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SOME INEQUALITIES FOR THE TENSOR PRODUCT
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G. Kerkyacharian, D. Picard, and V.N.Temlyakov

Abstract. In this paper we study properties of bases that are important in nonlin-

ear m-term approximation with regard to these bases. It is known that the univariate
Haar basis is a greedy basis for Lp([0, 1)), 1 < p < ∞. This means that a greedy

type algorithm realizes nearly best m-term approximation for any individual func-
tion. It is also known that the multivariate Haar basis that is a tensor product of the

univariate Haar bases is not a greedy basis. This means that in this case a greedy

algorithm provides a m-term approximation that may be equal to the best m-term
approximation multiplied by a growing (with m) to infinity factor. There are known

results that describe the behavior of this extra factor for the Haar basis. In this paper

we extend these results to the case of a basis that is a tensor product of the univariate
greedy bases for Lp([0, 1)), 1 < p < ∞. Also, we discuss weight-greedy bases and

prove a criterion for weight-greedy bases similar to the one for greedy bases.

1. Introduction

In this paper we study properties of bases that are important in nonlinearm-term
approximation with regard to these bases. We begin with a brief historical survey
that provides a motivation for our investigation. Also, this research is motivated
by applications in nonparametric statistics. We plan to report the corresponding
applications in statistics in our next paper. We remind the definition of the uni-
variate Haar basis. Denote H := {Hk}

∞
k=1 the Haar basis on [0, 1) normalized in

L2([0, 1)): H1 = 1 on [0, 1) and for k = 2n + l, n = 0, 1, . . . , l = 1, 2, . . . , 2n

Hk(x) =











2n/2, x ∈ [(2l − 2)2−n−1, (2l− 1)2−n−1)

−2n/2, x ∈ [(2l − 1)2−n−1, 2l2−n−1)

0, otherwise.

We denote by Hp := {Hk,p}
∞
k=1 the Haar basis H renormalized in Lp([0, 1)).

The following important property of the Haar basis (the Haar basis is a demo-
cratic basis) has been established in [T1]: for any Λ, |Λ| = m, one has

(1.1) C1(p)m
1/p ≤ ‖

∑

k∈Λ

Hk,p‖p ≤ C2(p)m
1/p, 1 < p <∞.

Our main interest in this paper is to study the multivariate bases. There are two
standard ways to build a multivariate Haar basis. One way is based on the idea of
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multiresolution analysis. In this way we obtain a multivariate Haar basis consisting
of functions whose supports are dyadic cubes. The theory of greedy approximation
in this case is parallel to the univariate case (see [T1], [CDH]). In this paper we use
the tensor product of the univariate bases as a way of building a multivariate basis.

We define the multivariate Haar basis Hd
p as the tensor product of the uni-

variate Haar bases: Hd
p := Hp × · · · × Hp; Hn,p(x) := Hn1,p(x1) · · ·Hnd,p(xd),

x = (x1, . . . , xd), n = (n1, . . . , nd). Supports of functions Hn,p are arbitrary dyadic
parallelepipeds (intervals). It is known (see [T3]) that the tensor product struc-
ture of the multivariate wavelet bases makes them universal for approximation of
anisotropic smoothness classes with different anisotropy. It is also known that the
study of such bases is more difficult than the study of the univariate bases. In many
cases we need to develop new technique and in some cases we encounter with new
phenomena. For instance, it turned out that the property (1.1) does not hold for
the multivariate Haar basis Hd

p for p 6= 2 (see [T4] for a detailed discussion). It is
known from [T2], [W], and [KaT] that the function

µ(m,Hd
p) := sup

k≤m
( sup
Λ:|Λ|=k

‖
∑

n∈Λ

Hn,p‖p/ inf
Λ:|Λ|=k

‖
∑

n∈Λ

Hn,p‖p)

plays a very important role in estimates of the m-term greedy approximation in
terms of the best m-term approximation. For instance (see [T2]),

(1.2) ‖f −GLp
m (f,Hd

p)‖p ≤ C(p, d)µ(m,Hd
p)σm(f,Hd

p)p, 1 < p <∞.

The greedy approximantG
Lp
m (f,Hd

p) and the bestm-term approximation σm(f,Hd
p)p

are defined below. The following theorem gives, in particular, the upper estimates
for the µ(m,Hd

p).

Theorem A. Let 1 < p <∞. Then for any Λ, |Λ| = m, we have for 2 ≤ p <∞

C1
p,dm

1/p min
n∈Λ

|cn| ≤ ‖
∑

n∈Λ

cnHn,p‖p ≤ C2
p,dm

1/p(logm)h(p,d) max
n∈Λ

|cn|,

and for 1 < p ≤ 2

C3
p,dm

1/p(logm)−h(p,d) min
n∈Λ

|cn| ≤ ‖
∑

n∈Λ

cnHn,p‖p ≤ C4
p,dm

1/p max
n∈Λ

|cn|

where h(p, d) := (d− 1)|1/2 − 1/p|.

Theorem A for d = 1, 1 < p < ∞ has been proved in [T1], in the case d = 2,
4/3 ≤ p ≤ 4 it has been proved in [T2]. Theorem A in the general case has been
proved in [W]. It is known ([T4]) that the extra log factors in Theorem A are sharp.

In Section 2 we generalize Theorem A to the case of basis that is the tensor
product of greedy bases. We now give the corresponding definitions and introduce
notations. We will do this in a general setting.
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LetX be an infinite dimensional separable Banach space with a norm ‖·‖ := ‖·‖X

and let Ψ := {ψn}
∞
n=1 be a normalized basis for X (‖ψn‖ = 1, n ∈ N). For a given

f ∈ X we define the best m-term approximation with regard to Ψ as follows

σm(f,Ψ) := σm(f,Ψ)X := inf
bk,Λ

‖f −
∑

k∈Λ

bkψk‖X ,

where inf is taken over coefficients bk and sets of indices Λ with cardinality |Λ| = m.
There is a natural algorithm of constructing an m-term approximant. For a given
element f ∈ X we consider the expansion

f =

∞
∑

k=1

ck(f,Ψ)ψk.

We call a permutation ρ, ρ(j) = kj , j = 1, 2, . . . , of the positive integers decreasing
and write ρ ∈ D(f) if

|ck1
(f,Ψ)| ≥ |ck2

(f,Ψ)| ≥ . . . .

In the case of strict inequalities here D(f) consists of only one permutation. We
define the mth greedy approximant of f with regard to the basis Ψ corresponding
to a permutation ρ ∈ D(f) by the formula

Gm(f,Ψ) := GX
m(f,Ψ) := Gm(f,Ψ, ρ) :=

m
∑

j=1

ckj
(f,Ψ)ψkj

.

It is a simple algorithm which describes a theoretical scheme (it is not computation-
ally ready) for m-term approximation of an element f . This algorithm is known in
the theory of nonlinear approximation under the name Greedy Algorithm (see for
instance [T1], [T2], [W]) and under the more specific name Thresholding Greedy
Algorithm (TGA) (see [T4], [DKKT]). We will use the latter name in this paper.
The best we can achieve with the algorithm Gm is

‖f −Gm(f,Ψ, ρ)‖X = σm(f,Ψ)X ,

or a little weaker
‖f −Gm(f,Ψ, ρ)‖X ≤ Gσm(f,Ψ)X

for all elements f ∈ X with a constant G = C(X,Ψ) independent of f and m. The
following concept of greedy basis has been introduced in [KT].

Definition 1. We call a normalized basis Ψ greedy basis if for every f ∈ X there
exists a permutation ρ ∈ D(f) such that

‖f −Gm(f,Ψ, ρ)‖X ≤ Gσm(f,Ψ)X

holds with a constant independent of f , m.

The first result in this direction (see [T1]) established that the univariate Haar
basis is a greedy basis.

Let Ψ be a normalized basis for Lp([0, 1)). For the space Lp([0, 1)d) we define
Ψd := Ψ × · · · × Ψ (d times); ψn(x) := ψn1

(x1) · · ·ψnd
(xd), x = (x1, . . . , xd),

n = (n1, . . . , nd). In Section 2 we prove the following theorem using the scheme of
the prove similar to that from [W].
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Theorem 1. Let 1 < p < ∞ and let Ψ be a greedy basis for Lp([0, 1)). Then for
any Λ, |Λ| = m, we have for 2 ≤ p <∞

C5
p,dm

1/p min
n∈Λ

|cn| ≤ ‖
∑

n∈Λ

cnψn‖p ≤ C6
p,dm

1/p(logm)h(p,d) max
n∈Λ

|cn|,

and for 1 < p ≤ 2

C7
p,dm

1/p(logm)−h(p,d) min
n∈Λ

|cn| ≤ ‖
∑

n∈Λ

cnψn‖p ≤ C8
p,dm

1/p max
n∈Λ

|cn|

where h(p, d) := (d− 1)|1/2 − 1/p|.

The inequality (1.2) has been extended in [W] to a normalized unconditional
basis Ψ for X instead of Hd

p for Lp([0, 1)d). Therefore, as a corollary of Theorem 1
we obtain the following inequality for a greedy basis Ψ (for Lp([0, 1)))

(1.3) ‖f −GLp

m (f,Ψd)‖p ≤ C(Ψ, d, p)(logm)h(p,d)σm(f,Ψd)p, 1 < p <∞.

In Section 3 we prove a generalization of Theorem A to the case of Hn,q instead
of Hn,p. It will be convenient for us to enumerate the Haar system by the dyadic
intervals. We set h[0,1] := H1,∞; h[(l−1)2−n,l2−n) := H2n+l,∞, l = 1, . . . , 2n, n =
0, 1, . . . ; hI(x) := hI1(x1) . . . hId

(xd), I = I1 × · · · × Id.
An interesting generalization of m-term approximation was considered in [CDH].

Let Ψ = {ψI}I be a basis indexed by dyadic intervals. Take an α and assign to
each index set Λ the following measure

Φα(Λ) :=
∑

I∈Λ

|I|α.

In the case α = 0 we get Φ0(Λ) = |Λ|. An analog of best m-term approximation is
the following

inf
Λ:Φα(Λ)≤m

inf
cI ,I∈Λ

‖f −
∑

I∈Λ

cIψI‖p.

A detailed study of this type of approximation (restricted approximation) can be
found in [CDH]. The following theorem proved in Section 3 provides the inequalities
useful in the study of restricted approximation with regard to the Hd

p.

Theorem 2. Let 1 < p < ∞. Then for any a > 0 and any Λ, |Λ| = m we have
for 2 ≤ p <∞

(1.4)
∑

I∈Λ

‖|I|−ahI‖
p
p � ‖

∑

I∈Λ

|I|−ahI‖
p
p � (logm)(1/2−1/p)p(d−1)

∑

I∈Λ

‖|I|−ahI‖
p
p,

and for 1 < p ≤ 2

(1.5) (logm)(1/2−1/p)p(d−1)
∑

I∈Λ

‖|I|−ahI‖
p
p � ‖

∑

I∈Λ

|I|−ahI‖
p
p �

∑

I∈Λ

‖|I|−ahI‖
p
p.
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Here, the sign � means that we have the corresponding inequality with an extra
factor that does not depend on m and Λ. We note that Theorem 2 in the case
a = 1/p coincides with Theorem A. Theorem 2 in the case d = 1 has been proved
in [CDH].

In Section 4 we elaborate on the idea of assigning to each basis element ψn

a positive weight wn. We discuss weight-greedy bases and prove a criterion for
weight-greedy bases similar to the one for greedy bases (see [KT] and also Theorem
2.1 from Section 2 of this paper).

2. Proof of Theorem 1

The proof goes by induction. We first prove some inequalities in the univariate
case. We need some known results. We begin with definitions of unconditional and
democratic bases.

Definition 2.1. A basis Ψ = {ψk}
∞
k=1 of a Banach space X is said to be uncon-

ditional if for every choice of signs θ = {θk}
∞
k=1, θk = 1 or −1, k = 1, 2, . . . ,

the linear operator Mθ defined by Mθ(
∑∞

k=1 akψk) =
∑∞

k=1 akθkψk is a bounded
operator from X into X.

Definition 2.2. We say that a basis Ψ = {ψk}
∞
k=1 is a democratic basis for X if

there exists a constant D := D(X,Ψ) such that for any two finite sets of indices P
and Q with the same cardinality |P | = |Q| we have ‖

∑

k∈P ψk‖ ≤ D‖
∑

k∈Q ψk‖.

The following theorem has been proved in [KT].

Theorem 2.1. A normalized basis is greedy if and only if it is unconditional and
democratic.

This theorem gives a characterization of greedy bases. Further investigations
([T2], [CDH], [DKKT], [KerP], [GN], [T4], [KaT]) showed that the concept of greedy
bases is very useful in direct and inverse theorems of nonlinear approximation and
also in applications in statistics. It has been noticed in [DKKT] that the proof of
Theorem 2.1 from [KT] works also for a basis that is not assumed to be normalized
(they assumed instead infn ‖ψn‖ > 0).

There is a result in functional analysis [KP], [LT] that says that for any un-
conditional basis B = (bk) of Lp([0, 1)d), normalized so that ‖bk‖p = 1, there is a
subsequence kj , j = 1, 2, . . . , such that (bkj

) satisfies

‖
∞
∑

j=1

αkj
bkj

‖p
p �

∞
∑

j=1

|αkj
|p.

It follows that for any democratic and unconditional basis B for Lp([0, 1)d), we
have

‖
∑

k∈Λ

bk‖p � (|Λ|)1/p
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with the constants of equivalency depending at most on B and p. For an uncondi-
tional, democratic basis B in Lp, then the above results combine to show that

(2.1) C1 min
k∈Λ

|ak| (|Λ|)
1/p ≤ ‖

∑

k∈Λ

akbk‖p ≤ C2 max
k∈Λ

|ak| (|Λ|)
1/p

for any finite set Λ with C1, C2 > 0 independent of Λ and {ak}. This proves
Theorem 1 for d = 1, 1 < p <∞.

We will often use the following known lemma (see [LT,p.73]).

Lemma 2.1. For any finite collection {fs} of functions in Lp, 1 ≤ p ≤ ∞, we
have

(2.2) (
∑

s

‖fs‖
pl
p )1/pl ≤ ‖(

∑

s

|fs|
2)1/2‖p ≤ (

∑

s

‖fs‖
pu

p )1/pu

with pl := max(2, p) and pu := min(2, p).

We note that by Theorem 2.1 a greedy basis Ψ is unconditional. It is known
that the tensor product of unconditional bases for Lp([0, 1)), 1 < p < ∞, is an
unconditional basis for Lp([0, 1)d). Therefore for any 1 < p <∞ and any {an} we
have

(2.3) C1(p, d)‖(
∑

n

|anψn|
2)1/2‖p ≤ ‖

∑

n

anψn‖p ≤ C2(p, d)‖(
∑

n

|anψn|
2)1/2‖p,

and also for any set of disjoint Λj we have

(2.4) C3(p, d)‖(
∑

j

|
∑

n∈Λj

anψn|
2)1/2‖p ≤ ‖

∑

j

∑

n∈Λj

anψn‖p

≤ C4(p, d)‖(
∑

j

|
∑

n∈Λj

anψn|
2)1/2‖p.

Lemma 2.2. Let 2 ≤ p < ∞ and let Ψ be a greedy basis for Lp([0, 1)). Then for
any finite Λ, |Λ| = m, and any coefficients {ak} we have

(
∑

k∈Λ

|ak|
p)1/p � ‖

∑

k∈Λ

akψk‖p � (logm)1/2−1/p(
∑

k∈Λ

|ak|
p)1/p.

Proof. The lower estimate follows from (2.3) and Lemma 2.1. We now prove the
upper estimate. Let

|ak1
| ≥ |ak2

| ≥ . . . , kj ∈ Λ, j = 1, 2, . . . , m.

For notational convenience we set akj
= 0 for j > m. Denoting

(2.5) fs :=
2s+1−1
∑

j=2s

akj
ψkj
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we get for n such that 2n ≤ m < 2n+1

(2.6) f :=
∑

k∈Λ

akψk =

n
∑

s=0

fs.

By (2.4) and Lemma 2.1 we obtain

‖f‖p � (
n

∑

s=0

‖fs‖
2
p)

1/2.

Next, by (2.1)

‖fs‖p � |ak2s |2
s/p.

Thus

‖f‖p � (
n

∑

s=0

|ak2s |
222s/p)1/2.

By Hölder’s inequality with parameter p/2 we continue

≤ (
n

∑

s=0

|ak2s |
p2s)1/p(

n
∑

s=0

1)(1−2/p)/2 � (logm)1/2−1/p(
∑

k∈Λ

|ak|
p)1/p.

Lemma 2.3. Let 1 < p ≤ 2 and let Ψ be a greedy basis for Lp([0, 1)). Then for
any finite Λ, |Λ| = m, and any coefficients {ak} we have

(logm)1/2−1/p(
∑

k∈Λ

|ak|
p)1/p � ‖

∑

k∈Λ

akψk‖p � (
∑

k∈Λ

|ak|
p)1/p.

Proof. The upper estimate follows from (2.3) and Lemma 2.1. We proceed to the
lower estimate. Using the notations (2.5) and (2.6), by (2.4), (2.2), and (2.1) we
obtain

‖f‖p � (

n
∑

s=0

‖fs‖
2
p)

1/2 � (

n
∑

s=0

|ak
2s+1

|222s/p)1/2.

Next, by Hölder’s inequality with parameter 2/p we get

n
∑

s=0

|ak
2s+1

|p2s ≤ (

n
∑

s=0

|ak
2s+1

|222s/p)p/2(n+ 1)1−p/2.

Therefore,

‖f‖p � (
n

∑

s=0

|ak
2s+1

|p2s)1/pn1/2−1/p � (logm)1/2−1/p(
∑

k∈Λ

|ak|
p)1/p.
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Proof of Theorem 1. We obtain the lower estimate for 2 ≤ p < ∞ and the upper
estimate for 1 < p ≤ 2 from (2.3) and Lemma 2.1. It remains to prove Theorem 1
in the following cases: 2 ≤ p < ∞, the upper estimate and 1 < p ≤ 2, the lower
estimate. We mentioned above that the assumption that the Ψ is a greedy basis for
Lp([0, 1)) implies that the Ψd is an unconditional basis for Lp([0, 1)d). Therefore,
it is sufficient to prove Theorem 1 in the particular case of cn = 1, n ∈ Λ. We first
prove the upper estimate in the case 2 ≤ p <∞. Let

Λd := {nd : ∃k ∈ Λ with kd = nd},

Λ(nd) := {(k1, . . . , kd−1) : (k1, . . . , kd−1, nd) ∈ Λ}.

Then we have by Lemma 2.2

‖
∑

nd∈Λd

ψnd
(xd)(

∑

(n1,...,nd−1)∈Λ(nd)

ψn1
(x1) . . . ψnd−1

(xd−1))‖
p
p

� (logm)(1/2−1/p)p
∑

nd∈Λd

‖
∑

(n1,...,nd−1)∈Λ(nd)

ψn1
(x1) . . . ψnd−1

(xd−1))‖
p
p.

We continue by the induction assumption

� (logm)(1/2−1/p)p(
∑

nd∈Λd

|Λ(nd)|(logm)(1/2−1/p)p(d−2))

= m(logm)(1/2−1/p)(d−1)p.

We proceed to the lower estimate in the case 1 < p ≤ 2. By Lemma 2.3 we get

‖
∑

nd∈Λd

ψnd
(xd)(

∑

(n1,...,nd−1)∈Λ(nd)

ψn1
(x1) . . . ψnd−1

(xd−1))‖
p
p

� (logm)(1/2−1/p)p
∑

nd∈Λd

‖
∑

(n1,...,nd−1)∈Λ(nd)

ψn1
(x1) . . . ψnd−1

(xd−1))‖
p
p.

We continue by the induction assumption

� (logm)(1/2−1/p)p(
∑

nd∈Λd

|Λ(nd)|(logm)(1/2−1/p)p(d−2))

= m(logm)(1/2−1/p)(d−1)p.
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3. Proof of Theorem 2

The lower estimate in the case 2 ≤ p < ∞ and the upper estimate in the case
1 < p ≤ 2 follow from (2.3) and Lemma 2.1. We first note that the lower estimate
in the case 1 < p ≤ 2 follows from the upper estimate in the case 2 ≤ p <∞ by the
duality argument. Indeed, assume (1.4) has been proved. Let q ∈ (1, 2]. Denote
p := q/(q − 1) ∈ [2,∞). We have

∑

I∈Λ

‖|I|−ahI‖
q
q =

∑

I∈Λ

|I|−aq+1 = 〈
∑

I∈Λ

|I|−ahI ,
∑

I∈Λ

|I|−a(q−1)hI〉

≤ ‖
∑

I∈Λ

|I|−ahI‖q‖
∑

I∈Λ

|I|−a(q−1)hI‖p.

Using (1.4) we continue

� ‖
∑

I∈Λ

|I|−ahI‖q(logm)(1/2−1/p)(d−1)(
∑

I∈Λ

‖|I|−a(q−1)hI‖
p
p)

1/p

= ‖
∑

I∈Λ

|I|−ahI‖q(logm)(1/2−1/p)(d−1)(
∑

I∈Λ

|I|−aq+1)1/p.

This implies the lower estimate in (1.5).
It remains to prove the upper estimate in (1.4). We will carry out the proof by

induction. First, consider the univariate case. We have

∑

I

‖|I|−ahI‖
p
p =

∑

I

|I|−ap+1

and by (2.3)

‖
∑

I

|I|−ahI‖
p
p �

∫ 1

0

(
∑

I

(|I|−ahI)
2)p/2 =

∫ 1

0

(
s

∑

j=1

22anjχEj
)p/2

with some n1 < n2 < · · · < ns and Ej ⊂ [0, 1], j = 1, . . . , s. By an analog of Lemma
2.3 from [T1] that follows from its proof we continue

�
s

∑

j=1

22nja(p/2)|Ej| =
s

∑

j=1

2njap|Ej | =
∑

I

|I|−ap+1.

We proceed to the multivariate case. Let

Λd := {Id : ∃J ∈ Λ with Jd = Id},

Λ(Id) := {(J1, . . . , Jd−1) : (J1, . . . , Jd−1, Id) ∈ Λ}.
9



Using the fact ([T1]) that the univariate Haar basis is a greedy basis for Lp([0, 1)),
1 < p <∞, we get by Lemma 2.2

‖
∑

Id∈Λd

|Id|
−ahId

(xd)(
∑

(J1,...,Jd−1)∈Λ(Id)

|J1|
−ahJ1

(x1) . . . |Jd−1|
−ahJd−1

(xd−1))‖
p
p

� (logm)(1/2−1/p)p
∑

Id∈Λd

‖|Id|
−ahId

(xd)‖
p
p

×(‖
∑

(J1,...,Jd−1)∈Λ(Id)

|J1|
−ahJ1

(x1) . . . |Jd−1|
−ahJd−1

(xd−1)‖
p
p).

By the induction assumption we continue

� (logm)(1/2−1/p)p(d−1)
∑

Id∈Λd

‖|Id|
−ahId

(xd)‖
p
p

×(
∑

(J1,...,Jd−1)∈Λ(Id)

‖|J1|
−ahJ1

(x1)‖
p
p . . .‖|Jd−1|

−ahJd−1
(xd−1)‖

p
p)

= (logm)(1/2−1/p)p(d−1)
∑

I∈Λ

‖|I|−ahI‖
p
p.

4. Weight-greedy bases

Let Ψ be a basis for X . If infn ‖ψn‖ > 0 then cn(f) → 0 as n→ ∞, where

f =
∞
∑

n=1

cn(f)ψn.

Then we can rearrange the coefficients {cn(f)} in the decreasing way

|cn1
(f)| ≥ |cn2

(f)| ≥ . . .

and define the mth greedy approximant as

(4.1) Gm(f,Ψ) :=
m

∑

k=1

cnk
(f)ψnk

.

In the case infn ‖ψn‖ = 0 we define Gm(f,Ψ) by (4.1) for f of the form

(4.2) f =
∑

n∈Y

cn(f)ψn, |Y | <∞.

Let a weight sequence w = {wn}
∞
n=1, wn > 0, be given. For Λ ⊂ N denote

w(Λ) :=
∑

n∈Λ wn. For a positive real number v > 0 define

σw
v (f,Ψ) := inf

{bn},Λ:w(Λ)≤v
‖f −

∑

n∈Λ

bnψn‖,

where Λ are finite.
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Definition 4.1. We call a basis Ψ weight-greedy basis (w-greedy basis) if for any
f ∈ X in the case infn ‖ψn‖ > 0 or for any f ∈ X of the form (4.2) in the case
infn ‖ψn‖ = 0 we have

‖f −Gm(f,Ψ)‖ ≤ CGσ
w
w(Λm)(f,Ψ),

where
Gm(f,Ψ) =

∑

n∈Λm

cn(f)ψn, |Λm| = m.

Definition 4.2. We call a basis Ψ weight-democratic basis (w-democratic basis) if
for any finite A,B ⊂ N such that w(A) ≤ w(B) we have

‖
∑

n∈A

ψn‖ ≤ CD‖
∑

n∈B

ψn‖.

Theorem 4.1. A basis Ψ is w-greedy basis if and only if it is unconditional and
w-democratic.

Proof. I. We first prove the implication
unconditional + w-democratic ⇒ w-greedy.
Let f be any or of the form (4.2) if infn ‖ψn‖ = 0. Consider

Gm(f,Ψ) =
∑

n∈Q

cn(f)ψn =: SQ(f).

We take any finite set P ⊂ N satisfying w(P ) ≤ w(Q). Then our assumption
wn > 0, n ∈ N implies that either P = Q or Q \ P is nonempty. Denote

σP (f,Ψ) := inf
{bn}

‖f −
∑

n∈P

bnψn‖.

Then by unconditionality of Ψ we have

(4.3) ‖f − SP (f)‖ ≤ KσP (f,Ψ).

This (with P = Q) completes the proof in the case σw
w(Q)(f,Ψ) = σQ(f,Ψ). Suppose

that σw
w(Q)(f,Ψ) < σQ(f,Ψ). Clearly, we now may consider only those P that

satisfy the following two conditions

w(P ) ≤ w(Q) and σP (f,Ψ) < σQ(f,Ψ).

For P satisfying the above conditions we have Q \ P 6= ∅. We estimate

(4.4) ‖f − SQ(f)‖ ≤ ‖f − SP (f)‖ + ‖SP (f) − SQ(f)‖.
11



We have

(4.5) SP (f) − SQ(f) = SP\Q(f) − SQ\P (f).

Similarly to (4.3) we get

(4.6) ‖SQ\P (f)‖ ≤ KσP (f,Ψ).

It remains to estimate ‖SP\Q(f)‖. We have by unconditionality and w-democracy
of Ψ

‖SP\Q(f)‖ ≤ 2K max
n∈P\Q

|cn(f)|‖
∑

n∈P\Q

ψn‖

(4.7) ≤ 2KCD min
n∈Q\P

|cn(f)|‖
∑

n∈Q\P

ψn‖ ≤ 4K2CD‖SQ\P (f)‖.

Combining (4.3)–(4.7) we complete the proof of part I.

Remark 4.1. Suppose Ψ instead of being w-democratic satisfies the following in-
equality

‖
∑

n∈A

ψn‖ ≤ K(N)‖
∑

n∈B

ψn‖

for all A,B ⊂ N, w(A) ≤ w(B) ≤ N . Then the above proof gives

‖f −Gm(f,Ψ)‖ ≤ CK(w(Q))σw
w(Q)(f,Ψ).

II. We now prove the implication
w-greedy ⇒ unconditional + w-democratic.
IIa. We begin with the following one
w-greedy ⇒ unconditional.
We will prove a little stronger statement.

Lemma 4.1. Let Ψ be a basis such that for any f of the form (4.2) we have

‖f −Gm(f,Ψ)‖ ≤ CσΛ(f,Ψ),

where
Gm(f,Ψ) =

∑

n∈Λ

cn(f)ψn.

Then Ψ is unconditional.

Proof. It is clear that it is sufficient to prove that there exists a constant C0 such
that for any finite Λ and any f of the form (4.2) we have

‖SΛ(f)‖ ≤ C0‖f‖.
12



Let f and Λ be given and Λ ⊂ [1,M ]. Consider

fM := S[1,M ](f).

Then ‖fM‖ ≤ CB‖f‖. We take a b > max1≤n≤M |cn(f)| and define a new function

g := fM − SΛ(fM) + b
∑

n∈Λ

ψn.

Then
Gm(g,Ψ) = b

∑

n∈Λ

ψn, m := |Λ|,

and
σΛ(g,Ψ) ≤ ‖fM‖.

Thus by the assumption

‖fM − SΛ(fM )‖ = ‖g −Gm(g,Ψ)‖ ≤ CσΛ(g,Ψ) ≤ C‖fM‖.

Therefore,
‖SΛ(f)‖ = ‖SΛ(fM )‖ ≤ C0‖f‖.

IIb. It remains to prove the implication
w-greedy ⇒ w-democratic.
First, let A,B ⊂ N, w(A) ≤ w(B), be such that A ∩B = ∅. Consider

f :=
∑

n∈A

ψn + (1 + ε)
∑

n∈B

ψn, ε > 0.

Then
Gm(f,Ψ) = (1 + ε)

∑

n∈B

ψn, m := |B|,

and
σA(f,Ψ) ≤ ‖

∑

n∈B

ψn‖(1 + ε).

Therefore, by the w-greedy assumption we get

‖
∑

n∈A

ψn‖ ≤ C(1 + ε)‖
∑

n∈B

ψn‖.

Let now A,B be arbitrary finite, w(A) ≤ w(B). Then using unconditionality of Ψ
that has already been proven in IIa and the above part of IIb we obtain

‖
∑

n∈A

ψn‖ ≤ ‖
∑

n∈A\B

ψn‖ + ‖
∑

n∈A∩B

ψn‖

≤ C‖
∑

n∈B\A

ψn‖ +K‖
∑

n∈B

ψn‖ ≤ C1‖
∑

n∈B

ψn‖.

This completes the proof of Theorem 4.1.
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