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1. Introduction

Recently, Compressed Sensing (Compressive Sampling) has attracted a lot of attention
of both mathematicians and computer scientists. Compressed Sensing refers to a problem
of economical recovery of an unknown vector u ∈ R

m from the information provided by
linear measurements 〈u, ϕj〉, ϕj ∈ R

m, j = 1, . . . , n. The goal is to design an algorithm
that finds (approximates) u from the information y = (〈u, ϕ1〉, . . . , 〈u, ϕn〉) ∈ R

n. We
note that the most important case is when the number of measurements n is much smaller
then m. The crucial step here is to build a sensing set of vectors ϕj ∈ R

m, j = 1, . . . , n
that is good for all vectors u ∈ R

m. Clearly, the terms economical and good should be
clarified in a mathematical setting of the problem. For instance, economical may mean a
polynomial time algorithm. A natural variant of such setting, that is discussed here, uses
the concept of sparsity. Sparse representations of a function are not only a powerful analytic
tool but they are utilized in many application areas such as image/signal processing and
numerical computation. The backbone of finding sparse representations is the concept of
m-term approximation of the target function by the elements of a given system of functions
(dictionary). Since the elements of the dictionary used in the m-term approximation are
allowed to depend on the function being approximated, this type of approximation is very
efficient. We call a vector u ∈ R

m k-sparse if it has at most k nonzero coordinates. Now,
for a given pair (m, n) we want to understand what is the biggest sparsity k(m, n) such
that there exists a set of vectors ϕj ∈ R

m, j = 1, . . . , n and an economical algorithm A
mapping y into R

m in such a way that for any u of sparsity k(m, n) one would have an exact
recovery A(u) = u. In other words, we want to describe matrices Φ with rows ϕj ∈ R

m,
j = 1, . . . , n, such that there exists an economical algorithm of solving the following sparse
recovery problem.

The sparse recovery problem can be stated as the problem of finding the sparsest vector
u0 := u0

Φ(y) ∈ R
m:

(P0) min ‖v‖0 subject to Φv = y,

where ‖v‖0 := | supp(v)|. D. Donoho with coauthors (see, for instance, [CDS] and [DET]
and history therein) have suggested an economical algorithm and have begun a systematic
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study of the following question. For which measurement matrices Φ the highly non-convex
combinatorial optimization problem (P0) should be equivalent to its convex relaxation prob-
lem

(P1) min ‖v‖1 subject to Φv = y,

where ‖v‖1 denotes the ℓ1-norm of the vector v ∈ R
m? It is known that the problem (P1)

can be solved by linear programming technique. The ℓ1-minimization algorithm AΦ from
(P1) is an economical algorithm that we consider in this paper. Denote the solution to
(P1) by AΦ(y). It is known (see, for instance, [DET]) that for M -coherent matrices Φ one
has u0

Φ(Φu) = AΦ(Φu) = u provided u is k-sparse with k < (1 + 1/M)/2. This allows us

to build rather simple deterministic matrices Φ with k(m, n) ≍ n1/2 and recover with the
ℓ1-minimization algorithm AΦ from (P1).

Recent progress (see surveys [C], [D]) in Compressed Sensing resulted in proving the
existence of matrices Φ with k(m, n) ≍ n/ log(m/n) which is substantially larger than
n1/2. A number of authors (see, for instance, [Do], [CDD]) have pointed out a connection
between the Compressed Sensing problem and the problem of estimating the widths of finite
dimensional sets, studied at the end of seventies and the beginning of eighties of the 20th
century. In this paper we make the above mentioned connection more precise. We proceed
to a detailed discussion of recent results.

We begin with results from [Do]. D. Donoho [Do] formulated the following three proper-
ties of matrices Φ with normalized in ℓ2 columns and proved existence of matrices satisfying
these conditions. Let T be a subset of indices from [1, m]. Denote ΦT a matrix consisting
of columns of Φ with indices from T .

CS1. The minimal singular value of ΦT is ≥ η1 > 0 uniformly in T , satisfying |T | ≤
ρn/ logm.

CS2. Let WT denote the range of ΦT . Assume that for any T satisfying |T | ≤ ρn/ logm
one has

‖w‖1 ≥ η2n
1/2‖w‖2, ∀w ∈ WT , η2 > 0.

CS3. Denote T c := {j}m
j=1 \T . For any T , |T | ≤ ρn/ logm and for any w ∈ WT one has

for any v satisfying ΦT cv = w

‖v‖ℓ1(T c) ≥ η3(log(m/n))−1/2‖w‖1, η3 > 0.

It is proved in [Do] that if Φ satisfies CS1–CS3 then there exists ρ0 > 0 such that
u0

Φ(Φu) = AΦ(Φu) = u provided | suppu| ≤ ρ0n/ log m. Analysis in [Do] relates the Com-
pressed Sensing problem to the problem of estimating the Kolmogorov widths and their dual
- the Gel’fand widths.

We give the corresponding definitions. For a compact F ⊂ R
m the Kolmogorov width

dn(F, ℓp) := inf
Ln:dim Ln≤n

sup
f∈F

inf
a∈Ln

‖f − a‖p,
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where Ln is a linear subspace of R
m and ‖ · ‖p denotes the ℓp-norm. The Gel’fand width is

defined as follows
dn(F, ℓp) := inf

Vn

sup
f∈F∩Vn

‖f‖p,

where infimum is taken over linear subspaces Vn with dimension ≥ m− n. It is well known
that the Kolmogorov and the Gel’fand widths are related by the duality formula. S.M.
Nikol’skii was the first to use the duality idea in approximation theory. For instance (see
[I]), in the case of F = Bm

p is a unit ℓp-ball in R
m and 1 ≤ q, p ≤ ∞ one has

(1.1) dn(Bm
p , ℓq) = dn(Bm

q′ , ℓp′), p′ := p/(p − 1).

In a particular case p = 2, q = ∞ of our interest (1.1) gives

(1.2) dn(Bm
2 , ℓ∞) = dn(Bm

1 , ℓ2).

It has been established in approximation theory (see [K] and [GG]) that

(1.3) dn(Bm
2 , ℓ∞) ≤ C((1 + log(m/n))/n)1/2.

By C we denote here and in the whole paper an absolute constant. In other words, it was
proved (see (1.3) and (1.2)) that for any pair (m, n) there exists a subspace Vn, dimVn ≥
m − n such that for any x ∈ Vn one has

(1.4) ‖x‖2 ≤ C((1 + log(m/n))/n)1/2‖x‖1.

It has been understood in [Do] that properties of the null space N (Φ) := {x : Φx = 0}
of a measurement matrix Φ play an important role in the Compressed Sensing problem.
D. Donoho introduced in [Do] the following two characteristics associated with Φ that are
formulated in terms of N (Φ):

w(Φ, F ) := sup
x∈F∩N (Φ)

‖x‖2

and
ν(Φ, T ) := sup

x∈N (Φ)

‖xT‖1/‖x‖1,

where xT is a restriction of x onto T : (xT )j = xj for j ∈ T and (xT )j = 0 otherwise. He
proved that if Φ obeys the following two conditions

(A1) ν(Φ, T ) ≤ η1, |T | ≤ ρ1n/ log m;

(A2) w(Φ, Bm
1 ) ≤ η2((log mn)/n)1/2, mn ≍ nγ , γ > 0;
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then for any u ∈ Bm
1 we have

‖u − AΦ(Φu)‖2 ≤ C((log mn)/n)1/2.

We now proceed to the contribution of E. Candes, J. Romberg, and T. Tao published in
a series of papers. They (see [CD]) introduced the following Restricted Isometry Property
(RIP) of a sensing matrix Φ: δS < 1 is the S-restricted isometry constant of Φ if it is the
smallest quantity such that

(1.5) (1 − δS)‖c‖2
2 ≤ ‖ΦT c‖2

2 ≤ (1 + δS)‖c‖2
2

for all subsets T with |T | ≤ S and all coefficient sequences {cj}j∈T . Candes and Tao
([CD]) proved that if δ2S + δ3S < 1 then for S-sparse u one has AΦ(Φu) = u (recovery by
ℓ1-minimization is exact). They also proved existence of sensing matrices Φ obeying the
condition δ2S + δ3S < 1 for large values of sparsity S ≍ n/ log(m/n). For a positive number
a denote

σa(v)1 := min
w∈Rm:| supp(w)|≤a

‖v − w‖1.

In [CRT] the authors proved that if δ3S + 3δ4S < 2, then

(1.6) ‖u − AΦ(Φu)‖2 ≤ CS−1/2σS(u)1.

We note that properties of the RIP-type matrices have already been imployed in [K] for
the widths estimation. The inequality (1.3) with an extra factor (1 + log m/n) has been
established in [K]. The proof in [K] is based on properties of a random matrix Φ with
elements ±1/

√
n. It has been proved in [K] that a random matrix with elements ±1/

√
n

satisfies (with positive probability) the left-hand inequality in (1.5) for S ≍ n/(1+ log m/n)
(see (13) and (30) in [K]). It was also proved in [K] that this matrix satisfies the inequality

(1.7) ‖ΦT c‖2
2 ≤ C(1 + log m/n)‖c‖2

2

for any subset T with |T | ≤ n and any set of coefficients {cj}j∈T (see (29) in [K]). We note
that the proof of the right-hand inequality in (1.5) with S ≍ n/(1 + log m/n) for a random
n × m matrix with elements ±1/

√
n could be done in a way similar to the proof of (1.7).

In Section 3 we give an elaboration of the argument in [K] that allows us to get rid of the
extra log-factor in the estimate of dn(Bm

2 , ℓm
∞) proved in [K]. We note that this argument

does not use the duality formula contrary to the first proof of the sharp result from [GG].
Further investigation of the Compressed Sensing problem has been conducted by A.

Cohen, W. Dahmen, and R. DeVore ([CDD]). They proved that if Φ satisfies the RIP of
order 2k with δ2k < δ < 1/3 then one has

(1.8) ‖u − AΦ(Φu)‖1 ≤ 2 + 2δ

1 − 3δ
σk(u)1.

4



In the proof of (1.8) the authors used the following property (null space property) of matrices
Φ satisfying RIP of order 3k/2: for any x ∈ N (Φ) and any T with |T | ≤ k we have

(1.9) ‖x‖1 ≤ C‖xT c‖1.

The null space property (1.9) is closely related to the property (A1) from [Do]. The proof
of (1.8) from [CDD] gives similar to (1.8) inequality under assumption that Φ has null space
property (1.9) with C < 2.

We now discuss results of this paper. We say that a measurement matrix Φ has a Strong
Compressed Sensing Property (SCSP) if for any u ∈ R

m we have

(1.10) ‖u − AΦ(Φu)‖2 ≤ Ck−1/2σk(u)1

for k ≍ n/ log(m/n). We define a Weak Compressed Sensing Property (WCSP) by replacing
(1.10) by the weaker inequality

(1.11) ‖u − AΦ(Φu)‖2 ≤ Ck−1/2‖u‖1.

We say that Φ satisfies the Width Property (WP) if (1.4) holds for the null space N (Φ).
The main result of our paper states that the above three properties of Φ are equivalent.
The equivalence is understood in the following way. For example, we say that the WCSP
implies the SCSP if (1.11) with a constant C implies (1.10) with other constant C′. We
stress that we are interested here in the asymptotic behavior of the quantities as m and n
go to infinity.

2. New results

We mentioned in the Introduction that it is known that for any pair (m, n), n < m, there
exists a subspace Γ ⊂ R

m with dim Γ ≥ m − n such that

(2.1) ‖x‖2 ≤ Cn−1/2(ln(em/n))1/2‖x‖1, ∀x ∈ Γ.

We will study some properties of subspaces Γ satisfying (2.1) that are useful in compressed
sensing. Denote

S := S(m, n) := C−2n(ln(em/n))−1.

For x = (x1, . . . , xm) ∈ R
m denote supp(x) := {j : xj 6= 0}.

Lemma 2.1. Let Γ satisfy (2.1) and x ∈ Γ. Then either x = 0 or | supp(x)| ≥ S(m, n).

Proof. Assume x 6= 0. Then ‖x‖1 > 0. Denote Λ := supp(x). We have

(2.2) ‖x‖1 =
∑

j∈Λ

|xj | ≤ |Λ|1/2(
∑

j∈Λ

|xj |2)1/2 ≤ |Λ|1/2‖x‖2.

Using (2.1) we get from (2.2)

‖x‖1 ≤ |Λ|1/2S(m, n)−1/2‖x‖1.

Thus
|Λ| ≥ S(m, n).
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Lemma 2.2. Let Γ satisfy (2.1) and let x 6= 0, x ∈ Γ. Then for any Λ such that |Λ| <
S(m, n)/4 one has ∑

j∈Λ

|xj | < ‖x‖1/2.

Proof. Similar to (2.2)

∑

j∈Λ

|xj | ≤ |Λ|1/2S(m, n)−1/2‖x‖1 < ‖x‖1/2.

Lemma 2.3. Let Γ satisfy (2.1). Suppose u ∈ R
m is sparse with | supp(u)| < S(m, n)/4.

Then for any v = u + x, x ∈ Γ, x 6= 0, one has

‖v‖1 > ‖u‖1.

Proof. Let Λ := supp(u). Then

‖v‖1 =
∑

j∈[1,m]

|vj | =
∑

j∈Λ

|uj + xj | +
∑

j /∈Λ

|xj | ≥

∑

j∈Λ

|uj | −
∑

j∈Λ

|xj | +
∑

j /∈Λ

|xj | = ‖u‖1 + ‖x‖1 − 2
∑

j∈Λ

|xj|.

By Lemma 2.2

‖x‖1 − 2
∑

j∈Λ

|xj | > 0.

Lemma 2.3 guarantees that the following algorithm, known as the Basis Pursuit (see AΦ

from the Introduction), will find a sparse u exactly, provided | supp(u)| < S(m, n)/4:

uΓ := u + arg min
x∈Γ

‖u + x‖1.

Theorem 2.1. Let Γ satisfy (2.1). Then for any u ∈ R
m and u′ such that ‖u′‖1 ≤ ‖u‖1,

u − u′ ∈ Γ one has

(2.3) ‖u − u′‖1 ≤ 4σS/16(u)1,

(2.4) ‖u − u′‖2 ≤ (S/16)−1/2σS/16(u)1.

Proof. It is given that u − u′ ∈ Γ. Thus, (2.4) follows from (2.3) and (2.1). We now prove
(2.3). Let Λ, |Λ| = [S/16], be the set of indices of biggest in absolute value coordinates of
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u. Denote uΛ a restriction of u onto this set, i.e (uΛ)j = uj for j ∈ Λ and (uΛ)j = 0 for
j /∈ Λ. Also denote uΛ := u − uΛ. Then

(2.5) σS/16(u)1 = σ|Λ|(u)1 = ‖u − uΛ‖1 = ‖uΛ‖1.

We have
‖u − u′‖1 ≤ ‖(u − u′)Λ‖1 + ‖(u − u′)Λ‖1.

Next,
‖(u − u′)Λ‖1 ≤ ‖uΛ‖1 + ‖(u′)Λ‖1.

Using ‖u′‖1 ≤ ‖u‖1, we obtain

‖(u′)Λ‖1 − ‖uΛ‖1 = ‖u′‖1 − ‖u‖1 − ‖u′
Λ‖1 + ‖uΛ‖1 ≤ ‖(u − u′)Λ‖1.

Therefore,
‖(u′)Λ‖1 ≤ ‖uΛ‖1 + ‖(u − u′)Λ‖1

and

(2.6) ‖u − u′‖1 ≤ 2‖(u − u′)Λ‖1 + 2‖uΛ‖1.

Using the fact u − u′ ∈ Γ we estimate

(2.7) ‖(u − u′)Λ‖1 ≤ |Λ|1/2‖(u − u′)Λ‖2 ≤ |Λ|1/2‖u − u′‖2 ≤ |Λ|1/2S−1/2‖u − u′‖1.

Our assumption on |Λ| guarantees that |Λ|1/2S−1/2 ≤ 1/4. Using this and substituting (2.7)
into (2.6) we obtain

‖u − u′‖1 ≤ ‖u − u′‖1/2 + 2‖uΛ‖1

which gives (2.3):
‖u − u′‖1 ≤ 4‖uΛ‖1.

Corollary 2.1. Let Γ satisfy (2.1). Then for any u ∈ R
m one has

(2.8) ‖u − uΓ‖1 ≤ 4σS/16(u)1,

(2.9) ‖u − uΓ‖2 ≤ (S/16)−1/2σS/16(u)1.

Proposition 2.1. Let Γ be such that (1.11) holds with uΓ instead of AΦ(Φu) and k =
n/ ln(em/n). Then Γ satisfies (2.1).

Proof. Let u ∈ Γ. Then uΓ = 0 and we get from (1.11)

‖u‖2 ≤ C(n/ ln(em/n))−1/2‖u‖1.

Theorem 2.2. The following three properties of Φ are equivalent: Strong Compressed Sens-
ing Property, Weak Compressed Sensing Property, Width Property.

Proof. It is obvious that SCSP ⇒ WCSP. Corollary 2.1 with Γ = N (Φ) implies that WP ⇒
SCSP. Proposition 2.1 with Γ = N (Φ) implies that WCSP ⇒ WP. Thus the three properties
are equivalent.

The result (1.8) of [CRT] states that RIP with S ≍ n/ log(m/n) implies the SCSP.
Therefore, by Theorem 2.2 it implies the WP. We give in Section 3 a direct proof of the
above statement.
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3. A direct proof that RIP implies WP

We will show that any subspace L ⊂ R
m that is generated by a matrix Φ of the rank n

(L is spanned by the rows of Φ) that satisfies (1.5) with S ≍ n/(1 + log m/n) approximates
in ℓm

∞ metric the Euclidean ball with the optimal error:

(3.1) d(Bm
2 , L)ℓm

∞
≤ Cn−1/2(1 + log m/n)1/2.

We can assume that any n columns of the matrix Φ are linearly independent (we always can
achieve this by an arbitrarily small change in the elements of matrix Φ). Let e1, . . . , em be
the columns of matrix Φ. Then it is sufficient to prove (see [K]) that for any decomposition

(3.2) ein+1
=

n∑

s=1

λseis
, iν 6= iµ if ν 6= µ, 1 ≤ ν, µ ≤ n + 1,

the inequality

(3.3)
‖λ‖2

‖λ‖1

(
1 +

1

‖λ‖2

)
≤ Cn−1/2(1 + log m/n)1/2, λ = (λ1, . . . , λn),

holds. Let us rewrite (3.2) as follows:

n+1∑

s=1

λ̃sei
σ(s)

= 0

where
|λ̃1| ≥ · · · ≥ |λ̃n+1|

and among the coordinates of vector λ̃ = {λ̃S}n+1
s=1 there is 1 and all the λi, 1 ≤ i ≤ n.

By repeating the reasoning of Lemma 4.1 from [CDD] (see also Lemma 3 in [GG], [CRT]),
we obtain from (1.5) for S ≍ n/(1 + log m/n)

(3.4)






(∑4S
s=1 λ̃2

s

)1/2

≤ C′S−1/2
∑n+1

4S+1 |λ̃s|,
∑n+1

s=1 |λ̃s| ≤ C
∑n

s=S+1 |λ̃s|.
From (3.4) it follows that

(3.5) ‖λ̃‖2 ≤ CS−1/2‖λ̃‖1.

If (3.5) were not true, then the ‘positive share’ of ℓ2-norm of the vector λ̃ would be located
on the first 4S coordinates (see Lemma 4 in [K]), which contradicts (3.4).

Besides, because ‖λ̃‖2 > 1, from (3.5) we obtain ‖λ̃‖1 ≥ cS1/2, and, therefore, ‖λ‖1 ≥
cS1/2. Finally,

‖λ‖2

‖λ‖1
≤ ‖λ̃‖2

‖λ‖1
≤ 2‖λ̃‖2

‖λ̃‖1

≤ 2CS−1/2,

which is what we needed to prove.
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