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Abstract

The problem of radio channel assignments with
multiple levels of interference can be modeled us-
ing graph theory. Given a graph G, possibly in-
finite, and real numbers k1, k2, . . . , kp ≥ 0, a
L(k1, k2, . . . , kp)-labeling of G assigns real numbers
f(x) ≥ 0 to the vertices x, such that the labels of
vertices u and v differ by at least ki if u and v are at
distance i apart. We denote by λ(G; k1, k2, · · · , kp)
the infimum span over such labelings f . We sur-
vey this new theory of real number labelings. When
p = 2 it is enough to determine λ(G; k, 1) for re-
als k ≥ 0, which will be a piecewise linear function.
We present the function for the square lattice (grid)
and for the hexagonal lattice. For the triangular
lattice, we have also solved it except for the range
1/2 ≤ k ≤ 4/5.

1. Introduction

As wireless networks continue to grow rapidly
and the radio frequency spectrum remains a scarce
resource, efficient channel assignment algorithms
are increasingly important.

The channel assignment problem is to assign
channels to the transmitters in a network in a way
which avoids interference and uses the spectrum as
efficiently as possible. We consider the version sug-
gested by Roberts (see [12]) in which the assignment
must satisfy some separation constraints depending
on the distance, and the goal is to make the assign-
ment bandwidth as small as possible. The problem
is modeled nicely with graph theory by letting each
transmitter correspond to a vertex and representing
by an edge each pair of nearby transmitters.

A L(k1, k2, · · · , kp)-labeling of a graph G is an
assignment of nonnegative numbers to the vertices
of G, with x ∈ V (G) labeled by f(x), such that
|f(u)− f(v)| ≥ ki if u and v are at distance i apart.

∗Research supported in part by NSF Grant DMS–0302307

We denote by λ(G; k1, k2, · · · , kp) the infimum span
over such f , i.e., the L(k1, k2, · · · , kp)-labeling num-
ber of graph G, where the span is the difference be-
tween the supremum and the infimum of the labels
f(x).

Griggs and Yeh [12] (1992) introduced integer
L(k1, k2, . . . , kp)-labelings of graphs, where all la-
bels are integers, and they obtained many results
for the particular case L(2, 1).

Often the frequency channel separations ki for
nearby two transmitters are inversely proportional
to the distance i between the two transmitters, so
that we usually have k1 ≥ k2 ≥ . . . ≥ kp. But this
is not required in our theory.

The wireless networks include cellular mobile
networks, wireless computer networks [3], wireless
ATM networks [17], private mobile radio networks
[23]. Bertossi, Maurizio and Bonuccelli [3](1995)
introduced a kind of integer “control code” assign-
ment in Packet Radio Networks to avoid hidden ter-
minal interference, due to the stations (transmit-
ters) which are outside the hearing range of each
other and transmit to the same receiving stations
(transmitters), i.e., graph L(0, 1) labeling problem.
Another engineering problem is to assign time slots
without interference [2], which is modeled very well
by graph labeling problems. Different channel as-
signment problems in the frequency, time and code
domains (with a channel defined as a frequency, a
time slot [2], or a control code [3], resp.) can be
modeled by graph labeling problems. Ramanathan
[20] mentions a unified framework of channel as-
signments by the similarity of the constraints for
the channel assignment across these domains. Here
we consider L(k1, k2, . . . , kp) for all nonnegative real
numbers k1, k2, . . . , kp.

Among all ∆-regular planar lattices (grids), we
have ∆ = 3, 4 or 6. We determine the minimum
spans λ(G; k, 1) for the corresponding lattices.

2. Real Number Graph Labelings
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Since we can use any frequencies (channels) in
the available continuous frequency spectrum instead
of only discrete frequency channels, we extend the
integer graph labeling problem to the real number
graph labeling problem in which we allow the labels
and constraints ki to be nonnegative real numbers.
Hence, the infimum span λ(G; k1, k2, . . . , kp) may
not be integer for some graphs G. For example,
λ(P4;

√
2, 1) =

√
2 + 1 is not an integer for a path

P4 on four vertices.
To describe optimal real number labelings of

graphs, we define the D-set for k1, k2, . . . , kp to
be the set of linear combinations

∑
i aiki of ki

with nonnegative integer coefficients ai. We
prove the existence of some optimal labeling
f ∈ L(k1, k2, . . . , kp)(G) with smallest label 0
and all labels in the D-set, and hence the span
λ(G; k1, k2, . . . , kp) exists in the D-set, with min-
imum instead of infimum, for G being any graph
with finite maximum degree. We cannot ensure the
existence of λ(G; k1, k2, . . . , kp) for an infinite graph
G with infinite maximum degree.

Theorem 1 (The D-set Theorem). Let G be
a finite or infinite graph with maximum degree ∆.
Let ki ∈ [0,∞), i = 1, 2, . . . , p. Then there exists a
finite optimal L(k1, k2, . . . , kp)-labeling
f∗ : V (G) → [0,∞) with the smallest label 0 and
all labels in the D-set for k1, k2, . . . , kp. Hence
λ(G; k1, k2, . . . , kp) ∈ Dk1,k2,...,kp .

For nonnegative integer separations ki,
λ(G; k1, k2, . . . , kp) is a nonnegative integer which is
attained by some optimal integer labeling. All pre-
vious optimal integer labeling results are compatible
with our optimal real number labeling results.

In [16] we prove λ(G; k1, k2, . . . , kp) is a nonde-
creasing, continuous function of real numbers ki for
a graph G with finite maximum degree. Hence the
results λ(G; k1, k2, . . . , kp) for ki being integers or
rational numbers can be pushed into the results for
ki being real numbers.

We also prove in [16] that λ(G; k1, k2, . . . , kp) is
a piecewise linear function of ki with nonnegative
integer coefficients and finitely many linear pieces
for arbitrary p and any finite graph G, or for any
infinite graph G with finite maximum degree when
p = 2.

From our definition we have
The Scaling Property. We have

λ(G; d · k1, d · k2, . . . , d · kp) = d · λ(G; k1, k2, . . . , kp)
for real numbers d, ki ≥ 0, i = 1, 2, . . . , p.

In particular, λ(G; k1, k2) = k2λ(G; k, 1) for real
numbers k = k1/k2 and k2 > 0. We will give the

Figure 1: The Hexagonal Cell Covering

xo

y

Figure 2: The Triangular Lattice Γ�

minimum label span λ(G; k, 1), k ≥ 0 for some infi-
nite regular graphs, lattices.

3. The Triangular Lattice

In a radio mobile network, large service areas
are often covered by a network of almost congruent
polygonal cells, with each transmitter at the center
of a cell that it covers. A honeycomb of hexag-
onal cells provides the most economic covering of
the whole plane [9] (i.e., cover the whole plane with
smallest possible transmitters density), where the
transmitters are placed in the triangular lattice Γ�
(see Figure 2). We fix a point to be the original
point o and put a xoy coordinate system so that
we can name each point by its xoy coordinate. We
may place the transmitters in some subgraph of the
triangular lattice for a big open area.

Griggs [13] formulated an integer L(k, 1)-
labeling problem on the triangular lattice Γ�for
2000 International Math Contest in Modeling.
Among 243 teams which worked on this problem
in four days, five teams [19, 5, 21, 8, 11](2002) won
the contest and got their papers published. They
gave results for λ(Γ�; k, 1) for k = 2, 3, and most of
them gave the upper bounds for k ≥ 4 or k = 1. Af-
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Figure 3: λ(Γ�; k, 1).

ter that, Yeh [15] and Zhu and Shi [24] solved some
special cases for the integer L(k1, k2) labeling prob-
lems on the triangular lattice, for integers k1 ≥ k2.
Calamoneri [6] gives the minimum integer span for
the triangular lattice for integers k1 ≥ 3k2, and the
bounds for k2 ≤ k1 ≤ 3k2 independently of us.

Here we describe the full solution for k ≥ 1 and
the best current bounds we have for k ≤ 1 (see
Figure 3). In Section 6 we describe some of the
proofs of this result.

Theorem 2. For real numbers k ≥ 0 and the
triangular lattice Γ�, we have the following mini-
mum span:

λ(Γ�; k, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 3 if k = 0
= 2k + 3 if 0 ≤ k ≤ 1

3∈ [2k + 3, 11k] if 1
3 ≤ k ≤ 9

22∈ [9k, 11k] if 9
22 ≤ k ≤ 11

27∈ [9k, 9
2 ] if 11

27 ≤ k ≤ 1
2∈ [92 , 5k + 2] if 1

2 ≤ k ≤ 2
3∈ [163 , 5k + 2] if 2

3 ≤ k ≤ 3
4∈ [234 , 5k + 2] if 3

4 ≤ k ≤ 4
5

= 6 if 4
5 ≤ k ≤ 1

= 6k if 1 ≤ k ≤ 4
3

= 8 if 4
3 ≤ k ≤ 2

= 4k if 2 ≤ k ≤ 11
4

= 11 if 11
4 ≤ k ≤ 3

= 3k + 2 if 3 ≤ k ≤ 4
= 2k + 6 if k ≥ 4

4. The Square Lattice

Inside cities, due to the high buildings which are
obstacles in the signal path (as well as a limited
range of a cell), a Manhattan fashion cellular system
[4] can be modeled by the square lattice Γ� (see
Figure 4). Many graphs corresponding to cellular
systems are the induced subgraphs of the square
lattice or the triangular lattice. Calamoneri [6] gives
the minimum integer span for the square lattice for
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Figure 4: The Square Lattice Γ�

integers k1 ≥ 3k2, and the bounds for k2 ≤ k1 ≤ 3k2

independently of us.
Theorem 3. For real numbers k ≥ 0 and the

square lattice Γ�, we have the following minimum
span.

λ(Γ�; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k + 3 if 0 ≤ k ≤ 1
2

7k if 1
2 < k ≤ 4

7
4 if 4

7 ≤ k < 1
4k if 1 ≤ k ≤ 4

3
k + 4 if 4

3 < k ≤ 3
2

3k + 1 if 3
2 < k ≤ 5

3
6 if 5

3 ≤ k ≤ 2
3k if 2 < k ≤ 8

3
8 if 8

3 ≤ k ≤ 3
2k + 2 if 3 ≤ k ≤ 4
k + 6 if k ≥ 4

5. The Hexagonal Lattice

One may place the transmitters at nodes in the
hexagonal lattice ΓH (see Figure 6), which is the
dual of the triangular lattice. Calamoneri [7] gives
the minimum span for the hexagonal lattice for k ≥
2 and the bounds for 1 ≤ k ≤ 2. We finish all the
cases for k ≥ 0 in [16].

Theorem 4. For real numbers k ≥ 0 and the
hexagonal lattice ΓH we have the following mini-
mum span.

λ(ΓH ; k, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

= k + 2 if 0 ≤ k ≤ 1
2

= 5k if 1
2 ≤ k ≤ 3

5
= 3 if 3

5 ≤ k ≤ 1
= 3k if 1 ≤ k ≤ 5

3
= 5 if 5

3 ≤ k ≤ 2
= 2k + 1 if 2 ≤ k ≤ 3
= k + 4 if k ≥ 3

3
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(8/3,8)

(4/3,16/3) (3/2,11/2)k+4

4k

3k+1

2k+2

k+6

(4/7,4)

(3,8)

(2,6)

(1,4)

(1/2,7/2)

7k

k+3

10

Figure 5: λ(Γ�; k, 1)

Figure 6: The Hexagonal Lattice ΓH
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Figure 7: λ(ΓH ; k, 1)

6. Proofs for the Triangular Lattice

Generally, we get upper bounds by the construc-
tions of the labelings, and lower bounds by contra-
dictions on induced subgraphs.

We will find the upper bound on λ(Γ�; k, 1),
k ≥ 1, by constructions and Lemma 7 below. One
method is to tile the whole lattice by a labeled par-
allelogram described by a matrix of labels.

Definition. Given an m × n labeling ma-
trix A := [ai,j ], we label point (i, j) by
an−j(mod n),i+1(mod m), for i, j ∈ Z.

For example, if we have labeling matrix A :=
[ai,j ]3×3, then Figure 8 shows how the labels are as-
signed, where a3,1 is at the vertex with coordinates
(0, 0) in the triangular lattice. The whole lattice is
tiled with copies of the 3 × 3 tile shown.

A =

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

Proposition 5 [19, 11]. For 3 ≤ k ≤ 4, k ∈ R,
we have λ(Γ�; k, 1) ≤ 3k + 2.

Proof [19, 11]: For 3 ≤ k ≤ 4, we get the upper
bound by defining labeling matrix A := [ai,j ]3×4,
where

A =

⎡
⎣ 3k 0 k 2k

1 k + 1 2k + 1 3k + 1
k + 2 2k + 2 3k + 2 2

⎤
⎦

a21 a22 a23

a11 a12 a13

a33a32a31

Figure 8: The Matrix Labeling

�
Proposition 6 [19, 5, 21, 8, 11]. For k ≥ 4,

k ∈ R, we have λ(Γ�; k, 1) ≤ 2k + 6.
Proof [19, 5, 21, 8, 11]:We get the upper

bound by defining labeling matrix A := [ai,j ]3×3

where

A =

⎡
⎣ 2k + 5 0 k + 4

1 k + 2 2k + 6
k + 3 2k + 4 2

⎤
⎦

�

Note if we find some upper (or lower) bound on
some k1 = a, then we can get some upper (or lower)
bounds for k1 ≤ a or k1 ≥ a. For the case p = 2, we
have the following results (see Figure 9), by which
we prove the bounds later .

Lemma 7. Let a > 0.
If λ(G; a, 1) ≤ b, then

λ(G; k, 1) ≤
{

b if 0 ≤ k ≤ a
b
ak if k ≥ a

If λ(G; a, 1) ≥ b, then

λ(G; k, 1) ≥
{

b
ak if 0 ≤ k ≤ a
b if k ≥ a

Hence, if λ(G; a, 1) = b, then b
ak ≤ λ(G; k, 1) ≤ b,

while if 0 ≤ k ≤ a and b ≤ λ(G; k, 1) ≤ b
ak if k ≥ a.

Proof: If λ(G; a, 1) ≤ b, we have:
For 0 ≤ k ≤ a, the result follows from the fact

λ(G; k, 1) is nondecreasing.
For k ≥ a, 1 ≤ k

a , we have λ(G; k, 1) ≤
λ(G; k, k

a ) = k
aλ(G; a, 1) ≤ b

ak.
The proof is similar, if λ(G; a, 1) ≥ b. �
For positive integers k1, k2, if we have a feasible

labeling f ∈ L(k1, k2) with arithmetic progression
f(i, j) ≡ ai+bj (mod l) for some positive integers
a, b, l, then λ(Γ�; k1, k2) ≤ l − 1. Hence we get
λ(Γ�; k, 1) ≤ (l−1)/k2, where k = k1/k2. We wrote
a computer program in C language to find feasible
L(k1, k2)-labelings by arithmetic progression, which
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Figure 9: λ(G; k, 1)

are better to describe as follows. Then by Lemma
7, we have the results.

Proposition 8 [15]. We have λ(Γ�; 1
2 , 1) ≤ 9

2 .
Hence, λ(G; k, 1) ≤ 9

2 if 0 ≤ k ≤ 1/2.
Proof : We get the upper bound λ(Γ�; 1, 2) ≤ 9

by labeling point (i, j) by i + 4j(mod 10). �
Proposition 9. We have λ(Γ�; 1, 1) = 6.

Hence, λ(G; k, 1) ≤
{

6 if 4
5 ≤ k ≤ 1

6k if 1 ≤ k ≤ 4
3

Proof: The lower bound comes from
λ(B7; 1, 1) = 6.

We get the upper bound by defining integer la-
beling f(i, j) ≡ i + 3j (mod 7), which is unique by
the symmetry of the Triangular Lattice. �

Proposition 10. We have λ(Γ�; 2, 1) ≤ 8.

Hence, λ(G; k, 1) ≤
{

8 if 4
3 ≤ k ≤ 2

4k if 2 ≤ k ≤ 11
4

Proof: We get the upper bound by defining the
integer labeling f(i, j) ≡ 2i + 5j (mod 9), which is
unique by the symmetry of the Triangular Lattice.
�

We have λ(Γ�; 3, 1) ≤ 11 by Proposition 5.
Hence, the following proposition follows by Lemma
7

Proposition 11. We have λ(Γ�; k, 1) ≤ 11, if
11
4 ≤ k ≤ 3.

We verify the lower bounds by contradiction and
Lemma 7. Sometimes we wrote C programs to ver-
ify all possible cases. We give two kinds of proofs
for lower bounds.

The Symmetry Argument [5]. Let G be
a graph and k1, k2, . . . , kp ∈ [0,∞). If there ex-
ists a L(k1, k2, . . . , kp)(G) labeling f using label x,
then there exists a L(k1, k2, . . . , kp)(G) labeling us-
ing label span(f) − x with the same span, where
span(f) =max {f(v)} − min {f(v)}, for all vertices
v ∈ V (G).

Proposition 12 [11]. For integers k ≥ 6, we
have λ(Γ�; k, 1) ≥ 2k + 6. λ(Γ�; k, 1) = 2k + 6.

We drew some ideas from [24] for the proof of the
following Proposition. We used a program to finish
the proof of the propositions (to find contradictions
for all possible cases if the span is less than the
lambda number).

Proposition 13 [16]. We have
λ(Γ�; 4, 3) ≥ 24, i.e., λ(Γ�; 4

3 , 1) = 8.

Hence, λ(Γ�; k, 1) =
{

6k if 3
4 ≤ k ≤ 4

3
8 if 4

3 ≤ k ≤ 2
Proof: It suffices to prove λ(Γ�; 4, 3) ≥ 24.

Assume λ(Γ�; 4, 3) < 24. By the D-set Theorem,
there exists optimal labeling f ∈ L(4, 3)(Γ�) with
the smallest label 0 and all integer labels between 0
and 23 in the D-set. span(f) = 23.

Claim 1. Labeling f cannot use label 3.
Proof of Claim 1: Assume f uses label 3 at

some vertex v. By the conditions, the six distinct
labels around v belong to {7, 8, . . . , 23}, the differ-
ence between any pair of them is at least 3.

Let B7(B17, B37 resp.) be the induced subgraph
of Γ� by all vertices which are at distance at most
one (two, three resp.) from the vertex v.

Consider all possible labelings on B7 with center
label 3, by using a computer program we wrote,
we cannot find feasible labelings on B17 on most
of the cases, except five cases [16]. But for the five
cases with feasible labelings on B17, we cannot label
B37 without contradictions. Thus integer labeling
f cannot use label 3. �

By the Symmetry Argument, labeling f cannot
use label 20 = 23 − 3, which is the span of f less 3.
Now f has no label 3, 20.

Claim 2. Labeling f cannot use label 7, and
hence no label 16 = 23 − 7 = span(f) − 7.

Proof of Claim 2: Assume f uses label 7 at
some vertex v. Let the six distinct labels around v
be x1 < x2 · · · < x6. By the condition, xi+1 ≥ xi+3
for i = 1, 2, . . . , 5, and xi ≤ 2 < 3 = 7 − 4 (be-
cause no label 3), xi ≥ 11 = 7 + 4. Now xi ∈
{0, 1, 2, 11, 12, . . . , 19, 21, 22, 23} for i = 1, 2, . . . , 6.
Then x1 = 0, 1, or 2, x2 ≥ 11, x3 ≥ 14, x4 ≥ 17,
x5 ≥ 21 (because no label 20), x6 ≥ 24. Contradic-
tion. �

Now f has no label 3, 7, 16, 20.
Claim 3. Labeling f cannot use label 6, and

hence no label 17 = 23 − 6 =span(f) − 6.
Claim 4. Labeling f cannot use label 10, and

hence no label 13 = 23 − 10 =span(f)− 10.
Claim 5. Labeling f cannot use label 11, and

hence no label 12 = 23 − 11 =span(f)− 11.
Proof of Claim 3, 4, 5: Similar to the proof

of Claim 2. �
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Now the set of all possible labels is:
{0, 1, 2, 4, 5, 8, 9, 14, 15, 18, 19, 21, 22, 23}.

We cannot find seven distinct labels for subgraph
B7, such that the difference between any two of
them is at least 3. It gives a contradiction. Thus
λ(Γ�; 4, 3) ≥ 24. �

By the similar argument, we have the following
propositions.

Proposition 14 [15]. We have λ(Γ�; 1, 2) ≥ 9,
i.e., λ(Γ�; 1

2 , 1) ≥ 9
2 . Hence, by Lemma 7,

λ(Γ�; k, 1) =
{

9k if 3
7 ≤ k ≤ 1

2
9
2 if 1

2 ≤ k ≤ 3
4

For the remaining cases, we eliminate the inter-
vals to reach the contradiction.

Proposition 15. For 3 < k < 4, we have
λ(Γ�; k, 1) ≥ 3k + 2. Hence λ(Γ�; k, 1) = 3k + 2.

Proof: Assume λ(Γ�; k, 1) = l < 3k+2, By the
D-set Theorem, there is an optimal labeling f ∈
L(k, 1)(Γ�) with span(f) = l < 3k + 2 and the
smallest label zero.

Claim 1. Labeling f can not use label in the
interval [k − 1, k).

Proof of Claim 1: Assume f(v) ∈ [k − 1, k)
for some v ∈ V (Γ�). The six distinct labels around
v are ≥ f(v) + k. Since the induced subgraph by
N(v) is cycle C6 on six vertices, λ(Γ�; k, 1) ≥ f(v)+
k + λ(C6; k, 1) ≥ (k − 1) + k + (k + 3) = 3k + 2
(because λ(C6; k, 1) = k + 3 for k ≥ 3). It gives a
contradiction.�

Thus, f(v) /∈ [k − 1, k) for all v ∈ V (Γ�). By
the symmetry argument, f(v) /∈ (l− k, l− k +1] for
all v ∈ V (Γ�).

Now, f(v) ∈ I1 ∪ I2 ∪ I3 = [0, k − 1) ∪ [k, l −
k] ∪ (l − k + 1, l] for all v ∈ V (Γ�), where I1 =
[0, k − 1), I2 = [k, l − k], I3 = (l − k + 1, l]. Then
|I1| = k − 1 < k, |I3| = k − 1 < k.

Claim 2. Labeling f cannot use labels in the
interval [k, k + 1).

Claim 3. Labeling f cannot use labels in the
interval [k + 1, k + 2).

Proof of Claims 2, 3: Similar to the proof of
Claim 1. �

Thus, f(v) /∈ [k−1, k+2) for all v ∈ V (Γ�). By
the symmetry argument, f(v) /∈ (l− k− 2, l− k +1]
for all v ∈ V (Γ�).

Now, f(v) ∈ I1 ∪ I ′′2 ∪ I3 = [0, k − 1)∪ [k + 2, l−
k − 2] ∪ (l − k + 1, l] for all vertices v, where I ′′2 =
[k +2, l− k− 2]. Then |I ′′2 | ≤ l− 2k− 4 < k− 2 < 2
for k < 4.

Let u be a vertex with label zero. Among the
six distinct labels around u (the difference between
any pair of them is at least 1 by the constraints), no

label is in I1 = [0, 2) (because |I1| < k), at most two
labels are in I ′′2 = [k+2, l−k−2] (because |I ′′2 | < 2),
and at most three labels are in I3 = (l − k + 1, l]
(because |I3| < k,these labels can not be adjacent
each other). It gives a contradiction. �

7. Further Research

After finding the minimum label span, we
want to find all optimal labelings to see what
they look like. We find all integer optimal
L(0, 1), L(1, 1), L(2, 1) labelings for the triangular
lattice. We want to find some properties of optimal
labelings of the triangular lattice (or any other in-
finite regular lattice), which help us to find optimal
labelings in straightforward ways. We will discuss
these properties and the relations among them in a
later paper.

Bertossi, Pinotti, Tan [4] give the result
λ(Γ�; 2, 1, 1) = 11. We may seek real number val-
ues λ(G; k1, k2, k3) for the triangular lattice or the
square lattice in the future.

Since the graph labeling problem comes from the
radio channel assignment problem in wireless com-
munications, we wish to promote its applications by
communication with the field engineers. So we offer
our results here.
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