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Anisotropic Spaces and Nonlinear
n-term Spline Approximation

Pencho Petrushev *

Abstract. This article is a survey of some new (and old) results in
nonlinear n-term spline approximation and related topics. A sub-
stantial part of the paper is devoted to the anisotropic spaces gen-
erated by sequences of nested triangulations of compact polygonal
domains in R? and their characterization via corresponding Franklin
systems. The emphasis is placed on practical algorithms for nonlin-
ear n-term approximation from the scaling functions of a multireso-
lution analysis in the uniform norm, which are capable of achieving
the rates of the best n-term approximation. Results on the relation
between bivariate n-term rational and spline approximation are also
given.

§1. Introduction

A fundamental idea in Harmonic analysis is to represent functions or
distributions as linear combinations of functions of a particularly simple
nature. Familiar examples include the Fourier series representation on
the circle or on the torus and atomic decompositions of Hardy spaces
and more general Triebel-Lizorkin and Besov spaces. In both examples,
however, there are problems with the representation. The problem with
the Fourier series is that only a few spaces (related to L) have simple
characterization in terms of the Fourier coefficients. The difficulty with
the atomic decompositions of spaces is that the representing atoms vary
with the function or distribution being represented. In the case of classical
spaces on R? or on the torus, both limitations can be avoided by using
wavelets.

The situation in Approximation theory is quite similar. For instance,
linear approximation from trigonometric or algebraic polynomials and
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2 P. Petrushev

nonlinear n-term approximation from large redundant systems (dictionar-
ies) are ineffective. The problem with polynomials is that they have poor
localization properties, while the problem with nonlinear n-term approx-
imation from large dictionaries is that it is hard to find a good (optimal
or near optimal) representation for a given function and hence to approx-
imate. Not long ago the wavelets came into play with a great success.

Wavelets, however, cannot solve all our problems. Many applications
involve more complex geometries for which wavelet bases with the desired
properties are hard to construct or even are not available at all. Secondly,
most of the functions have anisotropic structure e.g. they may have singu-
larities along curves or surfaces, which causes problems to wavelets. The
situation is again quite different when approximating in the uniform norm
which is a major concern and guiding issue in this article. Wavelet repre-
sentations of functions are not well aligned with the uniform norm. Thus
in a wide range of problems wavelets have now run their course. The chal-
lenge is to find new tools and methods for tasks that the existing tools are
not able to handle efficiently.

This survey is centered around the idea of utilizing to nonlinear n-
term approximation (anisotropic) redundant systems with the structure
of a multiresolution analysis (MRA). Such hierarchies allow for a great
deal of flexibility and simultaneously provide enough structure for the
development of a coherent theory and effective algorithms for nonlinear
n-term approximation.

We next outline the main topics covered in this article. The principles
of nonlinear n-term approximation are given in §2.

In §3 we focus our attention on spline MRAs generated by sequences
of nested triangulations. More precisely, consider a sequence Tg, 71, ... of
nested triangulations of a polygonal domain F in R? (for simplicity). Mild
natural conditions are imposed on the triangulation to prevent them from
possible deterioration and at the same time to allow the triangles to change
in shape, size, and orientation quickly when moving around at a given level
and through the levels. In particular, skinny triangles with arbitrarily
sharp angles may occur in any location. A sequence of triangulations like
these immediately creates a geometric structure on E, in particular, it
determines a quasi-distance dy(-,-), defined by means of the areas of the
triangles (§3.1). In turn dp(-,-) along with the Lebesgue measure on E
induces spaces of homogeneous type, which generate anisotropic spaces
on E such as anisotropic Hardy spaces, BMO, and B-spaces (anisotropic
Besov spaces). Section 3 is devoted to the description of the anisotropic
structure generated by a sequence of nested triangulations of E.

Further, any sequence Ty, 71,... (set T := Up>07m) allows to intro-
duce a Franklin system F7 by applying the Gram-Schmidt orthogonal-
ization process to the corresponding sequence of Courant elements (linear
continuous elements). As will be shown in §4 (see [19]) the anisotropic
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Franklin system F7 = {f¢ }oco~ is a Schauder basis for L,(E), 1 < p < oo,
with Lo (E) := C(F) and a unconditional basis for L,(E),1 < p < o0
and the corresponding Hardy space Hi(E,T). Also, the Franklin bases
characterize the corresponding anisotropic BMO spaces and B-spaces.
Thus all basic results for classical Franklin systems have analogues in the
anisotropic case.

Denote by S¥7(7,,) the set of all r-times differentiable piecewise poly-
nomials of degree < k over the triangles of 7,,. Assume that there exists
a spline multiresolution analysis M consisting of a ladder of spaces

80 C 81 c--, Sm - Sk7r(7—m)a

with bases (®,,) of (Spm). Set 7 := Upm>0®m. Consider now the problem
for nonlinear n-term approximation from the set X, (®7) of all piecewise
polynomials of the form s = Z?Zl cj¢;j, where ¢; € ®7 may come from
arbitrary levels and locations. The theory of nonlinear n-term approxima-
tion from such collection of elements is developed in [7, 16]. We describe
the B-spaces (generalized Besov spaces) needed for this theory in §5 and
the theory itself in §6.

Our primary interest in this article is focused on algorithms for non-
linear n-term approximation in L, (0 < p < 00) and most importantly in
the uniform norm. The “Push-the-Error” algorithm for nonlinear n-term
approximation in the uniform norm was first developed in [17]. In [6] this
algorithm is further refined so that it is capable of achieving all rates of
the best n-term approximation. The results on algorithms from [6, 17] are
discussed in §7.

The last Section 8 is concerned with nonlinear n-term rational approxi-
mation, which is closely related to nonlinear n-term spline approximation.

Most of the presented results are brand new and exist only in preprints,
available on line. This article should be regarded as complimentary to
the survey paper [24], where the basic results on nonlinear n-term spline
approximation are presented in detail.

Notation. Throughout this article for a given set G C RZ?, |G| denotes
the Lebesgue measure of G, while G° means the interior of G; 14 denotes
the characteristic function of G, and 1g := |G| /?1g. For a finite set
G, #G denotes the cardinality of G. Positive constants are denoted by
¢,c1,... (if not specified, they may vary at every occurrence), A ~ B
means ¢c;A < B < ¢3B, and A := B or B =: A stands for “A is by
definition equal to B”.

§2. The Principles of Nonlinear n-term Approximation

In this section we give a brief description of the general guiding prin-
ciples of the theory of nonlinear n-term approximation as well as of the
algorithms for n-term approximation. (See e.g. [9, 11, 25].)
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Let X be a normed or quasi-normed function space, where the approx-
imation will take place (in this article, X = L,(E), 0 < p < 00). Suppose
® = {¢g}oco is a collection of elements in X which is, in general, redun-
dant, and we are interested in nonlinear n-term approximation from ®.
We let X,, denote the nonlinear set of all function S of the form

S = Z a9¢07

0eA,

where A, C O, #A,, < n, and A, varies with S. The error of n-term
approximation to f € X from @ is defined by

ou(f) = gaf |1 = Sllx.

Approximation spaces. The primary objective of nonlinear n-term ap-
proximation is to describe the spaces of functions of given rates of n-term
approximation such as the set of all f € X for which o,(f) < en™?
(v > 0). More precisely, the goal is to characterize the approximation
space A7 := A7(®), v >0, 0 < ¢ < oo, consisting of all functions f € X
such that

© 1/q
Iy = 18l + (X an(r)es ) < o0 1)

with the £4-norm replaced by the sup-norm if ¢ = co. Thus A2 is the set
of all f € X such that o,(f) <en™7.

The machinery of Jackson-Bernstein estimates. A standard technique for
description of approximation spaces is to prove Jackson and Bernstein
estimates, and then apply interpolation.

Suppose B C X is a smoothness space with a (quasi-)norm || - ||z,
satisfying the 7-triangle inequality: ||f + g||5 < ||flIE + llgl|5 with 0 <
7 <1, and let ® C B. The K-functional is defined by

K(f,t) = K(f;t; X, B) == iL(|If —gllx +tlglls), >0

The interpolation space (X, B),,q (real method of interpolation) is defined
as the set of all f € X such that

> 1/q
17y = I lx + (o2 K (f,27™))7) <00, 0<u<l,

m=0

where the ¢,-norm is replaced by the sup-norm if ¢ = co (see e.g. [1]).
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Theorem 1. (a) Suppose the following Jackson estimate holds: There is
a > 0 such that for f € B

on(f) <en”®|flB, n=1. (2)
Then, for f € X,
on(f) SeK(f,n?), n>1

(b) Suppose the following Bernstein inequality holds: There is o > 0
such that
ISz < en®||Sl|lx, forSe€eX, n>1. (3)

Then, for f € X,

n

K(fon) <en (|3 Lomontn)y| " Ifllx). =1,

v=1

For the proof of this theorem, see e.g. [25].

An immediate consequence of Theorem 1 is that if the Jackson and
Bernstein inequalities (2) and (3) hold, then o,(f) = O(n™7),0< v < a,
if and only if K(f,n™*) = O(n™"). More generally, Theorem 1 readily
yields the following characterization of the approximation spaces A7 (®):

Theorem 2. Suppose the Jackson and Bernstein inequalities (2) and (3)
from Theorem 1 hold. Then

AJ(®)=(X,B)2 4 0<v<a,0<g<o0,

with equivalent norms.

It is an important observation that in nonlinear n-term approximation
there is no saturation. This means that no matter how large « is the
approximation space AJ(®) is nontrivial. This is the motivation of our
desire to characterize the approximation spaces A7(®) for all v > 0. Thus
if the Jackson and Bernstein inequalities (2) and (3) from Theorem 1 hold
for all & > 0, then Theorem 2 characterizes A7(®) for all v > 0.

Algorithms for nonlinear n-term approximation. It is desirable to con-
struct practically feasible algorithms for nonlinear m-nonlinear approxi-
mation from specific sets ®, which achieve the rates of the best approxi-
mation. More precisely, for a given ®, we are interested in an algorithm
which associates with each f € X a function A, (f) of the form

An(f):= Y doge, M, C @, and #M, <n,
6eM,,
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which is optimal in the following sense. Denote A,(f) := ||f — An(f)|/x
and let

OO 1 1/‘1
W Laga = I x + (Z(nmn(f»qn) <o @
n=1

We are interested in algorithms such that A)(A) = A7 (®) (with equivalent
norms) for all v > 0. Of course, for large values of y the space A](®) is
tiny and not quite important but still an algorithm should be deemed
optimal if it can capture all rates of best n-term approximation.

Direct theorem for n-term approzimation in L, (p < co0). It is a general
truth that in nonlinear approximation it is much easier to prove Jackson
estimates than Bernstein estimates. We next give a general embedding
theorem and a Jackson estimate which provide the needed estimates in
many cases of nonlinear n-term approximation in L,, p < oo, in the case
of compactly supported approximating elements. The proof of these esti-
mates is not hard and can be found in [16].

Theorem 3. Suppose {®,,} is a sequence of functions in L,(R?), d > 1,
0 < p < oo, which satisfies the following additional properties when 1 <
p<o0O:

(i) @, € Loo(RY), supp @, C E,, with 0 < |E,,| < oo, and

(@ lloe < Cl‘Emrl/p”(Pm”p'

(i) If x € Eyp, then

Yo (Bal/IBNYP <e,

E;3x, |Ej|2|Em|

where the summation is over all indices j for which E; satisfies the in-
dicated conditions. Denote (formally) f =,  ®n and assume that for
some 0 < 7<p

N = (D lonly) " < co. )

Then Y., |®m(-)| < co a.e. on RY, and hence, f is well-defined on R?,
f € L,(R?), and

171 < | X 12mOl| <N,

where ¢ = ¢(a, p,c1).
Furthermore, if 1 < p < oo, condition (5) can be replaced by the weaker
condition

N(f) = [{lI®mllp}lwe, < o0, (6)
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where ||{zm}||we. denotes the weak £,.-norm of the sequence {x,,} :
{m Hlwe, := inf{M : #{m : |zm| > Mn~ Y7} <n forn=1,2,...}.

Theorem 4. Under the hypothesis of Theorem 3, suppose {@fn};’il 5 a
rearrangement of the sequence {®,,} such that ||, > ||®5]l, > ...
Denote Sy, := > ;_; ;. Then

If = Sullp < en™N(f) with « = 1/7 —1/p,

where c=14f0<p <1 andc=c(a,p,c1) if 1 <p < 0.
Furthermore, the estimate remains valid if condition (5) is replaced by
(6) when 1 < p < 0.

§3. Anisotropic Structures on Compact Polygonal Domains

In this section we collect all prerequisites regarding triangulations, max-
imal operators, hierarchies of spline bases, spaces of homogeneous type,
etc. which are needed in the development nonlinear n-term spline approx-
imation and anisotropic Franklin bases.

3.1. Multilevel Triangulations

A set E C R? is said to be a bounded polygonal domain if its interior E°
is connected and F is the union of a finite set 7y of closed triangles with
disjoint interiors: E = Uae7y A.

Locally Regular (LR) Triangulations. We call T = {J,-_, T a locally reg-
ular triangulation of E or briefly an LR-triangulation with levels (T),,.~
if the following conditions are fulfilled: a

(a) Every level Ty, is a partition of E, that is, E = UaeT, A and T,
consists of closed triangles with disjoint interiors.

(b) The levels (7,,) of T are nested, i.e. Tp,y1 is a refinement of 7y,.
(c) Each triangle A € T, has at least two and at most My children
(subtriangles) in Ty,11, where My > 2 is a constant.

(d) The valence N, of each vertex v of any triangle A € Ty, (the number
of the triangles from 7,, which share v as a vertex) is at most N,
where NV is a constant.

(e) No hanging vertices condition: No vertex of any triangle A € Ty,
which belongs to the interior of F lies in the interior of an edge of
another triangle from 7.

(f) There exist constants 0 < r < p < 1 (r < 3) such that for each
A € T, (m > 0) and any child A" € T4 of A,

rlAl < AT < plA (7)
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(g) There exists a constant 0 < d; < 1 such that for A', A" € T, (m > 0)
with a common vertex,

o < |A|/1A) < 6t (8)

Strong Locally Regular (SLR) Triangulations. We call T = {U;_ Tm @
strong locally regular (SLR) triangulation of F if 7 is an LR-triangulation
of E and satisfies the following additional condition:

(i) There exists a constant 0 < d2 < 1/2 such that for any A', A" € Ty,
(m > 0) sharing an edge,

[conv (A" U A")|/|A] < 67, (9)

where conv (G) denotes the convex hull of G C R2.

Regular Triangulations. We call T = |J.°_, T, a regular triangulation
of a bounded polygonal domain E C R? if T satisfies conditions (a)-
(e) of LR-triangulations and also the minimal angle condition, that is,
min angle (A) > S for every triangle A € T, where 8 > 0 is a constant.

Evidently, every SLR-triangulation is an LR-triangulation but not the
other way around and every regular triangulation is an SLR-triangulation.
For other types of triangulations, see [16].

We denote by V,, the set of all vertices of triangles from 7, and by
Em the set of all edges of triangles in 7,,. We also set V := Up, >0V, and
&= Umzogm.

We next give some basic facts about LR-triangulations which is our
main type of triangulations. For more details we refer the reader to [16]
and [19].

The constants My, Ny, r, p, §, and #7Ty associated with an LR-
triangulation 7 are assumed fixed. We refer to them as parameters of T.

Figure 1: A skewed cell in an LR-triangulation

The most important conditions (f)-(g) on LR-triangulations involve
only areas of triangles but not angles. Consequently, if 7 is an LR-
triangulation and A’; A" € T, have a common edge, then it may happen
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that A’ is an equilateral triangle (or close to an equilateral triangle) but
A" has an uncontrollably sharp angle (see Figure 1).

In an LR-triangulation 7 there can be an equilateral (or close to such)
triangle A° at any level 7, with descendants A; D As D ... such that
min angle (A;) — 0 as j — oo.

It is important to know how fast the area |A| of a triangle A € T,
may change when A moves away from a fixed triangle within the same
level. Condition (f) suggests a geometric rate of change but in fact it is
polynomial: If A, A’ € T, can be connected by n intermediate edges
from &,,, then

T (n+1) 7 < |A/IA"] < erfn + 1), (10)

where s,c¢; > 0 depend only on the parameters of 7.

Further, for any sequence of triangles A; D Ag D ... from an LR-
triangulation, diam (A;) — 0 as j — oo.

We want to mention only one property of SLR-triangulations, namely,
triangles of an SLR-triangulation may have arbitrarily sharp angles, but
the configuration of Figure 1 is impossible (for more details see [16]).

Graph Distance. We now introduce the mth level graph distance between
vertices: For any two vertices v',v” € V,,, m > 0, we define the graph
distance p,(v',v") as the minimum number of edges from &, needed to
connect v’ and v".

Cells. For any vertex v € V,,, (m > 0), we denote by w, the union of all
triangles from 7, which have v as a common vertex. We denote by O,,
the set of all such cells w, with v € V,,, and set O = U,;,>9O,,,. For a given
cell w € O, we shall denote by v,, the “central” vertex of w.

For given w’,w" € O,,, we define the graph distance p,,(w',w") between
w' and W’ by pm(w',w”) := pm(ver, V), where vy, v,n € V,, are the
“central vertices” of w',w".

Definition of w]'. We want to associate with each z € E a cell w]' € Oy,
m > 0, which contains z. To this end we first associate with each triangle
A € T acell Wk € Op, such that A C wl. Such a cell can be selected
in three different ways. We choose one of them for each A € 7,,. Then
for each x € F such that x € A° with A € T,,, we define w}* :=wR. If z
lies on the edge of a triangle from 7,,, we define w]* as any cell from w,,
such that x belongs to its interior, but if x = v,, for some w € O,,, we set
wl = w.
Stars. In order to deal with graph distances and neighborhood relations
it is convenient to employ the notion of the mth level star of a set: For

any set G C E and m > 0, we define the first mth level star of G by

Star ,,,(G) := Star},(G) := U{w € O, : O° NG # 0} (11)
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and inductively, Star ¥ (G) := Star ! (Star ¥ 1(G)), k > 1.

Quasi-distance and Maximal Operator. Every LR-triangulation 7 of E
naturally generates a quasi-distance and a maximal operator.

We begin by recalling the definition of a quasi-distance on a set X:
The mapping d : X x X — [0,00) is called a quasi-distance on X if for
z,y,2 € X,

(a) d(z,y) =0 =z =y,
(b) d(y, ) = d(z,y),
(c) d(z,2) < K(d(z,y) + d(y,2)) with K > 1.

Assuming that 7 is an LR-triangulation of a polygonal domain £ C
R?, we define the quasi-distance dr : E x E — [0,00) by

dr(z,y) :==min{jw|:w € O and z,y € w}, (12)

if z, y belong to at least one cell from O, and by d7(z,y) := |E| otherwise.
It is not hard to see that dy(-,-) satisfies the axioms of a quasi-distance.

The following inequality relates the quasi-distance dp(-,-) with the
mth level graph distance introduced above: There exist constants 5 > 0
and ¢ > 0 such that for w € O, (m >0) and z € F,

dr (v, ) < C‘W|Pm(wa‘ﬂ;n)ﬂ if pm(w,wy') > 2.

The quasi-distance dr(-,-) generates a maximal operator. Denote by
B(y, a) the ”ball” centered at y of radius a > 0 with respect to this quasi-
distance, i.e. B(y,a) := {z : dy(z,y) < a}. Then for any s > 0 the
maximal operator Mj_ is defined by

Mo D)) = s (i [l ), e,

B:xzeB

where the supremum is over all balls B containing x.
For our purposes it is more convenient to use the equivalent maximal
operator M- defined by

)= s (L [ If(y)lsdy>1/s,

W TEW

where the supremum is over all cells w € O containing = or w = E.
It is important that the Fefferman-Stein [14] vector valued maximal
inequality holds for the maximal operator M?- (for more details, see [19]):
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Theorem 5. Let T be an LR-triangulation of E C R%. If0 < p < oo,
0<¢qg< o0, and 0 < s < min{p, q}, then for any sequence of functions

(fj)?il on E7

o0

[ )™, < ()™,
j=1

Jj=1

; (13)

where ¢ depends only on p, q, s, and the parameters of T .

3.2. Hierarchical Families of Spline Bases

Let 7 be a locally regular (or better) triangulation of E. For r > 0, and
k > 1, we denote by S¥™ = S¥7(T,,) the set of all r times differentiable
piecewise polynomial functions of degree < k over 7,,, i.e. s € Sk if
s € C"(E)and s =Y o7 1a - Pa with Pa € Il;. Naturally, SF; ! will
denote the set of all piecewise polynomials of degree < k over T,, which
are, in general, discontinuous across the edges from &,,.

Spline Multiresolution Analysis. We assume that for each m > 0 there
exist a subspace S,, of S&" (r > 0, k > 2) and a family ®,, = {¢y: 0 €
O} C S, satisfying the following conditions:

° Sm - Sm+1-

o II; C Sy, for some 1 < k<k (l:: independent of m).

e For any s € S, there exists a unique sequence of real coefficients
{ag(s)}yco,, such that

s = ag(s)ody.

(Thus ®,, is a basis for S, and {ag(-)}eco,, are the dual function-
als.)

e For each 0 € ©,,, there is a vertex v = vy € V,, such that

supp ¢y C Star’, (v) =: &, (see (11)) (14)
¢6llLo2) = 96llLogs) = 1, (15)
lag(s)| < BllsllLo(ea)s S € Sm, (16)

where ¢ > 1 and B > 0 are constants, independent of § and m.

Since S,,, C Sy41, we have

¢9 = Z a9,77¢777 0 @m—l- (17)

NEO,,nCo
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Moreover, by (15)-(16) it follows that |ag,,| = |a,(¢e)| < 5.

We denote M := (Sp)m>0, @ := Up>0®y, and O := U,,>00,,. We
shall call M a spline multiresolution analysis over T with a family of basis
functions .

Courant elements. A simple example of a spline MRA is the sequence
(Sm)m>0 of all continuous piecewise linear functions (r = 0, k = 2) over
the levels (7, )m>0 of a given LR-triangulation 7 of a compact polygonal
domain F in R%. A basis for each space S,, is given by the set ®,, of the
Courant elements ¢y, supported on the cells 6 of 7, (8 is the union of all
triangles of 7,, attached to a vertex, say, vg). Thus ©® = O. The function
¢ takes the value 1 at vy and the value 0 at all other vertices.

A concrete construction of differentiable spline basis functions (from
C", r > 1) associated with a spline multiresolution analysis over general
triangulations is given in [7], see also the discussion in [6, 7] of examples
of spline MR As in regular set-ups.

Note that © and O, (m > 0) above are simply index sets, which in
the case of Courant elements can be identified as sets of cells (supports of
basis functions). In general, several basis functions in ®,, may have the
same support. However, the supports of only < constant of them may
overlap.

It follows from the above conditions that each basis ®,, is L4-stable for
all 0 < ¢ < oo, ie. if g:=37,.o boge, where {bg}oco,, is an arbitrary
collection of real numbers, then

lglla ~ (D lIbegallZ)*/?

0€O,,

with constants of equivalence independent of {by} and m.

Depending on the domain E in some settings one can even construct
wavelet or prewavelet bases. For simplicity, whenever we assume in this
article the existence of wavelets we assume the existence of a biorthogonal
wavelet basis ¥ = {¢p : A € L} on F with a dual ¥ = {¢ : A € L},
where £ = Up>0Lm is the index set of the “true” wavelets. Then each
f € Ly(FE) (1 <p< o0)has the representation

F=Y colf)po+ . D exlfoa, ealf) = (£,9n), (18)

0€0y m>0 AELom

which is assumed to be unconditional if 1 < p < co. In addition, we assume
that ¥y, ¥x (A € L,,) are compactly supported with supp ¢, supp ¥y C A,
and A = Starf,;(vx), where vy € Vp,, and ¢ = constant. Also, we assume
that for X € Ly, ¥x € Smy1, 1.6 ¥a =D yco . areds, and |ayg| < 5
with 3’ a uniform constant.

m+1
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Quasi-interpolant. For 0 < ¢ < oo and an arbitrary triangle A, we let
Pp 4 : Ly(A) — I be a projector such that

If = Pag(Fllz,a) < cBe(f; A)g,  for f e Ly(D), (19)

where II; denotes the set of all algebraic polynomials of total degree < k.
We define a linear operator Q,, : Sk*’l(Tm) — S, as follows. For each
0 € O, let A\g : SH~1(T,)|e, — R be a linear functional such that

Xo(sle,) = ag(s), if s €Sy, and

Mo () < BIfllLwies)y, FE€SHTm)les

Such linear functionals always exist due to the Hahn-Banach theorem. Set

Qm(s) = Z )‘9(5|Se)¢97 s € Sk’il(Tm)‘

€O,

Clearly, @, (s) = s if s € S, and thus @, is a linear projector of
SH-1(T,,) onto S,,. Moreover, Q,, is a bounded projector: For any
s €SP YTn),0< g<ooand A € Ty,

1Qm ()|, (a) < cllsllL, e

with a constant ¢ independent of m, A, and s.
We now extend @, to Ly(E), 0 < g < co. Let Pa g : Lg(A) — IIi, be
a projector satisfying (19). We define

pm,q(f) = Z I]'A'PAJI(f)a fOI’fELq(E),

AE€ETm

and the quasi-interpolant that we need is defined by

Qmﬂl(f) = Qm(pm,q(f))’ for f € Lq(E)’ (20)

which is a projector of Ly(E) onto S,.
The next estimate shows that @, 4 provides a good local L,-approximation
from S,,,. Denote first, for A € T,,,

Q4 = Star? (A) = U{Star’ (v) : v € Vpn, v € A} (21)
and let Sa (f)q denote the error of Lg-approximation from S,,, on 04, i.e.

Sa(fai= inf If = sl,@y) 2 €T (22

The good local approximation properties of @Q),, , can be described as
follows: If f € Ly(FE), 0 < ¢ < oo (f € C if ¢ = 00), then

||f - Qm,q(f)”Lq(A) < CSA(f)qa A€ Tm (m > 0)7
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with ¢ independent of f, m, and A. Further, it is not hard to see that if
f € Ly(E),0< g< o0, then

||f_Qm,q(f)||Lq(E)—>0 as m — OQ. (23)

Decomposition via quasi-interpolants. We use the projectors @, , from
(20) for decomposing a given function into multilevel components. For
f € Ly(FE), we denote by

Qm(f) = qm,q(f) = Qm,q(f) - Qm—l,q(f)a Q—l,q(f) =0, (24)

the “detail” of f between levels m and m — 1. Evidently, ¢, (f) € Sy, Let
{bo,q(f)}oco,, be defined by the identity

Im,q(f) = Z bo,q(f)Po, ie. bog(f):=ao(gmq(f)), 6€Om.

€O,

Now, (23) yields the following representation of f € L,(E), 0 < ¢ < oot

f= Z am(f) = Z Z bo,q(f)de in Lg. (25)

m>0 m>06€0,,

See [7] for more details.

Decomposition via wavelets. Whenever a wavelet basis is available, ¢, can
be defined as the associated canonical projectors, i.e.

an(f)= D alvn alf) = (fd).

A€Lm—1

Then one can rewrite g,,(f) at the mth level: ¢,,(f) =: > pcq, bo(f)oe
and use these to replace the corresponding terms in (25).

3.3. Spaces of Homogeneous Type on Polygonal Domains

Spaces of homogeneous type were first introduced in [4] as a means to
extend the Calderon-Zygmund theory of singular integral operators to
more general settings.

Let X be a topological space endowed with a Borel measure p and a
quasi-distance d(-,-). Assume that the balls B(z,r) := {y € X : d(z,y) <
r}, z € X, r > 0, form a basis for the topology T in X, and u(B(z,r)) > 0
if » > 0. The space (X,d, u) is said to be of homogeneous type if there
exists a constant A such that for all x € X and r > 0,

0 < p(B(z,2r)) < Ap(B(z,r)). (26)

The homogeneous type space (E,d7,m). Suppose that E is a bounded
polygonal domain and let 7 be a LR-triangulation on E. Also, let dr (-, ")
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be the quasi-distance on E, defined in (12). Finally, denote by m the
Lebesgue measure on E. It is easy to see that (F,dy,m) is a space of
homogeneous type, so one can utilize the machinery developed in [5].

The Hardy space Hi(E,T). We next define the Hardy space H; :=
Hy(E,T) associated with the space (E, d7, m) by means of atomic repre-
sentations (see [5]).

According to Coifmann and Weiss [5], a function a(z) is said to be a
g-atom (1 < ¢ < 00) if there exist g € E and r > 0 such that

(i) suppa C B(zo,7), (i) ||allqy < |B(zo, )|/, (iii) [ a(z)dz = 0.
In addition, |E|~11g is by definition a g-atom as well.

We adopt the following slightly different but equivalent definition for
a g-atom which better suits our purposes.

Definition 1. A function a(x) is said to be a g-atom (1 < ¢ < o) for
H,(E,T) if there is w € O or w = E such that

(a) supp a C w,

(b) llally < |w*/a~1,

(¢) [pal(x)de=0.
We also postulate |E|~'1g to be a g-atom.

Definition 2. The space H{ := H{(E,T) (1 < ¢ < 00) is defined as the
set of all functions f € L;(E) admitting an atomic decomposition

f= Z Ajaj,
=0

where the a;’s are g-atoms and }77°|)\;| < co. Moreover, the norm of
f € H{ is given by

1|l ra == inf{z I\l = f = Z)\jaj, a; q—atoms}.
=0 =0

A fundamental fact in the theory of Hardy spaces is that Hf = H{®
whenever 1 < ¢ < oo with equivalent norms (see [5], Theorem A). Thus
all spaces H{ are the same and we shall drop the index g.

It is an important observation that the spaces Hi(E,T) essentially
depend on the triangulations 7. We call Hy(E,T*) a regular Hy-space if
T* is a regular multilevel triangulation of E (see §3.1). It is readily seen
that if Hy(E,T™) is regular, then it is the same (with equivalent norms) as
the space Hy(E) defined using atoms generated by the Euclidean distance
on E. Thus all regular spaces Hy(E,T) are the same. As is shown in
[19] there exists an LR-triangulation 7 such that Hy(E,T) # Hi(E).
The reason for this is that there exist LR-triangulations on E containing
triangles with uncontrollably sharp angles (see §3.1).
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It is not hard to prove that H;(E, T) is a Banach space and || ||z, (g) <
cllf ||z, e,7) for f € Hi(E,T).

Another fundamental result is that the dual of Hy(E,T) is the space
BMO := BMO(E,T) which can be defined in our case as the set of all
functions f on E such that

1 5 \1/2
Iflasco = | [ o] +sup (2 [ 1f(@) = fl2de) " < oo, (2)
E w |w‘ w
where f, := ﬁ [, f(z)dz and the supremum is taken over all w € O or

w = E. More precisely, for g € BMO(E,T) and f € Hy(E,T) with an
atomic decomposition f = Z;’il Ajag,

Jim S [ gta)aya)da (28)

defines a continuous linear functional on H; whose norm is equivalent to
llgllBaro and vice versa each continuous linear functional on H; is of this
form.

Note that an equivalent norm in BMO(E,T) can be defined by re-

1/2
placing in (27) (ﬁ L, |f(x)—fw|2d:c> ! by ﬁ [, 1f(x)— fu|dz. For more
details, see [5].

Finally, we observe that since Hy(E,T) # Hy(FE) for some LR-triangu
lations 7, then by a duality argument it follows that for the same triangu-
lations BMO(E,T) # BMO(E), where BMO(E) stands for the regular
BMO space on E. Thus in general BMO(E,T) depends on the triangu-
lation 7.

§4. Anisotropic Franklin Bases

It is desirable to work with spline bases over general nested triangulations

e.g. LR- or SLR-triangulations. However, to the best of our knowledge
there are no constructions of compactly supported spline wavelet or pre-
wavelet bases over such triangulations up to now.

Franklin systems, however, are easier to explore and provide a tool
for decomposition of various anisotropic spaces generated by multilevel
nested triangulations. We next define the Franklin system F7 generated
by Courant elements and present the main results on Franklin bases ob-
tained in [19].

Let 7 := U,,>0 Tm be an LR-triangulation of E and recall that V,,
denotes the set of all vertices of triangles from 7,,. Denote by ® = {¢g}sco
the set of all Courant elements supported on the cells of 7. Therefore, ©
now is the set O of all cells over T (see §3.1).
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We set Vi = Vo and Vi, = Vi, \ Vin1 for m > 1 and write V* =
Unizo Vin-

Let 0y := E. Choose 0.« € Og to be of maximum area and denote
Of == {00} UOg \ {Omax}, i.-e. we replace Onax by 6y = E. Moreover,
we associate 6y with vg, , and set ¢g, := 1y, For m > 1 denote by
O, the set of all cells § € ©,, with “central” vertices vy € V}, and set
0 :=,°_,05.

Note that for each m, the set {¢g : 6 € ;~, O;} is linearly indepen-
dent. Also, S,,, = span{¢g: 0 € O,,} =span{dy: 0 € U.~, O} }.

We consider an arbitrary (but fixed) linear order < on ©* satisfying
the following conditions:

(i) If§ € ©}, and ¢’ € O} with m < n, then § < ¢ and (ii) 6y < 0, V0 € O.

The Franklin system F7 now is defined by applying the Gram-Schmidt
orthogonalization process to {@p}eco~ in Lo(E) with respect to the or-
der <. We obtain an orthonormal system Fr := {fp}gco- in Ly(E) con-
sisting of continuous piecewise linear functions. Each Franklin function fy
is uniquely determined (up to a multiple 1) by the conditions:

(a) fo € span {¢g : 0’ < 0}.
(b) {fo,0¢:) =0 for all 8" < 9,

(c) [[foll2 = 1.
Note that fs, = £1g, := +|E|~/?1p.

As is well known the localization properties of the Franklin functions
play crucial role in the study of the Franklin systems.

Theorem 6. There exist constants 0 < ¢; < 1 and ¢ > 0 depending only
on the parameters of T such that for any 6 € ©F, (m > 0),

Tolw)| < clo) g0, v e B, (29)
where pm(-,-) and 07" are defined in §3.1.

The main results on anisotropic Franklin systems from [19] read as
follows:

Theorem 7. The Franklin system Fr := {fo}oco~ is a Schauder basis
for Ly(E), 1 <p < oo, with L (E) := C(E).

Theorem 8. The Franklin system Fr := {fo}oco~ is an unconditional
basis for Hi(E,T) and L,(E),1 < p < oco.

Theorem 9. The following conditions are equivalent:

(a) f € Hi(E, T);
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(b) The series Yo o« (f, fo) fo converges unconditionally in Ly;
1/2
(6) 81(@) = (Locor It f) Plfo(@)2) € Lu;
- L\ 1/2
(@) Fy(2) = ( Socor If ) PlTo(@)) € L.
Furthermore, if f € Hi(E,T), then
1f1le, ~ 1S¢lle, ~ 1 Fllz,- (30)

Theorem 10. A function f € BMO(E,T) if and only if

sup(% Z |<fafn>|2>1/2<OO, (31)

0 nee*:nCoh

where the supremum is taken over all 8 € © or 8§ = E. Furthermore,
| fllBro(e, ) is equivalent to the quantity in (31).

These results show that the basic and well-known results on Franklin
bases in the regular case (see e.g. [18], [3], and [15]) have analogues in
the anisotropic case. Finally, we note that Franklin systems generated
by hierarchical sequences of spline bases ® = {¢p} other than Courant
elements can be developed with an equal success and would have similar
properties.

§5. B-spaces

We begin by introducing the B-space B, := By, (M) induced by a spline
MRA M generated by a hierarchical sequence of spline bases over an LR
or better triangulation 7 of a compact polygonal domain F in R2. We
consider only B-spaces which are imbedded in L;(E). We say that the
indices «, p, and ¢ are admissible if one of the following holds:

(a) 0<p,g<occand a> (1/p—1)4 or
(b)0<p<l,0<g<l,and a=1/p— 1.

It is easy to see [20] that these conditions guarantee the desired embedding.
We define By, (M) as the set of all functions f € L,(E) such that

Fagon = (3 (X (am=sanr)”) <o (2)
m=0  AECTm

where Sa (f), is the error of L,-approximation to f from S,, on Q% (see
(22)). We set

£l Bg, ) = 1[I fllp + [f]Bg, (A1) (33)
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Evidently, || - || Bg, (M) is a norm if p,¢ > 1 and quasi-norm otherwise.
The B-space B, has an atomic decomposition. We define

. s —u 2\ 7/P\1/
191,000 = gt (32 (30 (61 llasgallp)?) ") s (39)

c0 @090 N 0 N gconm

where the infimum is taken over all representations f = » , o apds in
L,(E).

A third approach to the B-spaces B, is by using the decomposition
via quasi-interpolants from (25). We define

1908 v = (30 (3 (61 lnp (Dol ?)) "™ (39

m=0 60ecO,,

Theorem 11. For a given spline MRA M and admissible indices a, p,
and q the the norms || - |[ps (M), || - Hggq(M)’ and || - ||g;‘q(M)’ defined in
(33)-(35), are equivalent with constants of equivalence depending only on
a, p, q, and the parameters of T .

The proof of this theorem is fairly simple and can be carried out as
the proofs of the corresponding results in [6, 7, 16]; see also the more
complicated proof of Theorem 2 in [20].

Remark. As was shown above the B-spaces By, are in essence sequence
spaces and hence they can be interpolated by utilizing standard tech-
niques. For some interpolation results on B-spaces, see [7].

In general the B-spaces are different from Besov spaces. However, if
T is a regular triangulation of a compact polygonal domain E in R?,
then the B-space Bg,(T) coincides with the Besov space B2*(Ly(FE)) for
0 < a < ap with ag > 0 sufficiently small. For more details, see [7, 16].

Franklin basis decomposition of B-spaces. Suppose that the spline MRA
M is generated by spaces (Sp,)m>0 consisting of piecewise linear and con-
tinuous functions induced by an LR-triangulation of E. In this case the
B-spaces By, (M) can be characterized via representations using the cor-
responding Franklin basis [20]. Define

s /o 1/
115 an = (D2 (X (|9|fa\|ce(f)fo||p)p>q ,,)1 .
m=0 0€Or,

where co(f) := (f, fo)-

Theorem 12. Suppose «, p, and q are admissible indices and let T be
an LR-triangulation of a bounded polygonal domain E C R?. Then f €
B2 (M) if and only if || f|| 5. (M) < 00 and

pq

||f||§gq(M) ~ || fll g, (m)-
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The B-spaces of nonlinear n-term approximation. The primary application
of B-spaces is to nonlinear n-term approximation in L,(E) (0 < p <
00) from hierarchical sequence of spline bases (®,,,)m>0 associated with a
spline MRA M on E (see §6 below). Denote briefly

B (M) = B (M)

with 7 determined from 1/7 = a + 1/p according to two specific choices
of pand a: (a) 0 < p < oo and a > 05 or (b) p = co and a > 1. In fact,
the indices p, a, and T are selected so that B¥(M) lies on the Sobolev
embedding line; BY(M) is embedded in L,(E). There are several other
useful norms in B%(M) apart from the norms coming from (33)-(35). For
instance, for any 0 < n < p,

1/7
Iflsean = B Ifll + (3 (18184 (h)7))

AET
/T
~ |E|1/p_1/"||f||Ln + ( Z (|A‘1/p—1/n SA(f)n)T)l
AET
and also
1/7
Iflsecn = (U617 lbor(£)0ll-)7) (36)
fcO
1 1 1/7
~ (U b (£)al))
fc®

The point here is that normally 7 < 1 and the space L. is not very friendly
in this case, while if p > 1 then 7 can be selected so that 1 < n < p, which
allows one to work in L,, instead of L.. For more details, see [7, 16]

§6. Best Nonlinear n-term Approximation

We now consider nonlinear n-term approximation from the scaling func-
tions of a spline MRA. Suppose M := (S,;,)m>0 is a spline MRA generated
by a locally regular or better triangulation 7 of a compact polygonal do-
main F in R?. Let (®,,)m>0 be the corresponding bases. (See §3.2.)

Let X,, denote the nonlinear set consisting of all functions g of the form

9= _ asdo,
feA

where A C ©, #A < n, and A is allowed to vary with g. Denote by o,,(f),
the error of best Ly-approximation to f € L,(E) from X,:

on(f)p == gien):f Ilf = gllp-
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The primary goal now is to characterize the approximation spaces gen-
erated by (0,,(f)p)- To this end we shall use the machinery of Jackson-
Bernstein estimates as explained in §2. As elsewhere, our standing as-
sumption is that 0 < p < oo and a > 1 for p = co and a > 0 if p < oco; in
both cases we set 1/7:= a+ 1/p.

Theorem 13. [Jackson estimate] If f € B¥(M), then
on(f)p < en” | fll B (37)
where ¢ depends only on «a, p, and the parameters of the MRA.

Estimate (37) follows from the basic estimates of the error of the “Push-
the-Error” algorithm (p = oo) and “Threshold” algorithm (0 < p < o),
stated in Theorems 18 and 22 below.

Theorem 14. [Bernstein estimate] If g € ¥,,, then

91l B2 () < en®[lgllp (38)

where ¢ depends only on «a, p, and the parameters of the MRA.

For the proof of this theorem, see [7, 16, 17].

We denote the corresponding approximation space by A7 = A7 (®,L,)
(see (1)). The following characterization of the approximation spaces A}
is immediate from estimates (37)-(38):

Theorem 15. If0 <y < a and 0 < g < o0, then
A2, Ly) = (Lp(E), Bf (M) 2,4

with equivalent norms.

In one specific case the approximation space Ay (Lp) can be identified
as a B-space:

Theorem 16. Assuming that « > 0 if p < 0o and o > 1 if p = 00, and
1/7:= a+ 1/p in both cases, we have

42(®,L,) = B2(M) (39)
with equivalent norms.

For the proofs and more details, see [7, 16].
We next turn to a constructive realization of best n-term approxima-
tion.
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87. Algorithms for nonlinear n-term approximation

In this section we present practical algorithms for nonlinear n-term ap-
proximation which capture all rates of the best n-term approximation
in L, with 0 < p < co. As elsewhere in this survey we assume that
M := (Sm)m>0 is a spline MRA generated by a locally regular or better
triangulation 7 of a compact polygonal domain E in R? (see §3.1-2).

7.1. “Push-the-Error” Algorithm in L

As will be shown in the next section simple threshold strategy allows for
achieving the rates of best n-term approximation in L, when p < oo.
The situation is quite different when approximating in the uniform norm.
The “piling up” effect of multilevel structures is not well aligned with
the Lo,-norm. Nevertheless, an efficient way of realizing optimal L-
approximation rates for approximation spaces induced by best n-term
approximation is offered by another algorithmic paradigm, called “Push-
the-Error” algorithm. It should be stressed that the “Push-the-Error”
algorithm is, in principle, very flexible in that it essentially requires only
refinability of single scale basis functions, i.e. has a potential to work
under fairly general circumstances. The algorithm is presented here in
the set-up of a spline MRA. The main idea is to complement threshold-
ing strategies, i.e. keeping terms with large coefficients, with transferring
small terms (pushing the error) to higher levels with the aid of refine-
ment equations. This accounts for the fact that small terms may add
up over different levels to form after all a significant contribution in the
uniform norm because even the best multilevel bases are no longer able
to properly separate the contributions from different length scales. The
“Push-the-Error” algorithm has been developed in [17] and [6]; the essence
of this algorithm originates from [10]. We present here the refined version
of the algorithm developed in [6].

In [17] there is another algorithm (named “Irim & Cut”) developed
for nonlinear n-term approximation in L,, 0 < p < co. The idea of this
algorithm originates in the proof of the Jackson estimate in [12]. A sim-
ilar algorithm has been suggested by Yu. Brudnyi and I. Kozlov as well
(see [2] and the references therein). The execution of the “Trim & Cut”
algorithm relies heavily on a coloring procedure used to represent the set
of all supports of basis functions as a disjoint union of trees with respect
to the inclusion relation. This renders the scheme practically infeasible.
Consequently, it is less valuable compared to the “Push-the-Error” algo-
rithm.
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7.1.1 Description of the Algorithm

For a given function f € C(E), we use the decomposition scheme from
(25) with 1 < ¢ < oo to represent f in the form

F=> ba(H)pa=>_ > ba(f)do, (40)

) m>060€0,,

where the coefficients by := by(f) depend linearly on f and the series
converges uniformly on E. Whenever f has a wavelet expansion (see
(18)), we rewrite the wavelets in terms of scaling functions to obtain (40).

For the purpose of designing an algorithm capable of achieving the rates
of the best n-term approximation from ® = {¢g}¢co in the uniform norm,
the initial decomposition (40) must provide an efficient representation of f.
In our case this means that the terms in (40) should characterize the norm
in B*(M),a > 1,7 :=1/a, as in (36) which can be achieved by employing
simple projectors onto the spaces (Sp,).

To describe the “Push-the-Error” algorithm we need a few preliminar-
ies. For any 1,0 € © with I(n) > I(#), we say that 7 is connected with 6 via
sets from O if there exists a sequence of elements n =: 79, n1,...,Mk =0
with k :=I(n) — [(6) such that

Q) 1) =lmig1) +1, i=0,...,k—1;
(ii) n; sits on M1, i =0,...,k— 1, ie. n? Nnfy # 0.

Here [(#) denotes the level of 8 (I(f) =m if § € O,,).
Given 6 € O, we define

Uy = {ne€O:l(n)>1(H), n is connected with §} and
Uy = U,U{o}.

Note that n € Uy implies U,, C Uy, and hence there is a constant N, such
that

ne€lUy = 1 CStar)(0), m:=1(0). (41)
The following local error terms will play a critical role in the algorithm:
E(£,6) = E©) = bo(F)| +|| 3 ba(£)]_- (42)
neu

By the properties of the bases functions, there exists a constant v, > /
such that for each 8 € ©,,,, m > 0,

6 € Star:(z) for xz€6.
Then for each 6 € O,,, we define its “concrete” Qg by

Qg := Star T4+ (g),
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where N, is from (41).
Also, for a given 6 € O, we define

Xo:={n€O,,:n°NQY #0} with m:=1(6). (43)

We call the elements of Xy the neighbors of 6.
We now describe conceptually the “Push-the-error” algorithm; corre-
sponding practical ramifications will be discussed later on.

PTE ¢, f] = Ac(f)p produces for a given function f € C(E) and any
target accuracy € > 0 an approximation

A(f)=A(f)= D do(f)ds
6EA(f,e)
by the following steps:
Step 1. [Decomposition] We represent f in the form (40).
Step 2. [“Prune the shrubs”] We discard all terms bg¢y such that

E(f,n) <e, Vnely. (44)

Denote by I' = I'(f, ) the set of all elements of © which have not been
discarded and write
fr=> bode.

oer

Evidently, there exists some M > 0 such that
E(f,0)<e VY 68€0O,, m>M,

i.e. T' is a finite set.

Step 3. [“Push the error”] Let Ay be the set of all # € ©y N T such that
bo(f)| > € and set A := (UQE/'\OXQ) NI. We define

.A() = Z b9¢9.

6eAp

Using the refinement equations (17), we represent (rewrite) each of the re-
maining terms bgdg, 6 € (©gNI')\ Ag, as a linear combination of {¢, },ceo,
and add to the resulting terms the existing terms bggg, 8 € O NT. As a
result we obtain a representation of fr in the form

M
fr=Ao+ > dedo+ > dedot+ >, D bode

0€O\T 0co,Nr m=20c0,,NI
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Further, we define A; as the set of all 8 € ©; N T such that |dg| > € and
set Ay := (Upcz, Ap) NT. Then we define

.Al = Z d9¢9.

0cAy

Similarly as above, we rewrite all remaining terms dggg, 8 € (01 NT)\ A4,
at the next level and add to them the existing terms bgg, 6 € ©2NT. We
obtain

M
fr=AotAi+ Y doge+ Y doget+ D doe+ >, D> bogo.

00\ 0€©,\T' 0€©,NT m=30€0,,NT

We process in the same way all other levels until we reach the finest level

O©u. We define Apg, Apr, and Ay as above. 3

We obtain as an output the set A(f,e) := UAm/IZO A, of the e-significant
indices (with |dg(f)| > €), the set A(f,¢) := U%:o A, containing also the
neighbors of the elements in A(f, ) identified by the concrete Qg, and the

approximation

M
Ac=A(f) =Y An= D doto.
m=0 0cA(f,e)
7.1.2 Error Analysis of “Push-the-Error”

Assuming that “Push-the-Error” is applied to a function f € C(FE) with
e >0 and A.(f) is the approximant obtained, we denote

N(e) = Ny(e) == #AM(fr2),  An(e)(f) = [If = Ae(f)leos

and
A(f) = inf {An (o (f)  N(e) < ).

The main conceptual tool in the error analysis is the following weak quasi-
subadditivity of the counting functional N (g).

Theorem 17. There exist constants c, and ¢ depending only on the pa-
rameters of the MRA such that if f = fo+ fi, f; € C(E), and the
“Push-the-Error” algorithm is applied to f; with e; >0 (j = 0,1) and to
f with € := c.(e0 + 1), then

Ny(e) < &Ny, (e0) + Ny, (e1))-

We shall make now precise in which sense the “Push-the-Error” scheme
gives rise to an optimal approximation scheme.
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Theorem 18. If f € B*(M), a > 1, 7:=1/a, then for each ¢ > 0
Ane)(f) Sce and N(g) <ce™ || fllBaqm
and, therefore,

An(f) < Cn_aHf”BT"‘(M)a n= ]-72a""
Moreover, for f € C(E),

AN(s) (f)oo < cmin{s, ”f”oo}
Here the constants depend only on o and the parameters of the MRA.

We can now address the program outlined in §2. Let us denote by
K(f,t)o the K-functional generated by the spaces C(F) and B (M) with
T:=1/a.

Theorem 19. Suppose that f € C(E) and o > 1. Then one has
Ap(floo S eK(f,n™%)oo

and, therefore,

) < Al < e ([ Gty i),

where ¢ depends on o, and the parameters of the MRA.
The following result is an immediate consequence of Theorem 19:

Theorem 20. For f € C(E) and v > 0, A,(f) = O(n™7) if and only if
on(f)oo = O(n77).

More generally, let AY(0) = AY(Lwo,0) be the approximation spaces
generated by the best nonlinear n-term approximation from the scaling
functions of the spline MRA M. Let A7(A) be the set of all functions
f € C(E) such that

oo 1/q
g =l + (L an)h) <o a9

n=1

with the usual modification when ¢ = co.
Theorem 19 yields the following more general result:

Theorem 21. For any v > 0 and 0 < g < oo, we have AJ(A) = A] (o)
and || f|layay = | fll a3 (o) for f € AJ(A) = AJ (o).

We want to point out here that the results from Theorems 20-21 hold for
all 0 < v < oo and this is the meaning of “the algorithm captures all rates
of best n-term approximation”. We refer the reader to [6] for the proofs
of the above theorem and further details.
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7.1.3 Practical aspects of “Push-the-Error”

Complezity. Assume now that the function f (a surface or multidimen-
sional data) has an initial representation (approximation) in some “finest”
space Sys of a spline MRA involving O(N) terms. Let us assume that the
“Push the error” algorithm (as described in §7.1.1) is applied to this f.
The decomposition Step 1 of “Push-the-Error” will run in O(N) flops.
Step 2 [“Prune the shrubs”] of the algorithm can evidently be realized
in O(Nlog N) flops by rewriting all terms of interest at the finest level.
Step 3 [“Push the error”] works in O(NN) flops. The reconstruction Step 4
runs also in O(N) flops. Therefore, the “Push-the-Error” algorithm ap-
pears to be an attractive approximation scheme from practical point of
view. We next present a more economical version of the second step of
the algorithm.

Scalable second version of Step 2 [“Prune the shrubs”]. We define a new
local error term E(f, ) by

E(f,0) = |bo(f)| + max > |by(F)].

nEU: veEN

Now, the condition E(f,n) < ¢ in (44) is replaced by the condition
E(f,n) < ¢ (see (42)) which is practically easier to be verified. The
new version of Step 2 of the algorithm can be realized in O(N) flops by
employing a well-know principle of Dynamic Programming. One uses the
coefficient {bg(f)} obtained in Step 1 to compute

M(f,6) = max Z |b,,(f)| for every 6 € ©.
nEU): veEN

To this end one proceeds from finer to courser levels and compute each

M(f,0) by using the outcome of the previous steps.

It is easy to see that for this new version of “Push-the-Error” Theo-
rem 18 remains valid. However, it is impossible to establish Theorem 17
in this case, which makes this version less attractive from a theoretical
point of view.

Further observations and practical modifications. As already mentioned
in the beginning of §7.1.1, for an optimal performance of the “Push-the-
Error” algorithm it is important to have an initial sparse representation
of the function f being approximated. To this end the dual functionals
{ag(-)} should be bounded in L, for some ¢ > 1. In turn, this means that
decomposition methods based on interpolatory schemes do not provide
efficient representations and should be avoided.

In the description of Step 3 of “Push-the-Error”, the neighbors of a
given 6’ € O are described as all #’s from the same level which overlap with
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the concrete Qg of §'; all terms {dgdp} with such indices are taken in the
approximation whenever |dg/| > €. For practical implementations much
smaller concretes should be used and even one can consider realizations
where the neighbors are not included at all.

Finally, one can run the “Push-the-Error” algorithm without execut-
ing Step 2 at all. An algorithm consisting of only Step 1 and Step 2 is
also reasonable in some situations. Other modifications are also possible.
However, one should be aware of the existence of several traps which may
defeat such modifications of the algorithms (see [17]).

7.2. “Threshold” Algorithm in L, (p < o0)

Here we show that the usual threshold scheme used in nonlinear n-term
approximation from wavelets in L, (1 < p < oo) can be successfully
utilized for n-term approximation from the scaling functions of spline MRA
in L, (0 <p < o0) (see [6, 17]).

We begin with a description of the algorithm.
Step 1. [Decomposition] We represent the function f being approximated
by using the decomposition (25) with 0 < ¢ < p. As a result we have

f=26cobo(f)po in Ly(E).
Step 2. [“Threshold”] We first order the terms {bgs}oco in a sequence
(bg;®0;)j>1 so that

||b91¢91||p > Hb92¢92||1’ >

Then we define the approximant by A, (f), := Y_7_; be,do;-

We now turn to the error analysis of the “Threshold” algorithm. We
define the error of the algorithm by

AL (Do = I = A(Hpllz, (m)-

As elsewhere we assume that a > 0, 0 < p < o0, and 7 := (a + 1/p)~*.
The following theorem is an immediate consequence of Theorem 4.

Theorem 22. If f € BY(M), then

AL (F)p < en™ 1 f e wm)-

Furthermore,
T —a - T l/T
A5,y < en™( Y lbo,dn,lly)

j=n+1

Here ¢ depends only on a, p, and the parameters of the MRA.
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We next explain in what sense the “Threshold” algorithm captures
the rates of the best nonlinear n-term approximation in L,, 0 < p < oo.
Denote by A%(o, L,) := A%(®, L,) the approximation space generated by
the best n-term approximation from @ in L, and let A7 (AT, L,) be the
set of all functions f € L,(FE) such that

> 1\ /e
| fllagar,z,) = Il fllp + <Z(n7A£(f)p)qﬁ> < 00
n=1

with the usual modification when ¢ = co (see also (45)).

Theorem 23. For any a >0 and 1/7 = a+1/p, we have A%(AT,L,) =
BX(M) = A%(0, L,) and for each f in this space

Hf||Ag(AT,Lp) ~ ||f||Bg(M) ~ ||fHA$(a,LP)~

Several remarks are in order. We first observe that the “Threshold”
algorithm in principle cannot be applied for approximation in the uniform
norm because of the “piling up” effect: there can be a huge number of
terms bgpp with small coefficients and with significant contribution to the
norm of f at a certain location, which the algorithm will fail to anticipate.

As for the “Push-the-Error” algorithm, it is critical to have an effi-
cient initial decomposition of the function f being approximated, i.e. the
representation should provide a decomposition of the norm in B*(M),
1/7 = a+ 1/p. For the “Threshold” algorithm this is guaranteed by
employing the decompositions from (25) with ¢ < p.

The estimate A7 (f), < c||f||, fails to be true in general (even if 1 <
p < 00) since the convergence in the representation of the function f being
approximated that is used (see (25)) is not assumed to be unconditional.
(This problem does not arise in the case when wavelets exist.) This is
why the result from Theorem 23 is somewhat weaker than the result from
Theorem 21.

It is possible to extend the “Push-the-Error” algorithm to approxima-
tion in L, (p < oo). However, the resulting algorithm is equivalent to the
“Threshold” algorithm. Therefore, the “Threshold” algorithm should be
considered as the version of “Push-the-Error” in L, when p < oo.

88. n-term rational approximation

The univariate rational approximation on R is a relatively well developed
area in Approximation theory (see, e.g. [25]) . At the same time, the
multivariate rational approximation is virtually not existing yet. A reason
for this is that it is extremely hard to deal with rational functions of the
form R = P/Q, where P and Q are algebraic polynomials in d variables
(d > 1). Very little is known about this type of rational functions. It seems
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natural to consider nonlinear n-term approximation from the dictionary
R consisting of all functions on R? of the form

R= zn: r; (46)

where r; are partial fractions. In [23], it is considered the case when the

r;’s are of the form r(z) = szl %. The main estimate from
[23] relates the n-term rational approximation with nonlinear piecewise
polynomial approximation over an arbitrary dyadic partition of R?. As a
consequence a direct estimate is obtained for n-term rational approxima-
tion in terms of a minimal B-norm (over all dyadic partitions).

K. Park [22] obtained similar results for the more complicated case of

n-term rational approximation in R?, when the r;’s are of the form

6
_ auxy +bura +cy
a1 it (apz1 + Buza + )

with ay, by, cuy o, Bu, Y € R

Results of the same character are obtained also by S. Dekel and D. Levi-
atan [8] with no restrictions on the triangulations when approximating in
L, with 0 < p < 1 and under the condition that the piecewise polynomi-
als are over triangulations satisfying the minimal angle condition (regular
triangulations, see §3.1) when 1 < p < oo.

We next give a brief description of the results in [22]. Let R,, be the
set of all n-term rational functions on R? of the form (46) with r; from
(47). Denote by R,,(f), the error of L,-approximation to f from R, :

Rn(f)P = Rien7fz Ilf — RHp-

Clearly, each R € R,, depends on < 36n parameters and R, is a nonlinear
set, however, cR, = R, (¢ #0) and R,, + Rm = Rntm- A fundamental
property of R, is that it is invariant under affine transforms, i.e. if R €
Ry, then Ro A € R,, for every affine transform A.

Assume that 7 is an SLR-triangulation on R? (see [16]). Let (7)),
k > 1, denote the set of all n-term piecewise polynomial function of the
form

S= Y 1a-Pa,
A€,
where Pp € Iy, A, C T, #A, < n, and A,, may vary with S. Denote by
on(f,T)p the error of Ly-approximation to f € L,(R?) from Xk (T):

oulf Thy = int |1f = Sl
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The following theorem contains the main result from [22].

Theorem 24. Let f € L,(R?),0<p < oo, a >0, and k > 1. Then

n

1 « «\ 1/p”
Ra(p < en (32 Z(meom (LT + 1) m=12,

m=1

where p* = min{l, p} and c depends only on «, p, k, and the parameters

of T.

The proof of this theorem is based on Newman’s famous result on ra-
tional approximation of |z| on [—1,1] and estimates for certain maximal
functions, and in particular, estimate (13).

It is an important observation that in Theorem 24 there is no restriction
on a > 0 (but ¢ depends on «). The next corollary follows immediately
from the above theorem.

Corollary 1. If o,,(f,T), = O(n~7) for an arbitrary SLR-triangulation
T,0<p<oo, andy >0, then R,(f), = O(n™").

Combining the Jackson estimate for n-term piecewise polynomial ap-
proximation from Theorem 13 with Theorem 24, gives the following result.

Corollary 2. If f € (\; B&(M7), where o >0, 1/7:=a+1/p, 0 <p <
oo, then
Rn(f)p < en” 1171,f ||f||B$(M7')a

where the infimum is taken over all SLR-triangulations T and associated
spline MRAs M+ with some fixed parameters.
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