(v).

Ordinary graph coloring corresponds to the case k1 = 1 and ki = 0 otherwise. More
precisely, the chromatic number χ(G) of a graph G is expressed in our theory by

χ(G) = λ(G; 1) + 1,

where the difference of one arises due to our allowing 0 to be a label. While it is convenient
that λ is one off from χ, allowing 0 to be a label gives us the nice Scaling Property, in
which if all separations ki are multiplied by the same constant c, then so is the optimal
span λ. This principle is stated explicitly later when we formulate the theory of real
number labelings.

An interesting special case, more general than above, is for k consisting of p ones.
Here we have

λ(G; 1, . . . , 1) = χ(Gp) − 1,

where Gp is the graph that has the same vertex set V , and vertices v, w are joined by an
edge whenever their distance in G is at most p.

Recent literature has expanded beyond the basic case of L(2, 1)-labelings. Numerous
papers consider λ(G; k, 1) for arbitrary integers k > 0, or, more generally, λ(G; p, q) for
integer separations p ≥ q.
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Here is an overview of the rest of the paper. In the next section we introduce our
model of labelings by real numbers. This more general setting is natural for many of
the models in which labelings with distance conditions arise, since it would seem that
the labels, e.g., frequencies, can actually be real numbers. Besides, we shall see that real
number labelings offer greater insight into the behavior of the lambda number λ(G;k)
when it is viewed as a function of the separations k = (k1, . . . , kp) with fixed graph G and
separation distance p.

We also extend our model to allow infinite graphs G, such as the triangular lattice
mentioned earlier. We will usually restrict our attention to infinite graphs with bounded
degrees, to be assured of dealing with graphs of finite span. We denote by G∆ the class of
simple graphs, possibly infinite, with maximum degree at most ∆. In particular, Γ∆ ∈ G6.

Section 3 presents (without proof) our formulas for real number labelings with condi-
tions at distance two for the triangular lattice, paths, cycles, and the square lattice. Their
behavior is instructive and serves to motivate the results and conjectures in the rest of
the paper.

Our main general discovery about real number labelings, the D-set Theorem, is pre-
sented in Section 4. It applies to the class of graphs G∆. It shows that λ(G;k) must be a
sum of ki’s, repetitions allowed. Moreover, there is a labeling achieving λ(G;k) in which
every label has the form

∑

i aiki, where the coefficients ai are nonnegative integers, the
smallest label is zero, and the largest label is the span. Further, if G is finite, we can
restrict the possible labels to those sums with

∑

i ai < n, where n = |V |.
Among the consequences of the D-set Theorem is that when all ki are integers, our

problem reduces to the familiar integer lambda labeling problem of Section 1: There is
always an integer labeling that is optimal for the real number labeling problem.

In Section 5 we show that λ(G;k) is continuous as a function of the separations k,
and we conjecture that it is piecewise linear with only finitely many linear pieces. This
is verified for separations at distance two (p = 2) and for finite graphs. Section 6 poses
a stronger conjecture that there is always a labeling as in the D-set Theorem in which
the coefficients are bounded above by a constant that depends only on p and the degree
bound ∆. We can prove this for conditions out to distance two (p = 2).

Section 7 recalls the conjecture of [16] concerning the largest possible value of λ(G; 2, 1)
for graphs G of maximum degree ∆ ≥ 2. We survey the progress on this longstanding
conjecture. We present upper bounds on λ(G;k) in terms of the separations ki and the
maximum degree.

We describe work that is closely related to our project in Section 8. Besides the
fascinating conjectures that remain open, the model of real number labelings has opened
up interesting new lines of research, which we describe in the final section.

2 From Integer to Real Number Labelings

When the paper of Griggs and Yeh [16] introduced λ-labelings, it actually began with a
special case of real number labelings, in which the transmitters were assigned real number
labels and the separations were k = (2d, d), where d is some real number, not necessarily
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integer. It was shown that for any (finite) graph G, there is an optimal labeling in which all
labels are multiples of d. But by a change of scale, dividing the separations and the labels
by d, the problem was transformed into that of determining the optimal integer labeling
span λ(G; 2, 1). The same method applies to real labelings whenever the separations ki

are multiples of the same real number d.
It has always seemed overly restrictive that channel assignment models assumed the

channels–the vertex labels–are integers (or, equivalently, all are multiples of the same
number). This is certainly the case for familiar VHF television, with its integer channels
ranging from 2 to 13, but for FM radio and possibly even for UHF television, the channels
appear to have a continuous range of possibilities. The efficient allocation of bands of the
radio frequency spectrum is a subject receiving considerable publicity.

Reviewing the progress on λ-labelings over the years, it is now sensible to consider the
generalization in which the separations ki and the labels f(v) are arbitrary real numbers.
As we would demand, this more general problem reduces to the familiar integer labelings
when the separations and labels are integers. However, a rich variety of interesting new
problems has been exposed by considering real number labelings, and their solution does
not generally follow from their integer restrictions. Further, we have gained valuable new
insights into the original integer λ-labelings by thinking in this more general context–see
the D-set Theorem.

This study also widens the class of graphs to include infinite graphs, in order to
be able to deal properly with infinite arrays of transmitters. For instance, in cellular
communications, a very large flat area is partitioned honeycomb-style into hexagonal
cells, with a transmitter located in the center of each cell (its coverage area). This
transmitter placement is most efficient (minimizes the number of transmitters). The
channel assignment for the transmitter network is equivalent to the lambda labeling of
the vertices of the dual graph, where each vertex corresponds to a transmitter. Extending
the cellular network over the whole plane, the dual graph is a planar graph in which
every vertex has six neighbors, which form a cycle around the vertex. The regions of the
embedding of the dual graph are all triangles. This infinite 6-regular graph is called the
triangular lattice, which we denote by Γ∆. Because of its potentially practical implications,
the lambda labeling of Γ∆ is of particular interest to us.

Let G = (V, E) be any graph, possibly infinite. A real number labeling of G is a
function f : V → R, and its span is

sp(f) := sup
v∈V

f(v) − inf
v∈V

f(v).

We consider real separations k1, . . . , kp ∈ [0,∞). Define L(G;k) = L(G; k1, . . . , kp) to be
the set of real labelings f : V → R, such that

|f(v) − f(w)| ≥ ki, if d(v, w) = i ≤ p.

We may write L(k) or L(k1, . . . , kp) if G is understood.
We then define

λ(G;k) := inf
f∈L(k)

sp(f).
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We will usually restrict our attention to the class G∆ of simple graphs with maximum
degree at most ∆. We shall see that there are labelings with bounded span in L(G;k) for
G ∈ G∆, so λ(G;k) < ∞ for all such G. Compactness arguments may be used to show
that for G ∈ G∆, there is a labeling f that actually achieves λ(G;k), meaning that its
span is λ(G;k), and there are vertices on which f assumes its minimum and maximum
values, which are λ(G;k) apart (recall this is true for infinite graphs). However, we will
derive this information by a simpler approach in the next section. Our approach will also
provide information about possible values of λ(G;k).

As a simple introduction to real labelings, let us determine λ(P3; k, 1), where P3 is the
path on three vertices and k is any real ≥ 0. One valid labeling is (k, 0, k + 1), and there
is no way to improve on it among labelings where the middle label is the smallest of the
three. If we put the smallest label on an end, and the largest is in the middle, we can
do no better than (0, k + 1, 1). If the smallest and largest labels are at the ends, we can
either use (0, k, 2k), provided that k ≥ 1/2, or (0, k, 1), when k ≤ 1/2.

It follows that

λ(P3; k, 1) =







1, if 0 ≤ k ≤ 1/2;
2k, if 1/2 ≤ k ≤ 1;
k + 1, if 1 ≤ k.

Notice that we are allowing k1 = k to be less than k2 = 1, which seems strange at first.
Indeed, in models of interference between nearby transmitters, one expects the interference
to decrease with distance, so that the required separations ki would be nonincreasing
as i grows. However, some recent papers have considered situations where the ki may
increase with i, and our model allows arbitrary ki ≥ 0 (which is mathematically interesting
regardless of its usefulness).

We mention how it can arise in practice that k1 < k2. Jin and Yeh [20] cites a packet
communication model of Bertossi and Barnstormer [2] that considers such a case. Message
packets are being sent throughout a wireless network of computer stations (computers and
transceivers). The computer stations are the vertices and wireless connections between
them are the edges if they can hear each other due to their proximity. Using the Code
Division Multiple Access protocol (CDMA), each computer station is assigned a control
code, and packets are sent along the edges simultaneously, using the control codes of the
computer stations sending them. These codes correspond to channels in our model. A
problem arises whenever a computer station receives packets simultaneously from two dif-
ferent adjacent computer stations that cannot hear each other and use the same control
code, and the receiving computer station has to ask for the packets to be resent. Avoiding
this interference then requires that no two computer stations at distance two in the net-
work use the same control code. Minimizing the number of different control codes used
is then the L(0, 1) problem for the corresponding graph.

Of course, this is really just a standard graph coloring problem in disguise, but for
a different graph: Given G = (V, E), we form the graph G′ = (V, E ′) = (G2 − G), in
which E ′ = E(G2) − E(G) contains pairs of vertices that are at distance two in G. Then
λ(G; 0, 1) = χ(G′)−1. It would be interesting to find other situations that require lambda
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labelings L(k1, . . . , kp) in which ki < kj for some i < j.
Returning to the path P3, we have already given the values λ(P3; k, 1). Let us note

also that λ(P3; 1, 0) = χ(P3) − 1 = 1. We can now obtain all lambda numbers for the
path P3 with conditions at distance two from the following principle:

Property 2.1 (Scaling Property) For all reals k1, . . . , kp, c ≥ 0 and all graphs G,

λ(G; ck1, . . . , ckp) = cλ(G; k1, . . . , kp).

This Property is an immediate consequence of the definition of λ, since if any labeling
of G with separation conditions k has its labels each multiplied by c, it gives a labeling
with separation conditions ck, and vice-versa.

For conditions at distance two, the Scaling Property gives us that

λ(G; k1, k2) = k2λ(G; k, 1)

for k = k1/k2, k2 > 0. So we can derive all values of λ with k2 > 0 from the one-parameter
values λ(G; k, 1), k ≥ 0, such as we gave above for G = P3. We can also obtain the values
λ(G; k1, 0), which is given by k1 limk→∞(λ(G; k, 1)/k).

We next give a simple general upper bound on λ(G;k) in terms of the maximum degree
and the separations ki for use in the proofs. Better bounds are given later in Section 8.

Lemma 2.2 Let G be a graph, possibly infinite, of maximum degree at most ∆. Let
p ∈ Z

+, k = (k1, . . . , kp), and k = maxi{ki}. Then λ(G;k) ≤ k∆p.

Proof. Let G ∈ G∆. For such p and k we have that

λ(G;k) ≤ λ(G; k, . . . , k) = kλ(G; 1, . . . , 1) = k(χ(Gp) − 1),

which is, in turn, at most k times the maximum degree of graph Gp. Since G has at most
∆(∆−1)i−1 vertices at distance i from any given vertex, we get that the maximum degree
of Gp is at most

∆

p
∑

i=1

(∆ − 1)i−1 ≤ ∆p.

Note that a labeling that satisfies the bound of Lemma 2.2 can be obtained by first
arbitrarily ordering the vertices in some component of Gp. One can then greedily color the
vertices in the component one-by-one in order by nonnegative integers, always selecting
the least color not already assigned to any neighboring vertex. Do this for each component.
(This is a so-called first-fit labeling.) Then multiply all the labels by k to obtain a suitable
labeling in L(G;k).
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3 Optimal Spans with Conditions at Distance Two

for Special Graphs

In order to motivate the D-set Theorem and other general results in later sections con-
cerning the general behavior of λ(G;k) viewed as a function of k, we present some of our
findings for particular graphs. Some of the results in this section were obtained, in part,
by using the D-set Theorem. But many of them were obtained independently of it, before
the discovery of the D-set Theorem, and played a role in its discovery. We postpone the
long and intricate proofs with many cases to later papers [15, 14].

We consider only conditions at distance at most two. As noted above, it suffices to
determine λ(G; k, 1). There are various results in the literature concerning λ(G; k, 1) when
k is a positive integer. In the 2000 Mathematical Competition in Modeling (“MCM”),
a problem of this kind (written by Griggs for the contest) was presented. The problem
can be found in the special journal issue for the contest that includes a survey article by
Griggs [12], or on the Web at www.comap.com. The problem was selected and reported
on by 271 teams, each consisting of three undergraduates, from universities worldwide.
Each team had a long weekend (less than four days) to research the problem, write and
run programs, and put together a paper. They had access to libraries, computers, and
the Web, but no human assistance was permitted.

Teams were asked in this problem to investigate distance labelings of the triangular
lattice graph Γ∆. In some cellular communication networks [22] a large planar region
is partitioned into hexagonal cells with a transmitter at the center of each cell. This
method gives efficient coverage (minimizes the number of transmitters needed). Strong
interference occurs between transmitters in adjacent cells, while lighter interference occurs
between transmitters in cells with just one cell in between. We may form a graph, with
a vertex for each cell and an edge between each two vertices that represent adjacent
cells. In this case, we are fortunate in that the graph labeling problem with conditions
at distance two is actually equivalent to the original transmitter problem in the plane.
When the planar coverage region is the entire plane, the corresponding graph is an infinite
6-regular graph, the triangular lattice, which we denote by Γ∆. MCM teams were asked to
determine λ(G; 2, 1) for G corresponding to a certain large region and then for the entire
plane (for G = Γ∆). While experts in the subject already knew the (unpublished) answer,
it was pleasing to see how many teams succeeded. MCM teams were asked to determine
what they could about λ(Γ∆; k, 1) for integers k > 1. Several teams devised labelings
that turned out to be optimal, though no team came up with a valid proof for general k:
Their lower bound proofs were not adequate. Condensed versions of the winning papers
are collected in the special UMAP journal issue mentioned above [12].

A subsequent manuscript of Zhu and Shi [30] considers λ(Γ∆; k1, k2) for general integers
k1 ≥ k2 ≥ 1. It provided more impetus to undertake the study contained in this paper.
Note that by scaling, we shall find that to determine λ(Γ∆; k1, k2) for such integers is
equivalent to determining λ(Γ∆; k, 1) for rationals k ≥ 1.

With considerable effort, the present authors have completely determined the values
λ(Γ∆; k, 1) for all reals k ≥ 1. For reals 0 ≤ k < 1, we have been chipping away,

9



determining the exact value for small k and for some other values k, and bounds otherwise:

Theorem 3.1 [14] For the triangular lattice Γ∆, we have the following values (or bounds,
where it is not yet determined) for optimal spans of labelings with conditions at distance
two:

λ(Γ∆; k, 1) =


























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

































































2k + 3, if 0 ≤ k ≤ 1/3;
∈ [2k + 3, 11k], if 1/3 ≤ k ≤ 9/22;
∈ [2k + 3, 9/2], if 9/22 ≤ k ≤ 3/7;
∈ [9k, 9/2], if 3/7 ≤ k ≤ 1/2;
∈ [9/2, 16/3], if 1/2 ≤ k ≤ 2/3;
∈ [16/3, 23/4], if 2/3 ≤ k ≤ 3/4;
∈ [23/4, 6], if 3/4 ≤ k ≤ 4/5;
6, if 4/5 ≤ k ≤ 1;
6k, if 1 ≤ k ≤ 4/3;
8, if 4/3 ≤ k ≤ 2;
4k, if 2 ≤ k ≤ 11/4;
11, if 11/4 ≤ k ≤ 3;
3k + 2, if 3 ≤ k ≤ 4;
2k + 6, if k ≥ 4;.

(1,6)

k

2k+6

(4,14)

(2,8)

(4/3,8)

4/31/2 54321

6k

(3/4,23/4)
(2/3,16/3)

0

2

4

6

8

10

12

16

14

(1/2,9/2)

9k

(4/5,6)

(9/22,9/2)

(1/3,11/3)
(3/7,27/7)

2k+3

(3,11)

3k+2

(11/4,11)

4k

11k

1/3

Figure 3: A graph of λ(Γ4; k, 1) as a function of k.
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A graph of λ(Γ∆; k, 1) as a function of k is presented in Figure 3. Coordinates are
given for endpoints and isolated points that are known precisely. For k ≥ 1 the graph is
seen to be nondecreasing, continuous, and piecewise linear, and the same appears likely
for k ≤ 1. Curiously, it is neither convex nor concave, nor is it even strictly increasing (at
least three sections are flat). It will follow from Theorem 5.6 that the graph is piecewise
linear over its whole domain, [0,∞), even though we cannot yet give it on [0, 1].

We have completely determined λ(G; k, 1) for paths Pn and cycles Cn on n vertices:

Theorem 3.2 [15] For the paths Pn, the optimal span λ(Pn; k, 1) with conditions at
distance two, for k ≥ 0, is shown in Figure 4. In particular, the optimal span is the same
for all k for n ≥ 7.

Pn, n>=7

k1 3 4 52

4

6

5

3

2

1

2k

2k

3k

k+2

k+1

k

0

2

1

P5,P6

P2

P3

P4

Figure 4: The functions λ(Pn; k, 1) for the paths Pn on n vertices.

Theorem 3.3 [15] For the cycles Cn, the optimal span λ(Cn; k, 1) with conditions at
distance two, for k ≥ 0, is shown in Figure 5 for n = 3, 4, 5 and in Figure 6 for n ≥ 6.
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9

1/2

8

6

4

2

k543210

7

2

4

 C4

 C3

 C5

k+1

2k

2k3k

k+2
4k

2k

k+2

2k

10

1

3

5

Figure 5: The functions λ(Cn; k, 1) for the cycles Cn, n = 3, 4, 5.

Note: For n ≥ 6, the choice of curve to follow in Figure 6 depends on the value of n
modulo 12. For instance, in the interval [2/3, 2], one follows the lower piece when n is
0(mod 12) and the upper piece when n is 1 (mod 12).

After obtaining these path and cycle lambda number formulas, we realized that they
were already known in part: Georges and Mauro [8] determined them for integer separa-
tions k1 ≥ k2. By the Scaling Property their formulas give λ(G; k, 1) for rationals k ≥ 1
when G is a path or cycle (see Section 8 for related remarks).

Notice that for each path and cycle, the graph is again a continuous nondecreasing
piecewise linear function. Also, the linear formulas for the straight sections of the graphs
above are always of the form ak+b, where a and b are nonnegative integers. For the graph
Γ∆, one of the winning teams in the Modeling Contest, from Washington University [11]
claimed that this should be the case for the triangular lattice for all (integers) k. They
turned out to be correct. Indeed, we shall see there is a piecewise linearity result, where
the pieces are nonnegative integer linear functions of k1 and k2, for general graphs of
bounded degree (Theorem 5.6).

We wish to state one more important example, the square lattice Γ�, which is used in
some applications. Here, the vertices correspond to the integer lattice points in the plane,
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0

Figure 6: The functions λ(Cn; k, 1) for the cycles Cn, n ≥ 6.

and edges join pairs of vertices that are equal in one coordinate and are consecutive in the
other coordinate. It is possible to give the complete formula for labelings with conditions
at distance two, and, as expected, it is piecewise linear with finitely many pieces. The
graph of λ(Γ�; k, 1) is shown in Figure 7.
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Theorem 3.4 [14] For the square lattice Γ� we have the following values for optimal
spans of labelings with conditions at distance two:

λ(Γ�; k, 1) =


















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
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
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

k + 3, if 0 ≤ k ≤ 1/2;
7k, if 1/2 ≤ k ≤ 4/7;
4, if 4/7 ≤ k ≤ 1;
4k, if 1 ≤ k ≤ 4/3;
k + 4, if 4/3 ≤ k ≤ 3/2;
3k + 1, if 3/2 ≤ k ≤ 5/3;
6, if 5/3 ≤ k ≤ 2;
3k, if 2 ≤ k ≤ 8/3;
8, if 8/3 ≤ k ≤ 3;
2k + 2, if 3 ≤ k ≤ 4;
k + 6, if k ≥ 4.
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Figure 7: A graph of λ(Γ�; k, 1) as a function of k.
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4 D-set Theorem on Real Labelings

Motivated by partial results for paths and cycles (our complete solution came later) and
by observations described in the previous section, we came to realize that for any finite
graph G and any fixed separation vector k = (k1, . . . , kp), λ(G;k) must be a sum of the
separations ki (repeats allowed). Indeed, this holds as well for the infinite graph Γ∆ (as
claimed by the MCM team from Washington University), and, in general, for any graph
with bounded degrees.

Given k, let us define the “D-set”

D(k1, . . . , kp) :=

{

p
∑

i=1

aiki : ai ∈ N, 1 ≤ i ≤ p

}

,

abbreviated by D(k). It turns out that it suffices to consider labelings with labels in D(k)
in order to prove the existence of optimal λ-labelings:

Theorem 4.1 (D-set Theorem) Let G = (V, E) be a graph, possibly infinite, of bounded
maximum degree. Let k1, . . . , kp be real numbers ≥ 0. Then there is an optimal labeling
f ∈ L(k) with all labels f(v) ∈ D(k) in which the smallest label is 0, the largest label
is λ(G;k). In particular, λ(G;k) ∈ D(k). Moreover, if G is finite, each label f(v) and
λ(G;k) can be expressed in the form

∑

i aiki, where the nonnegative integer coefficients
ai satisfy

∑

i ai < |V |.

Proof. Let k = (k1, . . . , kp), and suppose G is a graph in G∆. Let f ∈ L(k) be any
labeling of span at most ∆pk, where k = maxi{ki}; such labelings exist by Lemma 2.2.
By translating the labeling f , if necessary, we may assume that infv f(v) = 0. We modify
f to get another labeling f ∗, with span no larger than for f , such that all labels for f ∗

belong to D(k). Also, f ∗ will have smallest label 0.
Let us define the D-floor of a real number x ≥ 0 by

bxcD := max{y ∈ D(k) : y ≤ x}.

Note that D(k) contains only a finite number of elements ≤ x, so this is a maximum, not
a supremum. Then we define the new labeling f ∗ at each vertex v by

f ∗(v) := bf(v)cD.

Because D(k) has only finitely many elements in [0, ∆pk], and infv f(v) = 0, it follows
that f ∗ has minimum value 0. By design, all values f ∗(v) belong to D(k). It suffices to
show that f ∗ ∈ L(k), which requires checking the separation conditions. Suppose that
u, v ∈ V are at distance i ≤ p in G. Without loss of generality, suppose f(u) ≥ f(v).
Since f ∈ L(k), we find that

f(u) ≥ f(v) + ki ≥ bf(v)cD + ki = f ∗(v) + ki.
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Since f ∗(v) + ki ∈ D(k), it follows from the definition of the D-floor that bf(u)cD ≥
f ∗(v) + ki, so that

f ∗(u) ≥ f ∗(v) + ki,

and the separation conditions are satisfied.
We have shown that for every f ∈ L(k), there exists f ∗ ∈ L(k) with sp(f ∗) ≤ sp(f)

such that sp(f ∗) ≤ C and sp(f ∗) ∈ D(k). Since D(k) ∩ [0, C] is finite, it follows that λ
exists, belongs to D(k), and is at most C. Also, there exists an optimal labeling where
the labels are in D(k), with smallest label 0 and largest label λ(G;k).

If G has n < ∞ vertices, let f be an optimal labeling of G as above. The minimum
label f(v) is 0, say it occurs at v1, . . . , vs. Consider the smallest label > 0, say it occurs at
vs+1. We may decrease f(vs+1) to 0 without any problem, and repeat this process, unless
there is some t < s + 1 such that vt and vs+1 are at some distance d with kd > 0. But we
may at least still decrease f(vs+1) until it is some value ki ≥ kd > 0, where some vertex
vr is at distance i from vs+1, with r < s + 1.

Then we decrease the next smallest label until it is a sum of at most two ki’s, not
necessarily distinct, and so on, until all labels are sums of fewer than n ki’s. In doing this,
labels only get smaller or remain unchanged. Thus, in the end we still have an optimal
labeling, and its span is a sum of fewer than n ki’s, not necessarily distinct.

We now confirm that real number labelings include integer labelings as a special case:

Corollary 4.2 Let G = (V, E) be a graph, possibly infinite, of bounded maximum degree.
Let k1, . . . , kp be integers ≥ 0. Then λ(G;k) is an integer, and there is an optimal labeling
with smallest label 0 and every label integer.

Example 4.3 Suppose G is a graph with bounded maximum degree, and suppose k =
(5, 3). Then there is an optimal labeling with smallest label 0 and all labels, and λ(G; 5, 3),
belonging to D(5, 3) = {0, 3, 5, 6, 8, 9, 10, . . .}. In particular, to search for λ(G; 5, 3), it
suffices to try nonnegative integer labelings, with smallest label 0, that do not use 1, 2, 4,
or 7. This could speed up computing λ(G; 5, 3).

The D-set Theorem is particularly useful for proving lower bounds on λ(G;k). (Ex-
plicit labelings are used to prove upper bounds.) Here are two proofs of (sharp) lower
bounds for paths that rely on the D-set Theorem.

Example 4.4 For 1/2 ≤ k ≤ 1, we have λ(P3; k, 1) ≥ 2k.

Proof. Suppose not, say λ(P3; k, 1) < 2k. This forces k > 1/2. By the D-set Theorem,
there is an optimal labeling f using labels only in [0, 2k)∩D(k, 1) = {0, k, 1}. For P3, the
labels must be distinct by the separation conditions. But even that is impossible, since
label k is too close to 1: Their difference, 1− k is less than k and 1. So no such f exists.

Example 4.5 For 1/2 ≤ k ≤ 2/3 (resp., 2/3 ≤ k ≤ 1), λ(P7; k, 1) ≥ 3k (resp., ≥ 2).
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Proof. For this range of k values we have the smallest elements of D(k, 1) are, in order,
0, k, 1, 2k, k + 1, followed by 3k (resp., 2), if 1/2 ≤ k ≤ 2/3 (resp., 2/3 ≤ k ≤ 1). By the
D-set Theorem, it suffices to show that λ(P7; k, 1) > k + 1 for 1/2 < k ≤ 1. Suppose not,
say f is a L(k, 1)-labeling of P7 using labels in the set {0, k, 1, 2k, k + 1}.

Vertices not labeled with 0 have labels in [k, k + 1]. Since P3 has minimum span
2k > 1 by Example 4.4, f cannot assign nonzero labels to three consecutive vertices. But
f cannot assign 0 to two vertices at distance two or less. Hence, 0 labels must be used
at some vertices at distance a multiple of three. If three labels are zeros, they are at the
middle vertex and both endpoints of P7, then all other labels are at least one, and one
of them is at least two, which is larger than the span, a contradiction. If two labels are
zeros, neither of them is at the endpoints of P7. The two nonzero labels in between are
both at least one, and at least k apart from each other, so they must be 1 and k + 1.
Then the nonzero label at distance two from label 1 is at least 2, which is larger than the
span, a contradiction.

5 Piecewise Linearity

For a fixed graph G and a fixed integer p, we wish to understand the behavior of the
optimal span λ as a function of the minimum separations k1, . . . , kp in the set

T p = {(k1, . . . , kp) ∈ R
p : ki ≥ 0 ∀i}.

In particular, we want to see why it is piecewise linear in all examples we have studied.
We first obtain the continuity of λ on T p, which ends up being unexpectedly tricky to

prove near the boundary.

Theorem 5.1 Let G = (V, E) be a graph, possibly infinite, of bounded maximum degree.
Let p ∈ Z

+. Then λ(G;k) is continuous and nondecreasing as a function of k on T p.

Proof. Let G ∈ G∆. For any k = (k1, . . . , kp), k′ = (k′
1, . . . , k

′
p) ∈ Tp, we write k ≤ k′

if ki ≤ k′
i for all i. The function λ is nondecreasing, since if k ≤ k′, the separations k′ are

more restrictive than k, so that L(k′) ⊆ L(k), and thus λ(G;k) ≤ λ(G;k′).
We show that λ(G;k) is continuous at an arbitrary k ∈ T p. Let I be the set of indices

i where ki > 0. Let k∗ be any element of Tp that is distance at most ε > 0 from k. We
need to show that |λ(G;k∗)− λ(G;k)| can be made arbitrarily small by selecting ε small
enough. Assume ε < (mini∈I ki)/2. Define vectors k′,k′′ ∈ T p, where k′′ ≤ k ≤ k′, as
follows: Let k′

i = ki + ε for all i, while k′′
i = ki − ε for i ∈ I and k′′

i = ki = 0 otherwise.
By design, k′′ ≤ k∗ ≤ k′. As λ is nondecreasing, we have that

|λ(G;k∗) − λ(G;k)| ≤ λ(G;k′) − λ(G;k′′),

and it suffices to show that λ(G;k′) − λ(G;k′′) can be made arbitrarily small as ε → 0.
Let f ′′ be an optimal labeling as in the D-set Theorem achieving λ(G;k′′). We will

modify f ′′ to obtain a labeling f ′ ∈ L(k′) with span only slightly larger. Specifically, since
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λ(G;k′) − λ(G;k′′) ≤ sp(f ′) − sp(f ′′), it will suffice that sp(f ′) − sp(f ′′) → 0 as ε → 0.
Since 0 ≤ k′

i − k′′
i ≤ 2ε for all i, f ′ will be feasible for separations k′, if, for each pair of

vertices at distance at most p in G, f ′ increases the separation between their labels by at
least 2ε.

By the D-set Theorem, all labels used by f ′′ belong to the set D(k′′) ∩ [0, λ(G;k′′)].
Let us denote these labels by 0 = r1 < r2 < · · · rA. Each of these labels rj has the form
∑

i∈I aik
′′
i , where the coefficients ai are integers ≥ 0. Now we have

ai(ki/2) ≤ aik
′′

i ≤ λ(G;k′′) ≤ λ(G;k) ≤ ∆pk,

where we use Lemma 2.2. Hence, for all i ∈ I, ai ≤ 2C/ki, so that ai is bounded in terms
of k and ∆. It follows that the number of labels used by f ′′, A, is bounded in terms of k
and ∆.

Now we modify the labels ri two different ways. Let δ be a small number, depending
on ε. First, increase each label ri by (i − 1)δ, which increases the separation between
each pair of distinct labels by at least δ. Secondly, take an optimal vertex coloring g of
graph Gp using colors that are integers in the interval [0, B], where B = ∆p (see proof of
Lemma 2.2). Then increase the labels f ′′(v) again, this time by 2g(v)ε.

The labeling obtained after the two augmentations is what we call f ′, and it depends
on both ε and δ. Consider any pair of vertices v, w ∈ V which are at some distance i ≤ p
in G. If f ′′(v) = f ′′(w) (which can happen only if ki = 0), only the second augmentation
changes their difference, and we get that

|f ′(v) − f ′(w)| = |2(g(v)− g(w))ε| ≥ 2ε = |f ′′(v) − f ′′(w)| + 2ε,

which is what we claimed. On the other hand, suppose that f ′′(v) 6= f ′′(w), say f ′′(v) <
f ′′(w). The first operation must moves their labels at least δ farther apart, while the
second operation may move them closer together, but by at most 2Bε. Let us then
specify that δ = (2B + 2)ε, so that in f ′ the separation between labels for such v, w
increases by at least δ − 2Bε = 2ε over f ′′. We have that f ′ ∈ L(k′).

Now we compare the span of f ′ with that of f ′′. The smallest label in f ′ is at least 0,
while the largest label may increase over that in f ′′ due to the two operations, by at most
Aδ = A(2B + 2)ε from the first operation, and by at most another 2Bε from the second
operation. Thus, sp(f ′) − sp(f ′′) is at most a constant times ε, the constant depending
only on k and ∆, and it goes to 0 with ε.

Next we consider the piecewise linearity of λ(G;k). We say that a function f defined
on domain A ⊆ T p is PL on A if it is piecewise linear on A with only finitely many pieces.
More specifically, we mean that A can be split by finitely many hyperplanes, such that
on each of the closed (polyhedral) regions, f is linear. Further, f is continuous, that is,
the linear formulas for two adjacent regions agree on the boundary between them.

We begin with the piecewise linearity for finite graphs, and then consider infinite
graphs with bounded degrees.

Theorem 5.2 Let G = (V, E) be a finite graph. Let p ∈ Z
+. Then λ(G;k) is PL as a

function of k on T p. Specifically, the domain T p can be split by finitely many hyperplanes
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through the origin into closed convex polyhedral cones, such that λ(G;k) is given by a
linear function of the ki’s on each cone.

Proof. Let G = (V, E) be a finite graph on n vertices. Let us partition T p into
polyhedral cones by taking all hyperplanes with equations of the form

p
∑

i=1

biki = 0, where
∑

i

|bi| < 2n.

By the D-set Theorem, for any point k ∈ T p, λ(G;k) is the minimum, over feasible
labelings f : V → D(k), of the maximum label f(v), v ∈ V . Further, it suffices to consider
such f in which for all vertices v, f(v) has the form

∑p

i=1 ai(v)ki, where the nonnegative
integer coefficients ai(v) satisfy

∑p

i=1 ai(v) < n. (Note that for every k ∈ T p, there is
some feasible labeling, hence some feasible labeling of this form.)

Now we turn things around and fix a labeling f of this form and consider the feasible
region for f , meaning the set of values k ∈ T p for which f ∈ L(G;k). We claim that it is
a union of convex cones with vertex at the origin.

To see this, note that k ∈ T p is feasible for such f whenever it is feasible for each pair
of vertices u, v at distance between 1 and p. If u and v are at distance d, say, this means
that f(u)−f(v) is either ≥ kd or ≤ −kd. For the pair u, v the two constraints are bounded
by the hyperplanes through the origin with equations

∑

i(ai(u)− ai(v))ki = kd or = −kd,
which both have the stated form. Then the feasible region for f is the intersection, over
such pairs u, v, of these sets in T p, each a union (possibly empty) of at most two closed
half-spaces. So it is a union of polyhedral cones of the form stated in the theorem.

Within the feasible region of f , the maximum label maxv∈V

∑p

i=1 ai(v)ki depends on
k. Chopping the feasible region by all possible comparisons between values of f , we get
that the feasible region is refined into a union of closed polyhedral cones, bounded by the
hyperplanes above plus the additional hyperplanes f(u) = f(v), over distinct u, v ∈ V ,
that is,

∑

i(ai(u) − ai(v))ki = 0, which also has the stated form.
By taking all possible hyperplanes of the stated form T p is divided into polyhedral

cones through the origin such that in each such cone (cell) K some nonempty collection
of our labelings f is feasible on all of K, and for each such feasible f , the maximum
label f(v) is achieved at a single vertex v (by a single linear formula in k). Similarly, the
minimum of these maximum labels, over all feasible f on K, will be given by a single
linear formula (some label f(v)) throughout K.

To summarize, cutting T p by all of the finitely many hyperplanes described above
divides it into a finite number of convex polyhedral cones such that λ(G;k) is given by a
linear formula of k in each (closed) cone, and we see λ(G;k) is PL.

We remark that since the formulas for adjacent cells K and K ′ agree on their bound-
aries, the continuity of λ(G;k) follows for finite graphs G. The strength of Theorem 5.1
is evidently that continuity holds as well for infinite graphs G ∈ G∆.

Now consider infinite graphs with bounded maximum degree, say G ∈ G∆. The
same arguments above extend, but now the number of hyperplanes cutting through the
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origin is infinite, so the convex cones in the feasible region are not necessarily polyhedral.
Nonetheless, we conjecture that Theorem 5.2. can be extended to such infinite graphs:

Let G = (V, E) be a graph, possibly infinite, of bounded maximum degree. Let p ∈ Z
+.

Then λ(G;k) is continuous and nondecreasing as a function of k on T p.

Conjecture 5.3 (PL Conjecture) Let G = (V, E) be a graph, possibly infinite, of bounded
maximum degree. Let p ∈ Z

+. Then λ(G;k) is PL as a function of k on T p. Specifically,
the domain T p can be split by finitely many hyperplanes through the origin into closed
convex polyhedral cones, such that λ(G;k) is given by a linear function of the ki’s on each
cone.

Despite considerable effort we have not yet succeeded in proving this conjecture. We
can give weaker, though still quite strong, results in support of it. One strategy is to
restrict the domain by staying away from the coordinate planes (avoiding very small
values of the separations ki): For a number ε > 0, let us consider the region T p(ε) of
all points k with all ki ≥ ε(

∑

i ki). Consider any point k ∈ T p(ε). By Lemma 2.2,
λ(G;k) ≤ ∆p

∑

i ki. By the D-set Theorem there is an optimal labeling in which each
label has the form

∑

aiki, so that for all i, aiki ≤ ∆p
∑

i ki, from which our assumption
on k implies each coefficient is at most a constant, ∆p/ε. We can then proceed as for
Theorem 5.2 and derive the PL property:

Theorem 5.4 Let G = (V, E) be a graph, possibly infinite, of bounded maximum degree.
Let p ∈ Z

+. Then for any ε > 0 the function h(k) = λ(G;k) is PL on T p(ε).

Our other supporting result for the PL Conjecture 5.3 is to prove it for conditions
out to distance two, that is, for p = 2. This explains why we obtained PL graphs for
λ(G; k, 1) for the graphs we considered. It depends on a special sort of argument that
we have been unable to extend to larger p. We can derive the PL Theorem for p = 2
(Theorem 5.6 below) by a different argument in Section 8. We first require some simple
bounds on λ(G; k1, k2) depending on the chromatic number. Note that the upper bound
here may be either better or worse than in Lemma 2.2, depending on k1, k2.

Lemma 5.5 Let G = (V, E) be a graph, possibly infinite, of maximum degree at most
∆ > 0. Then

(χ − 1)k1 ≤ λ(G; k1, k2) ≤ (χ − 1)k1 + χ∆2k2,

where χ is the chromatic number of G. Also,

(χ(G2 − G) − 1)k2 ≤ λ(G; k1, k2) ≤ χ(G2 − G)∆k1 + (χ(G2 − G) − 1)k2.

Proof. We prove the first display; the proof of the second is similar. The lower bound
follows easily from

λ(G; k1, k2) ≥ λ(G; k1, 0) = λ(G; k1) = k1λ(G; 1) = k1(χ − 1).
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For the upper bound, let us employ two labelings of G. First, take any optimal coloring
f1 of G, where the colors are integer labels in [0, χ − 1]. (Note that if we instead use a
greedy first-fit coloring of G, we might not get an optimal coloring; The labels would
be in [0, ∆].) Second, take labeling f2 to be a greedy L(0, 1)-labeling, as in the proof of
Lemma 2.2, so that the labels in f2 are integers in the interval [0, ∆2]. Then we define
the labeling

f = (k1 + ∆2k2)f1 + k2f2.

By design, f ∈ L(k1, k2), and its span is at most

(k1 + ∆2k2)(χ − 1) + k2∆
2 = (χ − 1)k1 + χ∆2k2.

Theorem 5.6 Let G = (V, E) be a graph, possibly infinite, of bounded maximum degree.
Then λ(G; k1, k2) is PL as a function of (k1, k2) on T 2. Specifically, the domain T 2 can be
partitioned by finitely many lines through the origin into closed convex polyhedral cones,
such that λ(G; k1, k2) is given by a linear function of the ki’s on each cone.

Proof. Let G ∈ G∆. By the Scaling Property, λ(G; k1, k2) = k2λ(G; k, 1) for k2 > 0
by setting k = k1/k2, so that it suffices to show that λ(G; k, 1), denote this by g(k),
is piecewise linear as a function of k. The proof of Theorem 5.2 gives us the piecewise
linearity we want, except there may be infinitely many linear pieces when G is infinite.
It is enough to prove that g(k) is eventually linear for sufficiently large k and also for
sufficiently small k > 0: Theorem 5.4 guarantees that it is piecewise linear with integer
coefficients, with only finitely many pieces, between the linear pieces at the ends.

Let us deal with the case of large k. Consider some ko > χ∆2. As in the proof of
Theorem 5.2, g(ko) is on a linear segment of the graph of g with a formula of the form
αk + β, where α, β ∈ N. Moreover, the upper bound in Lemma 5.5 gives us that

αko + β ≤ (χ − 1)ko + χ∆2,

which forces
(α − (χ − 1))ko ≤ χ∆2.

But since ko > χ∆2, it must be that α ≤ χ − 1, as α is integral.
There must be a largest integer coefficient α over the values k > χ∆2, say it is αo at

ko, so that g(ko) = αoko + βo. None of the linear formulas for k larger than ko can be of
the form αok + β with β > βo, because there is no way to get above the linear function
αok + β without some piece having a slope α > αo, contradicting the maximality of αo,
using the fact that g(k) is continuous. Hence, for all k ≥ ko, g(k) ≤ αok + βo. Then
by the lower bound of Lemma 5.5, (χ − 1)k ≤ αok + βo for all large k. It follows that
αo = χ − 1.

Linear pieces of the graph of g(k) for k > ko with slope αo must have decreasing values
of β, so that each subsequent linear piece with formula αok + β will have a lower value of
β ∈ N. There then must be a last linear piece with α = αo. Then this piece never ends,
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because if it did, then after that the slopes would all be at most χ − 2, and eventually
the graph of g would drop by the lower bound of Lemma 5.5.

It remains to go the other way and show that, for sufficiently small k, g(k) is linear.
This is equivalent to showing that λ(G; 1, k) is eventually linear as k grows. The same
method used before now works, except the roles of k1 and k2 are reversed. We conclude
that g(k) is eventually linear as k → 0, with a formula of the form αk + χ(G2 − G), and
it is piecewise linear overall with only finitely many pieces.

6 Bounds on the Coefficients

We made a special effort to determine whether the piecewise linearity theorem (Theo-
rem 5.2) holds more generally than for finite graphs: Does it hold for infinite graphs of
bounded degree, that is, for the class G∆? We verified our PL Conjecture 5.3 in cases
where we could bound the coefficients ai independent of k. The full PL Conjecture would
follow (by the arguments used to prove Theorem 5.2) if one can prove this strengthening
of the D-set Theorem:

Conjecture 6.1 (Coefficient Bound Conjecture) Let G = (V, E) be a graph, possibly in-
finite, of bounded maximum degree. Let p ∈ Z

+. Then there exists a constant c1 = c1(G, p)
such that for all k ∈ T p, there is an optimal labeling f ∈ L(k) with all labels f(v) ∈ D(k)
in which the smallest label is 0, the largest label is λ(G;k), and each of the labels f(v) and
λ(G;k) can be expressed in the form

∑

i aiki, where the nonnegative integer coefficients
ai are at most c1.

We cannot see how to derive the conjecture above from the PL Conjecture. We would
need to know more, such as the domain can be split into finitely many regions such that
in each region, there is a single labeling of G that is optimal. Of course then there would
be a collection of just finitely many labelings fj such that for any k some labeling in the
collection is optimal (and feasible, of course) for k.

We suspect that coefficient bounds can be given that work for all graphs with given
maximum degree. Specifically, we propose this strengthening of the Coefficient Bound
Conjecture:

Conjecture 6.2 (Delta Bound Conjecture) Let ∆, p ∈ Z
+. Then there exists a constant

c2 = c2(∆, p) such that for all k ∈ T p and all graphs G = (V, E), possibly infinite,
of maximum degree at most ∆, there is an optimal labeling f ∈ L(G;k) with all labels
f(v) ∈ D(k) in which the smallest label is 0, the largest label is λ(G;k), and each of
the labels f(v) and λ(G;k) can be expressed in the form

∑

i aiki, where the nonnegative
integer coefficients ai are at most c2.

We have not even established this Delta Bound Conjecture yet for general finite graphs
G, since the bound on the coefficient sums

∑

i ai in the D-set Theorem, n − 1, is not
restricted by ∆. It does hold trivially for p = 1 (with coefficient bound a1 = χ(G)−1 ≤ ∆.
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It is not clear to us how the proof of the PL Conjecture for p = 2 (Theorem 5.6) can be used
to obtain coefficient bounds to verify the Delta Bound Conjecture for p > 2. However,
we can present another approach, which then gives a different proof of Theorem 5.6, one
that may be useful in trying to prove the Delta Bound Conjecture (and, hence, the PL
Conjecture) for general p.

Theorem 6.3 Let ∆ ∈ Z
+. There exists a constant c3 = c3(∆) such that for all (k1, k2) ∈

T 2 and all graphs G = (V, E), possibly infinite, of maximum degree at most ∆, there is
an optimal labeling f ∈ L(G; k1, k2) with all labels f(v) ∈ D(k1, k2) in which the smallest
label is 0, the largest label is λ(k1, k2), and each of the labels f(v) and λ(k1, k2) can be
expressed in the form

∑

i aiki, where the nonnegative integer coefficients ai are at most
c3.

Proof. By the Scaling Property, it suffices to prove for given ∆ the existence of c3 that
works for (k, 1) for all k ≥ 0. Let G = (V, E) ∈ G∆. Let f be an optimal labeling of G in
L(k, 1) as in the D-set Theorem.
Case 1. Assume k is very small, say 0 < k ≤ 1/(2∆3).

By Lemma 2.2, f has span at most ∆2. Thus, all labels used in f have the form ak+b,
with nonnegative integer coefficients a, b, such that b ≤ ∆2. The trouble comes in trying
to bound a, independent of k, no matter how small it gets. What we do is push down the
labels f(v) in a greedy way to produce a labeling f ′ ∈ L(k, 1) such that all labels belong
to a set S ⊆ D(k, 1) in which the coefficients a are also bounded in terms of ∆. Since f ′

also has smallest label 0, and f ′(v) ≤ f(v) for all vertices v, f ′ is an optimal labeling, one
that satisfies the required conditions with c3 = ∆3 + ∆2.

We define the set

S = {ak + b : a, b ∈ Z, 0 ≤ b ≤ ∆2, 0 ≤ a ≤ (b + 1)∆}.

It is important to note that, by our assumption that k is small means there is a gap
between elements in S of the form ak + b and b + 1. Let the set of labels used by f be
given by {0 = l0 < l1 < l2 < · · · < lr}, where r = r(k) is finite, since it is contained in the
finite set D(k, 1) ∩ [0, ∆2]. For vertices v with label l0 = 0, we set f ′(v) = f(v). We next
take care of vertices in f−1(l1), then those in f−1(l2), and so on, through f−1(lr). Let us
suppose we are dealing with vertices v with label li, having already pushed down labels
for vertices w with f(w) < li. Although f−1(li) can be infinite, no two of its vertices are
within distance two, so they can all be pushed simultaneously without any concern about
interference. What we do have to ensure is that when we push down f(v), f ′(v) is not
too close to any f ′(w) for some w already pushed down. We define f ′(v) to be the largest
element of S ∩ [0, li] that is at least k (resp., 1) away from f ′(w) for every w at distance
one (resp., two) from v.

With this definition, f ′ has all of the required properties. What needs to be proved is
that there is, indeed, some element of S ∩ [0, li] that is far enough away from the labels
f ′(w) already defined. Put B = blic and R = li − B, so that 0 ≤ R < 1.
Case 1a. Suppose that R ≤ (B+1)∆k. Put A = bR/kc. Then f ′(v) will be Ak+B. For we
have Ak+B ∈ S, 0 ≤ li−(Ak+B) < k, and Ak+B is far enough from values f ′(w) already
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defined for nearby vertices w: For vertices w at distance one (resp., two) from v that were
already pushed, f(w) ≤ f(v) − k = R − k + B (resp., f(w) ≤ f(v) − 1 = R + (B − 1)),
so that f ′(w) ≤ (A − 1)k + B = f ′(v) − k (resp., f ′(w) ≤ Ak + (B − 1) = f ′(v) − 1).
Case 1b. Suppose that (B + 1)∆k < R < 1. Then f ′(v) will be the largest of the
∆ + 1 labels ak + B, B∆ ≤ a ≤ (B + 1)∆, that is not used as f ′(w) for any vertices
w adjacent to v. Then f ′(v) is at least k away from labels f ′(w) for w adjacent to v.
If w at distance two from v was already pushed, then f(w) ≤ R + (B − 1) means that
f ′(w) ≤ B∆k + (B − 1) = (B∆k + B) − 1 ≤ f ′(v) − 1.

Either way, f ′(v) exists as required.
Case 2. Assume k is very large, say k ≥ 2∆4.

The argument proceeds as in Case 1, though now we have to use the fact that for any
vertex v, the number of vertices at distance two is at most ∆2. This time we define our
set

S = {ak + b : a, b ∈ Z, 0 ≤ a ≤ ∆, 0 ≤ b ≤ (a + 1)∆2}.

We push down f in a similar way to before to produce an optimal labeling f ′ which has
coefficient bound roughly ∆4.
Case 3. Assume k is intermediate, 1/(2∆3) < k < 2∆2.

By Lemma 2.2, λ(k, 1) ≤ ∆2 max{k, 1}, which leads to an upper bound of 2∆5 on the
coefficients a, b of the labels ak + b of the optimal labeling f .

We see that 2∆5 serves as an upper bound on the coefficients for all k.
An important note about the Delta Bound Conjecture is that it is simple to give a

bound on the label coefficients (in terms of ∆ and p) for which there does exist a feasible
labeling f . For instance, there are the labelings described in connection with Lemma 2.2,
in which every label has the form ak, where k = maxi{ki}, and a is at most ∆p. But
such labelings are certainly not optimal in general. Hence, the tough part of proving the
Delta Bound Conjecture for general p is to show that for some constant c3 there exists an
optimal feasible labeling with coefficients bounded by c3.

Besides being stronger than the PL Conjecture, the Delta Bound Conjecture is perhaps
more natural, and easier to understand.

7 Degree Bounds

Just as with chromatic numbers, it is interesting to consider how large the optimal span
λ(G;k) can be given the degrees of the vertices. Specifically, what if we bound the
maximum degree ∆(G)? Algorithms devised to achieve bounds we find are potentially
useful, since they may produce reasonably efficient channel assignments.

For a connected finite graph G, an easy best-possible bound on the chromatic number
is

χ(G) ≤ ∆(G) + 1,

and the well-known Brooks’s Theorem implies that this bound is best-possible if and only
if G is a clique Kn or an odd cycle C2k+1. The ∆(G) + 1 bound can be achieved by
arbitrarily ordering the vertices V , say {v1, v2, . . .}, and doing a greedy first-fit labeling
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of them one-by-one (always choose the lowest permissible color). Indeed, this works even
if G is infinite.

For the basic λ-number, λ(G) = λ(G; 2, 1), the analogous question was proposed in
[16], cf. [29]. Of course, a connected graph G with maximum degree 0 or 1 must be a
K1 or K2, respectively, and have λ equal to 0 or 2, respectively. After checking many
examples, Griggs and Yeh made the still-unproved

Conjecture 7.1 (Delta Squared Conjecture) If G is a connected graph with maximum
degree ∆ ≥ 2, then λ(G) ≤ ∆2.

This was stated for finite graphs, but would hold as well for infinite graphs, by applying
a compactness argument (the Rado Selection Principle, say). The quick explanation for
why the bound is quadratic in ∆, instead of linear as for chromatic number, is that the
interference in labels extends to distance two from a given vertex, and the number of
vertices within distance two can be as large as ∆ + ∆(∆ − 1) = ∆2. Of course, this
observation does not prove the conjecture, since there is the added restriction that labels
for adjacent vertices cannot be consecutive.

The conjecture is tantalizing in part because if it fails, it is not by much. Griggs and
Yeh used a simple vertex ordering and greedy first-fit labeling to show that

λ(G) ≤ ∆2 + 2∆,

which supports the conjecture down to order O(∆). On the other hand, they constructed
graphs for infinitely many values ∆, using finite projective planes, for which

λ(G) ≥ ∆2 − ∆.

Also in support of the conjecture is that it has been shown by many researchers to
hold for many classes of graphs. To mention a few, it is known to hold if G is diam-
eter two [16], [29], and better bounds than ∆2 have been proved for trees [16], chordal
graphs [28], and planar graphs [18], [26]. Indeed, no one has found any graphs for which
the ∆2 bound is sharp, besides the short list in the original paper [16]:

• Paths and cycles, Pn and Cn, n ≥ 3 (∆ = 2)

• Petersen graph, n = 10 (∆ = 3)

• Hoffman-Singleton graph, n = 50 (∆ = 7)

• the 57-regular diameter-two graph on 572 + 1 vertices, if it exists.

Chang and Kuo [4] managed to cut the gap in the general upper bound in half, proving
that

λ(G) ≤ ∆2 + ∆.

The bound remained there for nearly ten years, before it was improved by Král’ and
Škrekovski:
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Theorem 7.2 ([21]) Let G be a graph, possibly infinite, with finite maximum degree
∆ ≥ 2. Then λ(G) ≤ ∆2 + ∆ − 1.

For ∆ = 2, G must be a path or cycle, for which the conjecture is already verified.
The next case up is ∆ = 3, where the best known general bound is now 11 [21]. Georges
and Mauro checked many such graphs [9]. They not only found no graphs with λ(G) > 9,
they found no other connected graphs with λ = 9. In fact, they found no such graphs
at all with λ = 8, so they suspect (pers. comm.) that λ(G) ≤ 7 if G is connected, has
maximum degree 3, and is not the Peterson graph.

Now we consider ∆-bounds on λ(G;k) for general separations k. Earlier we gave such
a bound, again by ordering the vertices and doing a greedy first-fit labeling, in Lemma 2.2:

λ(G;k) ≤ k∆p,

where k is the maximum ki. However, when some ki’s are smaller than k, it is clear that
λ(G;k) should be smaller. A more careful argument takes advantage of such variation in
the separations.

Theorem 7.3 Let G be a graph, possibly infinite, with finite maximum degree ∆ ≥ 0.
Let k = (k1, . . . , kp) ≥ 0. Then λ(G;k) ≤

∑p

i=1 2ki∆(∆ − 1)i−1.

Proof. As in the proof of Lemma 5.5, it is enough to consider a single component of
G in which the vertices are arbitrarily ordered V = v1, v2, . . .. We do a greedy first-fit
labeling f of the vertices, using for each vertex v the smallest label in [0, B], where B
is the bound in the theorem, that is not too close to any previously assigned labels. To
see that there is always such an available label, consider a previously labeled vertex w at
distance i from v, 1 ≤ i ≤ p. Then f(v) must avoid the interval (f(w) − ki, f(w) + ki)
in order that f ∈ L(k). Bounding the number of vertices at distance i, and assuming in
the worst case that all of these vertices are already labeled and that their intervals are
disjoint, we have a union of open intervals of lengths adding up to the bound B, so some
element of [0, B] is available for f(v).

A variation of the argument above gives a related bound that is sometimes slightly
better, depending on the ki’s.

Theorem 7.4 Let G be a graph, possibly infinite, with finite maximum degree ∆ ≥ 0.
Let k = (k1, . . . , kp) ≥ 0. Then λ(G;k) ≤

∑p

i=1(2dkie − 1)∆(∆ − 1)i−1.

Proof. Do a greedy first-fit labeling as before, but restrict the labels f(v) to integers.
For a previously labeled vertex w at distance i from v, f(v) must avoid the integers
in the interval (f(w) − ki, f(w) + ki) in order that f ∈ L(k). These integers are from
f(w)+ 1−dkie to f(w)− 1+ dkie, a total of 2dkie− 1 integers. The stated bound follows
as before.
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8 Related Results

The development of our theory of real number labelings was influenced by work on the
triangular lattice described in the winning student MCM papers [3], [7], [11], [24],[5] and
in the preprint [30]. These papers forced us to consider values λ(Γ∆; k, 1) for non-integral
values of k.

There is a considerable amount of work in the literature on labelings that is related
to this project. We must first mention earlier work of Georges and Mauro that we only
realized, after working out the concept of real-number labelings, is very much in the
spirit of this project. In 1995 [8] they proved a restricted version of the D-set Theorem:
It is shown that for finite graphs G and for integers p ≥ q ≥ 0, there is an optimal
labeling in L(G; p, q) in which every label and λ(G; p, q) have the form ap + bq where a, b
are nonnegative integers. They prove in this restricted setting that for integers c > 0,
λ(G; cp, cq) = cλ(G; p, q), a special case of our Scaling Property 2.1. They determine
λ(G; p, q), p ≥ q for G being a path, a cycle, or various other graphs. In fact, our path
and cycle formulas Theorems 3.2 and 3.3 above can be deduced–for k ≥ 1–from their
formulas for integers p ≥ q by using our real number model, the Scaling Property 2.1,
Corollary 4.2, and continuity (Theorem 5.1).

Moreover, a later paper of Georges and Mauro [10] introduces what we refer to as
labelings in L(G; k, 1) with rational k ≥ 1. They prove these labelings are continuous.
This paper is also maybe the first to consider infinite graphs G. Its main result is to
determine λ(G; p, q) for integers p ≥ q ≥ 1 when G is the infinite ∆-regular tree.

Early versions of our results were presented at conferences going back to 2001, and
slides from a presentation in 2003 are posted on the web [13].

Georges and Mauro (personal communication) have now extended their earlier results
to obtain continuity and piecewise-linearity statements for labelings with conditions at
distance two, applicable to infinite graphs of bounded degree. This work appears similar
to our Theorem 6.3, though their model is more restricted.

Mohar [25] has investigated a more general model, but restricted to finite graphs, in
which there is a minimum separation kv,w for every pair of distinct vertices v and w.
He actually works with the circular span of a graph, proving that it is continuous and
piecewise linear, with only finitely many linear segments, as a function of the separations.
He also considers an even more general directed graph model. A variation of his argument
in the setting of our labelings may give a proof of the PL Conjecture 5.3 (for finite graphs).
While our model is more restricted, in that separations depend only the distance between
v and w, it may have special properties due to this restriction. We also work more
generally with infinite graphs.

More recently, a paper by Leese and Noble [23] considers circular real number labelings
with conditions at distance two, and obtains a continuous piecewise linear result in that
context.
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9 Directions for Further Research

Of course, we are anxious to see the conjectures above settled. As we completed this paper,
we learned that a group in Prague (Babilon, Jeĺınek, Král’, Valtr) is also preparing a paper
on distance-dependent labelings from a somewhat different perspective [1], motivated in
large part by the paper of Leese and Noble mentioned above. (Our main ideas were
already presented at the DIMACS workshop [13] in October, 2003.)

In the distance two case (p = 2) let us consider how soon the formula becomes linear.
What John Georges (personal comm.) has observed in many examples is that λ(G; k, 1)
seems to be linear for k > ∆–it settles down quickly. Is this true and can it be proven in
general? Also, Theorem 6.3 can be used to bound the number of linear pieces in terms of
∆–but how good a bound can be given?

The authors are planning a future paper that explores the symmetry properties of
optimal labelings of the triangular lattice with conditions at distance two.

It would be interesting to expand our model to consider infinite graphs with separations
ki at all distances i, not just finitely many conditions. Even for the particular examples
of the triangular lattice and the square lattice, it would be interesting to characterize
infinite k such that λ exists.

For use in many applications, we should return to considering the original problem of
labeling transmitters in a planar network, using Euclidean distance, rather than graph
distance. Perhaps the results for graphs can be helpful?

In some applications we have been told that many channels must be assigned to
each transmitter (e.g., if each cellphone user in a particular cell must have a separate
frequency). This can be accomplished by assigning an entire arithmetic progression of
labels to each vertex in a graph, with the same distance d used for every progression,
such that for nearby vertices v and w, every label used for v is sufficiently separated from
every label for w. Equivalently, each vertex is assigned a label in the interval [0, d), with
distance between labels measured on the circle, that is, modulo d. The goal is to minimize
the circular span d. There is a sizable literature on this problem for integer labelings. We
have been investigating the extension of this model to allow real-number labelings, and
there are analogues of some of the results given in this paper for ”linear” labelings. This
work will be described in a future paper.
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