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V. Temlyakov
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Abstract. We study greedy algorithms in a Banach space from the point of view of conver-

gence and rate of convergence. We concentrate on studying algorithms that provide expansions
into a series. We call such expansions greedy expansions. It was pointed out in our previous

paper that there is a great flexibility in choosing coefficients of greedy expansions. In that

paper this flexibility was used for constructing a greedy expansion that converges in any uni-
formly smooth Banach space. In this paper we push the flexibility in choosing the coefficients

of greedy expansions to the extreme. We make these coefficients independent of an element

f ∈ X. Surprisingly, for a properly chosen sequence of coefficients we obtain results similar to
the previous results on greedy expansions when the coefficients were determined by an element

f .

1. Introduction

We continue the investigation of greedy approximation in Banach spaces. In this article
we concentrate on studying convergence and rate of convergence of greedy expansions with
coefficients assigned in advance. A new phenomenon of convergence of a greedy expansion
of f ∈ X with coefficients chosen a priori independently of f has been discovered in this
paper. We remind notations that are standard in the theory of greedy approximations.

Let X be a Banach space with norm ‖ · ‖. We say that a set of elements (functions)
D from X is a dictionary (symmetric dictionary) if each g ∈ D has norm bounded by one
(‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and spanD = X . We denote the closure (in X) of the convex hull of D by A1(D). We
introduce a new norm, associated with a dictionary D, in the dual space X∗ by the formula

‖F‖D := sup
g∈D

F (g), F ∈ X∗.

We will study in this paper greedy algorithms with regard to D. For a nonzero element
f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

1Math Subject Classifications. primary: 41A65; secondary: 41A25, 41A46, 46B20.

Keywords and Phrases. greedy algorithms, Banach spaces, greedy expansion, convergence.
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The existence of such a functional is guaranteed by Hahn-Banach theorem.
We begin with the Pure Greedy Algorithm (PGA), introduced in [FS], and its general-

ization the Weak Greedy Algorithm (WGA) defined in a Hilbert space. We give a definition
of the WGA and note that the PGA is the WGA with the weakness sequence τ = {1}. Let
a sequence τ = {tk}

∞
k=1, 0 ≤ tk ≤ 1, be given. Following [T2] we define the Weak Greedy

Algorithm.

Weak Greedy Algorithm (WGA(τ)). We define f0 := f . Then for each m ≥ 1, we
inductively define:

1). ϕm ∈ D is any satisfying

〈fm−1, ϕm〉 ≥ tm sup
g∈D

〈fm−1, g〉;

2).
fm := fm−1 − 〈fm−1, ϕm〉ϕm;

3).

Gm(f,D) :=
m

∑

j=1

〈fj−1, ϕj〉ϕj.

The greedy step (the first step) of the PGA can be interpreted in two ways. First, we
look at the mth step for an element ϕm ∈ D and a number λm satisfying

(1.1) ‖fm−1 − λmϕm‖H = inf
g∈D,λ

‖fm−1 − λg‖H .

Second, we look for an element ϕm ∈ D such that

(1.2) 〈fm−1, ϕm〉 = sup
g∈D

〈fm−1, g〉.

In a Hilbert space both versions (1.1) and (1.2) result in the same PGA. In a general Banach
space the corresponding versions of (1.1) and (1.2) lead to different greedy algorithms. The
Banach space version of (1.1) is straightforward: instead of the Hilbert norm ‖ · ‖H in (1.1)
we use the Banach norm ‖ · ‖X . This results in the following greedy algorithm.

X-Greedy Algorithm (XGA). We define f0 := f , G0 := 0. Then, for each m ≥ 1, we
inductively define

1). ϕm ∈ D, λm ∈ R are such that (we assume existence)

(1.3) ‖fm−1 − λmϕm‖X = inf
g∈D,λ

‖fm−1 − λg‖X .

2). Denote
fm := fm−1 − λmϕm, Gm := Gm−1 + λmϕm.
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The second version of the PGA in a Banach space is based on the concept of a norming
(peak) functional. We note that in a Hilbert space a norming functional Ff acts as follows

Ff (g) = 〈f/‖f‖, g〉.

Therefore, (1.2) can be rewritten in terms of the norming functional Ffm−1
as

(1.4) Ffm−1
(ϕm) = sup

g∈D
Ffm−1

(g).

This observation leads to the class of dual greedy algorithms. We define the Weak Dual
Greedy Algorithm with weakness τ (WDGA(τ)) that is a generalization of the Weak Greedy
Algorithm.

Weak Dual Greedy Algorithm (WDGA(τ)). Let τ := {tm}∞m=1, tm ∈ [0, 1], be a
weakness sequence. We define f0 := f . Then, for each m ≥ 1, we inductively define

1). ϕm ∈ D is any satisfying

(1.5) Ffm−1
(ϕm) ≥ tm‖Ffm−1

‖D.

2). Define am as
‖fm−1 − amϕm‖ = min

a∈R

‖fm−1 − aϕm‖.

3). Denote
fm := fm−1 − amϕm.

Let us make a remark that justifies the idea of the dual greedy algorithms in terms of
real analysis. We consider here approximation in uniformly smooth Banach spaces. For a
Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖ + ‖x− uy‖) − 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness ρ(u) is an even
convex function satisfying the inequalities

max(0, u− 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).

The following well known proposition is a simple corollary of the definition of a uniformly
smooth Banach space.
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Proposition 1.1. Let X be a uniformly smooth Banach space. Then for any x 6= 0 and y
we have

(1.6) Fx(y) =

(

d

du
‖x+ uy‖

)

(0) = lim
u→0

(‖x+ uy‖ − ‖x‖)/u.

Proposition 1.1 shows that in the WDGA we are looking for an element ϕm ∈ D that
provides a big derivative of the quantity ‖fm−1 + ug‖. Thus, we have two classes of greedy
algorithms in Banach spaces. The first one is based on a greedy step of the form (1.3). We
call this class the class of X-greedy algorithms. The second one is based on a greedy step
of the form (1.5). We call this class the class of dual greedy algorithms. A very important
feature of the dual greedy algorithms is that they can be modified into a weak form. The
term “weak” in the definition of the WDGA means that at the greedy step (1.5) we do not
shoot for the optimal element of the dictionary which realizes the corresponding sup but are
satisfied with weaker property than being optimal. The obvious reason for this is that we
do not know in general that the optimal one exists. Another, practical reason is that the
weaker the assumption the easier to satisfy it and, therefore, easier to realize in practice.

From the definition of a dictionary it follows that any element f ∈ X can be approximated
arbitrarily well by finite linear combinations of the dictionary elements. The primary goal
of this paper is to study representations of an element f ∈ X by a series

(1.7) f ∼

∞
∑

j=1

cj(f)gj(f), gj(f) ∈ D, cj(f) > 0, j = 1, 2, . . . .

In building a representation (1.7) we should construct two sequences: {gj(f)}∞j=1 and
{cj(f)}∞j=1. In this paper the construction of {gj(f)}∞j=1 will be based on ideas used in
greedy-type nonlinear approximation (greedy-type algorithms). This justifies the use of the
term greedy expansion for (1.7) considered in the paper. We will consider two different
classes of greedy expansions that correspond to the above two classes of greedy algorithms.
The first class is the class of X-greedy expansions obtained by X-greedy algorithms and
the second class is the class of dual greedy expansions obtained by dual greedy algorithms.
The X-Greedy Algorithm provides a X-greedy expansion and the WDGA provides a dual
greedy expansion.

We begin our discussion with known results on the X-greedy expansions. There is no
results on X-Greedy Algorithms in general uniformly smooth Banach spaces. The reader
can find some open problems on the X-Greedy Algorithms in a survey [T5, p.73, p.94]. We
discuss here the results on the PGA. The first steps in the theory of greedy approximation
were devoted to the study of convergence of the expansion (1.7) and were done in a Hilbert
space. P.J. Huber [H] proved convergence of the PGA in the weak topology and conjectured
that the PGA converges in the strong sense (in the norm of H). L. Jones [J1] proved
this conjecture. It is a fundamental result in the theory of greedy approximation that
guarantees convergence of (1.7), obtained by the PGA, for any f ∈ H and any dictionary
D. Convergence of the WGA(τ) is also well studied. A criterion on the weakness sequence
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τ for convergence of the WGA(τ) for each dictionary D and any element f ∈ H has been
found in [T4].

We proceed to the results on rate of approximation by the PGA. It was proved in [DT]
that for a general dictionary D the Pure Greedy Algorithm provides the estimate

‖fm‖ ≤ m−1/6, f ∈ A1(D).

The above estimate was improved a little in [KT] to

‖fm‖ ≤ 4m−11/62, f ∈ A1(D).

The following problem (see [T5, p.65, Open Problem 3.1]) is a central theoretical problem
in greedy approximation in Hilbert spaces.

Open problem. Find the order of decay of the sequence

γ(m) := sup
f∈A1(D),D

‖fm‖.

Recently, the known upper bounds in approximation by the Pure Greedy Algorithm have
been improved in [S]. Sil’nichenko proved the estimate

γ(m) ≤ Cm− s
2(2+s)

where s is a solution from [1, 1.5] of the equation

(1 + x)
1

2+x

(

2 + x

1 + x

)

−
1 + x

x
= 0.

Numerical calculations of s (see [S]) give

s

2(2 + s)
= 0.182 · · · > 11/62.

The technique used in [S] is a further development of a method from [KT].
There is also some progress in the lower estimates. The estimate

γ(m) ≥ Cm−0.27,

with a positive constant C, has been proved in [LiT]. For previous lower estimates see [T5,
p.59].

The results on the PGA discussed above as results on the X-greedy expansions can also
be considered as results on the dual greedy expansions. We proceed to further discussion of
results on the dual greedy expansions. For the WGA(t) with τ = {t}, t ∈ (0, 1] the following
error estimate has been proved in [T2]

‖fm‖ ≤ (1 +mt2)−t/(4+2t), f ∈ A1(D).
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This estimate implies the inequality

‖fm‖ ≤ Cm−t/6, f ∈ A1(D),

with the exponent t/6 approaching 0 linearly in t. It was proved in [LiT] that the corre-
sponding exponent cannot decrease to 0 at a slower rate than linearly. These results provide
understanding of the dependence of rate of approximation on the weakness parameter t.

The WDGA provides a dual greedy expansion in a Banach space. We do not have a
general convergence result for the WDGA. The reader can find some open problems on the
behavior of the WDGA in [T5, p.73]. There is a convergence result due to Ganichev and
Kalton [GK] for uniformly smooth Banach spaces satisfying an extra condition property Γ
(see Section 2). In Section 2 we give other proof of this convergence result.

The construction of {gj(f)}∞j=1 is, clearly, the most important and difficult part in build-
ing a representation (1.7). It was pointed out in [T6] that we have a great flexibility in
choosing the coefficients cj(f) of the expansion (1.7). In [T6] this flexibility was used for
constructing a dual greedy expansion that converges in any uniformly smooth Banach space.
We discuss these results in more detail. The construction from [T6] depends on two numer-
ical parameters t ∈ (0, 1] (the weakness parameter) and b ∈ (0, 1) (the tuning parameter of
the approximation method). The construction also depends on a majorant µ of the modulus
of smoothness of the Banach space X .

Dual Greedy Algorithm with parameters (t, b, µ) (DGA(t, b, µ)). Let X be a uni-
formly smooth Banach space with modulus of smoothness ρ(u) and let µ(u) be a continuous
majorant of ρ(u): ρ(u) ≤ µ(u), u ∈ [0,∞). For parameters t ∈ (0, 1], b ∈ (0, 1] we define
sequences {fm}

∞
m=0, {ϕm}∞m=1, {cm}

∞
m=1 inductively. Let f0 := f . If for m ≥ 1 fm−1 = 0

then we set fj = 0 for j ≥ m and stop. If fm−1 6= 0 then we conduct the following three
steps:

1). take any ϕm ∈ D such that

Ffm−1
(ϕm) ≥ t‖Ffm−1

‖D;

2). choose cm > 0 from the equation

‖fm−1‖µ(cm/‖fm−1‖) =
tb

2
cm‖Ffm−1

‖D;

3). define
fm := fm−1 − cmϕm.

In [T6] we proved the following convergence result.

Theorem 1.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) and let µ(u) be a continuous majorant of ρ(u) with the property µ(u)/u ↓ 0 as u→ +0.
Then for any t ∈ (0, 1] and b ∈ (0, 1) the DGA(t, b, µ) converges for each dictionary D and
all f ∈ X.

We proceed to results on Banach spaces with power type modulus of smoothness ρ(u) ≤
γuq, q ∈ (1, 2]. It is well known (see [LT]) that power type modulus of smoothness of
nontrivial Banach spaces are limited to the case q ∈ [1, 2]. The following result from [T6]
gives the rate of convergence.
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Theorem 1.2. Assume X has modulus of smoothness ρ(u) ≤ γuq, q ∈ (1, 2]. Denote
µ(u) := γuq. Then for any dictionary D and any f ∈ A1(D) the rate of convergence of the
DGA(t, b, µ) is given by

‖fm‖ ≤ C(t, b, γ, q)m−
t(1−b)

p(1+t(1−b)) , p :=
q

q − 1
.

In this paper we push the flexibility in choosing the coefficients cj(f) in the expansion (1.7)
to the extreme. We make these coefficients independent of an element f ∈ X . Surprisingly,
for properly chosen coefficients we obtain results for the corresponding dual greedy expansion
similar to the above Theorems 1.1 and 1.2. Even more surprisingly, we obtain similar results
for the corresponding X-greedy expansions. We proceed to the formulation of these results.
Let C := {cm}

∞
m=1 be a fixed sequence of positive numbers. We restrict ourselves to positive

numbers because of the symmetry of the dictionary D.

X-Greedy Algorithm with coefficients C (XGA(C)). We define f0 := f , G0 := 0.
Then, for each m ≥ 1, we inductively define

1). ϕm ∈ D is such that (we assume existence)

‖fm−1 − cmϕm‖X = inf
g∈D

‖fm−1 − cmg‖X .

2). Denote
fm := fm−1 − cmϕm, Gm := Gm−1 + cmϕm.

Dual Greedy Algorithm with weakness τ and coefficients C (DGA(τ, C)). Let
τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f , G0 := 0. Then, for
each m ≥ 1, we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1
(ϕm) ≥ tm‖Ffm−1

‖D.

2). Define
fm := fm−1 − cmϕm, Gm := Gm−1 + cmϕm.

In this paper we consider the case τ = {t}, t ∈ (0, 1]. We will write t instead of τ in the
notation. The first result on convergence properties of the DGA(t, C) has been obtained in
[T6]. We formulate it here.

Theorem 1.3. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Assume C = {cj}

∞
j=1 is such that

∞
∑

j=1

cj = ∞, and, for any y > 0,
∞
∑

j=1

ρ(ycj) <∞.
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Then for the DGA(t, C) we have
lim inf
m→∞

‖fm‖ = 0.

In Section 2 we prove an analogue of Theorem 1.3 for the XGA(C). In Section 3 we
improve upon the convergence in Theorem 1.3 in the case of uniformly smooth Banach
spaces with power type modulus of smoothness. Under an extra assumption on C we replace
lim inf by lim.

Theorem 1.4. Let C ∈ `q \ `1 be a monotone sequence. Then the DGA(t, C) and the
XGA(C) converge for each dictionary and all f ∈ X in any uniformly smooth Banach space
X with modulus of smoothness ρ(u) ≤ γuq, q ∈ (1, 2].

In Section 4 we address the question of rate of approximation for f ∈ A1(D). We prove
the following theorem.

Theorem 1.5. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, q ∈ (1, 2]. We set s := (1 + 1/q)/2 and Cs := {k−s}∞k=1. Then the DGA(t, Cs)
and XGA(Cs) (for this algorithm t = 1) converge for f ∈ A1(D) with the following rate: for
any r ∈ (0, t(1 − s))

‖fm‖ ≤ C(r, t, q, γ)m−r.

In the case t = 1 Theorem 1.5 provides rate of convergence m−r for f ∈ A1(D) with r
arbitrarily close to (1− 1/q)/2. Theorem 1.2 provides similar rate of convergence. It would
be interesting to understand if the ratem−(1−1/q)/2 is the best that can be achieved in greedy
expansions (for each D, any f ∈ A1(D), and any X with ρ(u) ≤ γuq, q ∈ (1, 2]). We note
that there are greedy approximation methods that provide error bound of the order m1/q−1

for f ∈ A1(D) (see survey [T5] and [T8] for recent results). However, these approximation
methods do not provide an expansion. We discuss one of such approximation methods in
Section 4.

2. Convergence

We begin with a simple well known lemma.

Lemma 2.1. For any elements ψ 6= 0, ϕ, and a number c one has

(2.1) ‖ψ − cϕ‖ ≤ ‖ψ‖(1 + 2ρ(c‖ϕ‖/‖ψ‖))− cFψ(ϕ).

Proof. From the definition of modulus of smoothness we have

(2.2) ‖ψ − cϕ‖ + ‖ψ + cϕ‖ ≤ 2‖ψ‖(1 + ρ(c‖ϕ‖/‖ψ‖)).

Next,

(2.3) ‖ψ + cϕ‖ ≥ Fψ(ψ + cϕ) = ‖ψ‖ + cFψ(ϕ).

Combining (2.2) and (2.3) we obtain (2.1). �

8



Lemma 2.2. Let f , f ε, ε ≥ 0, A(ε) > 0, be such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D).

Then for

fk := f −

k
∑

j=1

cjϕj , ϕj ∈ D, j = 1, . . . , k,

we have

‖Ffk
‖D ≥ (‖fk‖ − ε)/(A(ε) + Ak), Ak :=

k
∑

j=1

|cj |.

Proof. Denote

Gk :=
k

∑

j=1

cjϕj .

Then

‖fk‖ = Ffk
(fk) = Ffk

(f − f ε + f ε −Gk) ≤ ε+ Ffk
(f ε −Gk) ≤ ε+ ‖Ffk

‖D(A(ε) +Ak). �

We give a new proof of the following theorem from [GK] on convergence of the Weak Dual
Greedy Algorithm (WDGA) defined in the Introduction. We will prove the convergence
result under an extra assumption on a Banach space X .

Definition 2.1 (Property Γ). A uniformly smooth Banach space has property Γ if there
is a constant β > 0 such that for any x, y ∈ X, satisfying Fx(y) = 0, we have

‖x+ y‖ ≥ ‖x‖ + βFx+y(y).

Theorem 2.1. Let X be a uniformly smooth Banach space with property Γ. Then the
WDGA(τ) with τ = {t}, t ∈ (0, 1], converges for each dictionary and all f ∈ X.

Proof. Let {fm}
∞
m=0 be a sequence generated by the WDGA(t). Then

(2.4) fm−1 = fm + amϕm, Ffm
(ϕm) = 0.

We use property Γ with x := fm and y := amϕm and obtain

(2.5) ‖fm−1‖ ≥ ‖fm‖ + βamFfm−1
(ϕm).

This inequality and monotonicity of the sequence {‖fm‖} imply that

(2.6)
∞
∑

m=1

amFfm−1
(ϕm) <∞ ⇒

∞
∑

m=1

am‖Ffm−1
‖D <∞.
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We consider separately two cases

(I)
∞
∑

m=1

am = ∞, (II)
∞
∑

m=1

am <∞.

Consider the case (I). By property Γ we get (see (2.5))

(2.7) ‖fm‖ ≤ ‖fm−1‖ − βamFfm−1
(ϕm) ≤ ‖fm−1‖ − tβam‖Ffm−1

‖D.

Let ε > 0, A(ε) > 0, and f ε be such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D).

By Lemma 2.2

(2.8) ‖Ffm−1
‖D ≥ (‖fm−1‖ − ε)/(A(ε) + Am−1), Ak :=

k
∑

j=1

aj.

We complete the proof in case (I) by the contradiction argument. Assume limm→∞ ‖fm‖ =
α > 0. Set ε := α/2. Then (2.7) and (2.8) imply

‖fm‖ ≤ ‖fm−1‖

(

1 −
tβam

2(A(ε) +Am−1)

)

.

The assumption (I) implies

∞
∑

m=1

am
A(ε) + Am−1

= ∞ ⇒ ‖fm‖ → 0.

In the second case (II) we also argue by contradiction. The argument in this case is the
same as in [GK]. Assume

lim
m→∞

‖fm‖ = α > 0.

Then by (II) we have fm → f∞ 6= 0 as m→ ∞. By uniform smoothness of X we get

(2.9) lim
m→∞

‖Ffm
− Ff∞‖ = 0, lim

m→∞
‖Ffm

− Ffm−1
‖ = 0.

In particular, (2.4) and (2.9) imply that

(2.10) lim
m→∞

Ffm−1
(ϕm) = 0 ⇒ lim

m→∞
‖Ffm

‖D = 0.

We have Ff∞ 6= 0 and therefore there is a g ∈ D such that Ff∞(g) > 0. However, by (2.9)
and (2.10)

Ff∞(g) = lim
m→∞

Ffm
(g) ≤ lim

m→∞
‖Ffm

‖D = 0.

The obtained contradiction completes the proof. �

We now proceed to the convergence results in general uniformly smooth Banach spaces.
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Theorem 2.2. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Assume that the coefficients sequence C satisfies the conditions

(2.11)

∞
∑

k=1

ck = ∞,

(2.12)

∞
∑

k=1

ρ(θck) <∞ for any θ > 0.

Then for the DGA(t, C) and for the XGA(C) we have for each dictionary and any f ∈ X

lim inf
m→∞

‖fm‖ = 0.

Proof. In the case of the DGA(t, C) Theorem 2.2 has been proved in [T6]. We give here
other proof that works for both algorithms from Theorem 2.2. Let fm−1 be a residual after
m− 1 steps of either the DGA(t, C) or the XGA(C). Let ϕm be such that

(2.13) Ffm−1
(ϕm) ≥ t‖Ffm−1

‖D.

Then
inf
g∈D

‖fm−1 − cmg‖ ≤ ‖fm−1 − cmϕm‖.

Thus, in both cases (DGA(t, C) and XGA(C)) it is sufficient to estimate ‖fm−1 − cmϕm‖
with ϕm satisfying (2.13). By Lemma 2.1 we get

‖fm−1 − cmϕm‖ ≤ ‖fm−1‖(1 + 2ρ(cm/‖fm−1‖)) − tcm‖Ffm−1
‖D.

Applying Lemma 2.2 we obtain

(2.14) ‖fm−1 − cmϕm‖ ≤ ‖fm−1‖(1 + 2ρ(cm/‖fm−1‖)) −
tcm(‖fm−1‖ − ε)

A(ε) + Am−1
.

We complete the proof by the contradiction argument. Assume that lim infm→∞ ‖fm‖ > 0.
Then there exist α > 0 and N such that ‖fm‖ ≥ α for m ≥ N . We set ε = α/2 and obtain
from (2.14) the following inequality for both algorithms

(2.15) ‖fm‖ ≤ ‖fm−1‖

(

1 −
tcm

2(A(ε) + Am−1)
+ 2ρ(cm/α)

)

, m > N.

We now use our assumption on the C: (2.11) implies

(2.16)

∞
∑

m=1

tcm
A(ε) + Am−1

= ∞,

and (2.12) gives

(2.17)

∞
∑

m=1

ρ(cm/α) <∞.

The relations (2.15)–(2.17) imply that ‖fm‖ → 0 as m → ∞. We got a contradiction that
completes the proof. �

11



3. Convergence in the case of power type modulus of smoothness

In this section we prove some convergence results in the uniformly smooth Banach spaces
with ρ(u) ≤ γuq, q ∈ (1, 2]. Assume that the coefficients sequence C satisfies the following
conditions

(3.1) C ∈ `q \ `1,

(3.2) lim
k→∞

cq−1
k

k
∑

j=1

cj = 0.

The condition (3.1) corresponds to the conditions (2.11) and (2.12). The condition (3.2) is
an extra condition. However, in some cases (3.2) is automatically satisfied. We give one
result to that effect.

Proposition 3.1. Any monotone sequence C satisfying (3.1) satisfies (3.2).

Proof. A monotone sequence C ∈ `q of positive numbers is a nonincreasing sequence. Let
ε > 0 be given. Find N such that

∑

j>N c
q
j < ε. Then for any k > N we have

(3.3) cq−1
k

k
∑

j=1

cj = cq−1
k

N
∑

j=1

cj + cq−1
k

k
∑

j=N+1

cj

≤ cq−1
k

N
∑

j=1

cj +
k

∑

j=N+1

cqj ≤ cq−1
k

N
∑

j=1

cj + ε.

Taking into account that ck → 0 as k → ∞, we complete the proof. �

Theorem 3.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, q ∈ (1, 2]. Assume that the coefficients sequence C satisfies (3.1) and (3.2).
Then for each dictionary D and any f ∈ X we have for the DGA(t, C) and the XGA(C)

lim
m→∞

‖fm‖ = 0.

Proof. We begin with the inequality (2.14) proved in Section 2 for ϕm satisfying (2.13)

(3.4) ‖fm−1 − cmϕm‖ ≤ ‖fm−1‖(1 + 2ρ(cm/‖fm−1‖)) −
tcm(‖fm−1‖ − ε)

A(ε) + Am−1
.

We set ak := ‖fk−1‖ − ε and note that

(3.5) ak+1 ≤ ak + ck.
12



Using the fact that the function ρ(u)/u is monotone increasing on [0,∞) we obtain from
(3.4) for ak > 0

(3.6) ak+1 ≤ ak

(

1 −
tck

A(ε) +Ak−1
+ 2

‖fk−1‖

ak
ρ

(

ck
‖fk−1‖

))

≤ ak

(

1 −
tck

A(ε) +Ak−1
+ 2ρ

(

ck
ak

))

≤ ak

(

1 −
tck

A(ε) + Ak−1
+ 2γ

(

ck
ak

)q)

.

Denote

c′k :=
tck

A(ε) + Ak−1
.

We choose a sequence {bk} such that

2γ(ck/bk)
q = c′k, bk = (2γ)1/qck(c

′
k)

−1/q.

Representing

bk = (2γ)1/qt−1/qc
1−1/q
k (A(ε) + Ak−1)

1/q

we see from the assumption (3.2) that bk → 0 as k → ∞.
The inequality (3.6) guarantees that for k such that ak ≥ bk we have ak+1 ≤ ak.
Let

U := {k : ak ≥ bk}.

If the set U is finite then we get

lim sup
k→∞

ak ≤ lim
k→∞

bk = 0.

This implies
lim sup
m→∞

‖fm‖ ≤ ε.

Consider the case when U is infinite. We note that Theorem 2.2 implies that there is a
subsequence {kj} such that akj

≤ 0, j = 1, 2, . . . . This means that

U = ∪∞
j=1[lj, nj]

with the property nj−1 < lj − 1. For k /∈ U we have

(3.7) ak < bk.

For k ∈ [lj, nj ] we have by (3.5) and the monotonicity property of ak, when k ∈ [lj, nj], that

(3.8) ak ≤ alj ≤ alj−1 + clj−1 ≤ blj−1 + clj−1.

By (3.7) and (3.8) we obtain

lim sup
k→∞

ak ≤ 0 ⇒ lim sup
m→∞

‖fm‖ ≤ ε.

Taking into account that ε > 0 is arbitrary we complete the proof. �

Corollary 3.1. Let C ∈ `q \ `1 be a monotone sequence. Then the DGA(t, C) and the
XGA(C) converge for each dictionary and all f ∈ X in any uniformly smooth Banach space
X with modulus of smoothness ρ(u) ≤ γuq, q ∈ (1, 2].

Proof. It follows from Theorem 3.1 and Proposition 3.1. �

13



4. Rate of approximation

In this section we consider the DGA(t, C) and the XGA(C) with a specific sequence C.
For a special C we prove the rate of convergence results in the uniformly smooth Banach
spaces with modulus of smoothness ρ(u) ≤ γuq, q ∈ (1, 2].

Theorem 4.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, q ∈ (1, 2]. We set s := (1 + 1/q)/2 and Cs := {k−s}∞k=1. Then the DGA(t, Cs)
and XGA(Cs) (for this algorithm t = 1) converge for f ∈ A1(D) with the following rate: for
any r ∈ (0, t(1 − s))

‖fm‖ ≤ C(r, t, q, γ)m−r.

Proof. We begin with the inequality (2.14) proved in Section 2. Using the assumption
f ∈ A1(D), we write (2.14) with ε = 0 and A(ε) = 1

(4.1) ‖fm‖ ≤ ‖fm−1‖

(

1 −
tcm

1 + Am−1
+ 2γ(cm/‖fm−1‖)

q

)

.

We have

Am−1 =

m−1
∑

k=1

k−s ≤ 1 +

∫ m

1

x−sdx = 1 + (1 − s)−1(m1−s − 1).

Taking into account that 1 − s < 1/2 we get

1 + Am−1 ≤ (1 − s)−1m1−s.

Therefore,

(4.2)
tcm

1 + Am−1
≥
t(1 − s)

m
.

We will need the following technical lemma. This lemma is a more general version of Lemma
2.1 from [T1] (see also Remark 5.1 in [T7]).

Lemma 4.1. Let a sequence {an}
∞
n=1 have the following property. For given positive num-

bers α < β ≤ 1, A > a1 we have for all n ≥ 2

(4.3) an ≤ an−1 + A(n− 1)−α;

if for some ν ≥ 2 we have

aν ≥ Aν−α

then

(4.4) aν+1 ≤ aν(1 − β/ν).
14



Then there exists a constant C(α, β) such that for all n = 1, 2, . . . we have

an ≤ C(α, β)An−α.

We will apply this lemma with an := ‖fn−1‖, α := r, β := (r+t(1−s))/2 and A specified
later. Let us check the conditions (4.3) and (4.4) of Lemma 4.1. By the inequality

‖fm‖ ≤ ‖fm−1‖ + cm = ‖fm−1‖ +m−s

the condition (4.3) holds for A ≥ 1. Assume that am ≥ Am−r. Then

(4.5) (cm/am)q ≤ A−qm−(s−r)q ≤ A−qm−1.

Setting A := (2γ)1/q(t(1 − s) − β)−1/q we obtain from (4.1), (4.2), and (4.5)

am+1 ≤ am(1 − β/m)

provided am ≥ Am−r. Thus (4.4) holds. Applying Lemma 4.1 we get

am ≤ C(r, t, q, γ)m−r. �

We suggest to study the following asymptotic characteristics of greedy expansions. We
begin with a pair of a Banach space X and a dictionary D

vm(X,D) := inf
C

sup
f∈A1(D)

‖fm‖,

where {fm} is a sequence of residuals of the XGA(C) (in this case we write vXm(X,D)) or of
the DGA(t, C) (in this case we write vtm(X,D)). Next, for a Banach space X

vm(X) := inf
C

sup
D

sup
f∈A1(D)

‖fm‖

for both the XGA(C) and the DGA(t, C). Finally, for a collection of Banach spaces with
modulus of smoothness ρ(u) ≤ γuq, q ∈ (0, 1]

vm(γ, q) := inf
C

sup
X:ρ(u)≤γuq

sup
D

sup
f∈A1(D)

‖fm‖.

Theorem 4.1 gives an upper estimate for the vm(γ, q). It would be interesting to find the
behavior of these characteristics and also to find optimal coefficients C.

Our main interest in this paper is the study of greedy expansions with coefficients assigned
in advance. We now discuss a different setting that is close in spirit to the main setting of the
paper. This setting concerns a convex approximation of elements from A1(D). Generalizing
a setting for a Hilbert space (see [J2], [B]) the authors of [DGDS] considered the following

15



setting in a Banach space. We remind some definitions from [DGDS]. An incremental
sequence is any sequence a1, a2, . . . of X so that a1 ∈ D and for each n ≥ 1 there are some
gn ∈ D and λn ∈ [0, 1] so that

an = (1 − λn)an−1 + λngn, (a0 = 0).

We say that an incremental sequence a1, a2, . . . is ε-greedy (with respect to f) if (a0 = 0)

‖f − an‖ < inf
λ∈[0,1];g∈D

‖f − ((1 − λ)an−1 + λg)‖ + εn, n = 1, 2, . . . .

It is pointed out in [DGDS] that the sequence {λn} can be selected beforehand. They
say that an incremental sequence a1, a2, . . . is ε-greedy (with respect to f) with convexity
schedule λ1, λ2, . . . if (a0 = 0)

‖f − an‖ < inf
g∈D

‖f − ((1 − λn)an−1 + λng)‖+ εn, n = 1, 2, . . . .

This is a X-greedy type algorithm. It is proved in [DGDS] that if X is a uniformly smooth
Banach space with ρ(u) ≤ γuq, q ∈ (1, 2], then one can choose the convexity schedule
λn := 1/(n+ 1) and εn := εn−q and get the rate of convergence

‖f − an‖ ≤ C(q, γ, ε)n1/q−1, f ∈ A1(D).

We discuss an analogue of the above setting in the case of dual greedy algorithm. The
following dual greedy algorithm was considered in [T3].

Weak Relaxed Greedy Algorithm (WRGA). We define f r0 := f r,τ0 := f and Gr0 :=
Gr,τ0 := 0. Then for each m ≥ 1 we inductively define

1). ϕrm := ϕr,τm ∈ D is any satisfying

Ffr
m−1

(ϕrm −Grm−1) ≥ tm sup
g∈D

Ffr
m−1

(g −Grm−1).

2). Find 0 ≤ λm ≤ 1 such that

‖f − ((1 − λm)Grm−1 + λmϕ
r
m)‖ = inf

0≤λ≤1
‖f − ((1 − λ)Grm−1 + λϕrm)‖

and define
Grm := Gr,τm := (1 − λm)Grm−1 + λmϕ

r
m.

3). Denote
f rm := f r,τm := f −Grm.

The following result from [T3] provides rate of approximation of the WRGA.
16



Theorem 4.2. Let X be a uniformly smooth Banach space with the modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Then for a sequence τ := {tk}

∞
k=1, tk ≤ 1, k = 1, 2, . . . , we have for

any f ∈ A1(D) that

‖f r,τm ‖ ≤ C1(q, γ)(1 +

m
∑

k=1

tpk)
−1/p, p :=

q

q − 1
,

with a constant C1(q, γ) which may depend only on q and γ.

We consider the following variant of the WRGA with prescribed coefficients.

Weak Relaxed Greedy Algorithm with Equal Coefficients (WRGAEC). Let t ∈
(0, 1]. We define f0 := f and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1
(ϕm −Gm−1) ≥ t sup

g∈D
Ffm−1

(g −Gm−1).

2). Define
Gm := (1 − 1/m)Gm−1 + ϕm/m.

3). Denote
fm := f −Gm.

Theorem 4.3. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Then for t > 1 − 1/q the WRGAEC converges for any f ∈ A1(D)
with the rate

‖fm‖ ≤ C(t, q, γ)m1/q−1

with a constant C(t, q, γ) which may depend only on t, q, and γ.

Proof. We use the following inequality proved in [T3, (3.2)] for λ ∈ [0, 1] with λ = 1/m

(4.6) ‖fm−1 − λ(ϕm −Gm−1)‖ ≤ ‖fm−1‖(1 − λt+ 2ρ(2λ/‖fm−1‖)).

We will use Lemma 4.1 in the same way as in the proof of Theorem 4.1. We specify
an := ‖fn−1‖, α := 1 − 1/q, β := (t+ 1 − 1/q)/2, and A := 2(2γ)1/q(t− β)−1/q. Then one
can check that (4.6) implies (4.4). It is easy to check that (4.3) holds. Thus, application of
Lemma 4.1 completes the proof. �
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