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A GENERALIZED CURVELET TRANSFORM. APPROXIMATION
PROPERTIES

FRANCISCO J. BLANCO-SILVA

ABSTRACT. Some modifications are made to the original definitions of the
three Curvelet Transforms (continuous, semi-discrete and discrete—see [2], [3]
and [4]), which improves and simplifies the expressions of the related Parseval-
Plancherel formula and Calderén resolution of the identity. The results pre-
sented in this article cast new light on the structure and further properties of
curvelet-like schemes of approximation.

The discrete curvelet transform obtained here gives rise to a tight frame
for the space of square-integrable functions on the plane. Analysis based on
manipulation of the corresponding curvelet coefficients (with respect to this
frame) helps measure the regularity of functions in different smoothness spaces.
This information is used to offer characterizations of Lipschitz and Besov
spaces, as well as approximation spaces for sequences of finite-dimensional
linear spaces spanned by curvelets.

1. THE CURVELET TRANSFORM

The basic curvelets proposed by Candes and Donoho in [3] and [4] have Fourier
transforms obtained from tensor products of real-valued window functions for am-
plitude and phase, weighted accordingly with respect to a scaling parameter in
order to satisfy Calderén and Parseval-Plancherel integral identities (in a similar
fashion to the treatment of wavelets by Daubechies in [6]). But their choice allows

~

only representation of functions for which there exists ¢ > 0 such that f(§) = 0
for all £ € R? with [£] < . To be able to treat general functions in Lo(R?), they
introduce in the framework an auxiliary low-frequency radial wavelet together with
its shifts (but not its dilations).

We use this tensor product construction of curvelets while modifying slightly the
treatment of the shape of the support of their Fourier transforms. We introduce an
aspect-ratio weight function, which permits an alternative framework where no aux-
iliary non-curvelet functions are necessary for decomposition and reconstruction in
Lo(R?), and simpler expressions are obtained for the corresponding curvelet trans-
forms. Proposition 1.2, its corollary 1.2.1 and theorem 1.1 present improvements to
the results of Candés and Donoho in this direction. Also notice how the integration
measure in the integral identities presented in the results of this paper (d8 do(6) da)
is much simpler than the corresponding in [3, Theorem 1] (d3do(0) a=3dc).

In §1.1 we present this new definition of curvelets, the construction of the corre-
sponding curvelet transform, and we explore some basic properties of both regarding
norm estimates and shape considerations. In §1.4 we perform a discretization of
this curvelet transform by means of very simple quadrature formulas performed
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2 FRANCISCO J. BLANCO-SILVA

evaluating the triple integrals in sequences o, in R, 6,, € S!', and B, € R2
By carefully choosing these sequences, the discretizations are shown to offer tight
frames for the space Lo(R?). We explore some properties of these particular frames
needed in section 2 for approximation purposes.

We point out that the conditions of admissibility for the windows W and V in
the construction of the tight frames presented in this dissertation are much simpler
than the ones obtained in [4]. In their case, the windows are required to satisfy

o0

W@’ =1, re(3/4,3/2); i Vit—02=1, te(-1/2,1/2).

j=—o00 l=—00

In our case, the windows are required to satisfy, for some ag > 1 fixed,

1
W (p)? + W(agp)? = g oo’ 1 ag < p <1, V(w2 +V(w—-1)72=1.

1.1. The Continuous Curvelet Transform.

1.1.1. Definition of Curvelets. Basic Properties. Define amplitude windows as dila-
tions of a common real-valued function W € C£°(0, 00) with [~ W (t)? 4t — 1 and

supp W C [O%O,ao] for some o > 1: For each A > 0, set Wy (t) = A\"Y2W (¢/\).
Define phase windows as functions on the circle S' parameterized as dilations
of a common real-valued smooth function V' € CZ°(R) with ||V, @®) = 1 and
suppV C [-1,1]: Given 0 <A < ¥ and 6 € St, let Vyg: S' — R parameterized by
ATV2Y (2520), for w € [wy — m,wo + ) where wy is the only value in [—m, ) for
which 6 = e*°.
We then define the curvelets v,¢ in the frequency domain as follows.

Definition. A curvelet is a complex-valued function v,z : R? — C defined for each
scale 0 < o < 00, location 3 € R? and direction § € S' by its Fourier transform as

Fap6(6) = Wal[€) Vr(a) 0 (£/[€)*™7, (1)
where the aspect-ratio weight function 7: (0,00) — (0, §) has an absolute maximum
at m, > 0 and satisfies:

(i) 7|(0,m,) is non-decreasing, with i% 7(a) = 0.
(ii) 7|(m,,o0) is non-increasing, with ali_)rr;o T(a) = 0.

Remark 1.1. The support of the Fourier transform of a curvelet v,¢ is the annular
wedge {£ € R?: agta < €] < aga, larg € — wy| < 7()}; the aspect ratio between

the difference of its radii and the angular span is [(aigl)a: 27(a)]. The size of

these regions is [suppJage| = (o — é)oﬂ 7(a).

Notice that, according to this cons?cruction, there is an obvious relation among
curvelets within the same scaling factor o vag0(z) = Ya01 (Rg(ac - ﬁ)), where Ry is
the rotation with center the origin sending 1 to 6. But unlike wavelets, no relation

exists between different scaled basic curvelets v,01 and 7,701 a priori.

Some useful bounds and basic properties of the curvelets y,3¢ are stated below.
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FIGURE 1. The support of the Fourier transform of a curvelet v,g¢
for o >0, 3 € R% and § € S'.

1.1.2. Norm estimates of curvelets.

Lemma 1.1. Given admissible phase and amplitude windows V., W (respectively),
the following estimate holds for the frequency-domain k-th Laplacian of curvelets,
for allk > 0:

~ —2k—1/2
1A F 01120 z2) < Crvw (ar(a) 72, (2)
for some constant Cy y,w > 0.
Proof. Estimate (2) follows trivially for £ = 0 from the definition of curvelets, since
for p >0, 0 < w < 27,

Fao1 (pe™) = a7 27 (a) T VPW (p/ )V (w/T()).
For k > 0, recall that the expression in polar coordinates of the k-th Laplacian of
differentiable functions ¢: R? — R is given by

1—j
2k Lk+5*) o 92k—j+1
Ak(p :z : z : m,j ¥
+2m—1 8 2k—j+l—2ma 2m’?
° P P w
j=1 m=0

for some real values ¢y, ;.
For the Fourier transform of curvelets 7,01, it is

O?F=t15,01 (Peiw)

Qp2h—it1=2mp,2m

T 2m w
= (ar(a)) " PaPm 2k 62’;;221_;355) ey ) 32(2;5‘”) ,
and thus, the k-th Laplacians A*7,01 are given by the expression:
(ar(@)* A 01
2k Lk+157 ]
_ Z Z pjigv;z—l a2m71+j72kw(2kfj+172m) (E)T(a)72mv(2m) (%)
j=1 m=0
2k Lk+372]

:a72kz Z cmVjT(a)me[(%)j+2m—lw(2k7j+1f2m)(5)}V(Qm)(%)'
j=1 m=0
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As 7(a) < 1for all @ > 0, it is 7(a) ™2™ < 7(a) "2 for all m = 0,..., [k + 5 ];
j=1,...,2k; and thus the following estimate holds:
|A*F401(8))|
—2k— 1/2 2k Lk+l 4 (2k—j+1-2m)
< (ar(@)) " (max|cp, Z Z sup ‘ W — T wo |V Zm) Lo (®)s
Cr,v,w
which gives the statement. O

Lemma 1.2. Curvelets belong to the Schwartz class S(R?). In particular, for all
a>0, 6eR? 0eS? and k>0,

7= B Pago(@)| < (af = ) Crvaw a¥/27(a) /22, (3)

Proof. Since their Fourier transforms are C'°(R?) functions, curvelets belong triv-
ially to the Schwartz space S(R?). As the inverse Fourier transform of each par-

tial derivative satisfies (%)V(z) = (2mi)?%*2 23" 001 (2), the following
1 2

identity for the inverse Fourier transform of the k-th Laplacian holds:

k

(A%Fa01) " (2) = Y20 () 23" ya01 (2) = (—1)F(2m)*|2[* Y001 ().
=0

Thus,
o= B [ron (Rola = )| < ()2 [ 1A%5,00(6) .

Upper bounds for the integral on the right hand side of the estimate above may be
found using the size of the support of the Fourier transform of curvelets, [supp 7azs0|
(see remark 1.1), and the L, norm of the k-th Laplacian:

|z = B [yape ()] < (2m) 72 (af — 52) @*7(a) [ A w01 | Lo e)-
Using the estimate (2) on the inequality above yields (3). O

Lemma 1.3. Curvelets belong to the space LP(RQ) for all0 < p < oo. An estimate
for the L,—(quasi)norms is given by

[YagollL, &) < C(V, W, ag, p) a3/~ 2/Pr(a)t/2=2/p, (4)
Proof. For all x € R?, a >0, 3 € R? and # € S!,
o) < [ Raso(€)1ds < lsuppTasollFaselz.
< (o — )lIWHL ©0,00) 1V | 2oy @327 () /2.

This gives (4) for p = co. For 0 < p < 1, given a > 0, set (o) = a~!7(a)~!, and
consider the following decomposition:

/ a0 (2)]? dz = / a0 (@) dz + / a01 ()P dz.
R2 B2(0,¢(a)) R2\B2(0,¢(w))

I II
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Term I above is estimated by means of the essential supremum of |v401| in the
integration domain, By (O, ((a)):

1= [ paor(a)Pde < [B2(0,6() a0l
B2(0,¢(a))
< 1((0)? (03 = 2V MWL 0oy IVIE_ y@™/27(@)"/2  (by (3) with & = 0)
— r(0d = BV IWIE o) VI gy@®/22r(a)/22.

)
0]

To estimate II, set k(p) = [1/p] + 1, and let

Cov Wy = (21) 7P (af — a5 ) Crpy v

with C(p),v,w the constant from Lemma 1.2 for k = k(p).

II = / [Yao01(2)|P dzx
R2\B2(0,¢(e))

P/ 2=2k(PIP L (o )P/ 22k (P)P / dz

<C? —
p,V,W, R2\ B3 (0,¢(a)) |x‘2k(p)p

@0

(by (3) with k = k(p))

2k(p)p—2
o312 (o p/2-2k ) 2T (0T(@)

2k(p)p — 2

_ (P
- CP,V,W,ao

This last step is true since 1 — k(p)p < 0. Thus,

1/p
(/ [Yao1(x)|P dx) < C(V, W, ag, p)a®/ >=2/P7 () /272/7,
RQ

where

C(Va Wa()vp)

(gﬂ)l/pf%(p) Ck:(p),V7W }
1
(2k(p)p —2)""
After appropriate shift and rotation, estimate (4) is obtained for all 0 < p < 1,

a>0,3cR?and § €St
The cases 1 < p < oo of (4) follow from Hoélder’s inequality:

= 2(af — 57) max {ﬂ-l/p|W||Loo(0,oo) VLo ®)

[VasellL,®2) < ||7aﬁe||2/sz2) H%ﬁeHi;l(/ﬂgz) < O(V, W, ag,p) a®/2=2/Pr(a)1/272/p,
(]

Other estimates for the L,—(quasi)norms are possible by direct computation, and
posterior interpolation between the new estimates. The following are some useful
examples.

Lemma 1.4. For2 <p < o0,
[YagollL, @2y < C(V, W, ag, p) a3/~ 2/Pr(a)t/2=1/p, (5)
Proof. Notice first that we have an exact value for the Lo—norm of curvelets:

||70¢59||L2(]R2) = C(V> W)a1/2a (6)
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1/2
with C(V, W) = ||V||L2(R)(IR rzw(r)QdT) ludeed.
H%‘MHQLQ(RQ) = /R2|7a60(x)|2 dx = /Rzﬁa,(39(§)|2 dg§ (by Plancherel’s Theorem )
e}
2 arg w—arg 0\ 2
:/0 /Sl S (4) %V(%) pdpdo(w)
= P P 2 14 arg 0 s—arg6 2 ds
- 0 EW(E) @ V( () ) 7(a)
arg 0—m
ZOZ(/Rﬂ W(T)2dr> V112, ) (with r = £, dr = %)

This gives equation (5) for p = 2, and further use of Holder’s inequality together
with the Lo,—norm obtained in (4), gives (5) for all 2 < p < oo:

I

[Vasoll L, ®2) < ||7aﬁ0||2L/ﬁR2)||7aﬁ9||1L;2(g2)
< C(V, W, p, a0)(aM/2)2/7 (/27 () /2) 727 O
Lemma 1.5. For 1 <p <2,
Yapolle, @2y < C(V, W, ag,p)a®2=2/Pr(a)?275/P. (7)
Proof. This is a direct consequence of Holder’s inequality together with estimates (6)
and (4) for p=1:
Yagoll L2y < [assll 3 hn 1aso 5 o
< O(V, W, a0, p) (a7 () 3/2) /P~ (l/2)2-2/p, O
Lemma 1.6. For 1 <p <2, and allm € N,

agollz, g2y < Clm, V, W, a0, p) a2/p=1/27 (@) /p=1/2(1 4 a=2mr(a)=2m) %71,
(8)
Proof. Using equation (3) twice (one with k = 0, one with k = m), it is
/21 ()12 (1 + a‘2m7(a)_2m)
T+ o P

Integrating the previous expression, the following bound for the L;—norm of curvelets
is obtained:

|7(Xﬁ9($)| S C(ma Va VV7 Oéo)

VapollL, ®2)

< Cm, VW) ([

) oz3/27(04)1/2 (1 + af2m7'(oz)72m).

This gives (8) for p = 1. Further interpolation between (6) and this estimate
gives (8) for 1 < p < 2:
2/p—1 2-2
Ivasollz, @) < Iass 2,z Iassl 7,

2/p—

3/2 1/2 —2m —2m 1 1/2\2-2/p
S C(mamma()vp) « T(OZ) (1 +a T(CY) ) (a ) U
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Lemma 1.7. For1<p < oo, and allm € N,
VapellL,®2) < C(m,V,W,ag,p) a®27(a)l/? (1+ 072m7(04)72m)1/p- 9)

Proof. Interpolation between (8) for p = 1, m € N, and (4) for p = oo gives
estimate (9) directly:

1 1-1
VasollL, @2y < ||7aﬁ0||L/f()Rz)||7a,69”Lx<<1§2)

1/p

< C(m,V, W, a0, p) (a3/27(a)1/2(1 i a*ZmT(a)f2m)) (a3/27(a)1/2)1’1/”, 0

1.1.3. Shape of curvelets. The modulus of the curvelet v,g¢ is a smooth function
in R? with graph presenting a “plateau” effect: its mass is concentrated in a region
around the location 3. This region appears to the naked eye as the interior of
an ellipse with axes being both § and 6+, and eccentricity proportional to 7(a).
Outside of this region, the graph decreases to zero rapidly. In order to explain this
phenomenon, the use of differential geometry is needed.

Lemma 1.8. For any a >0, 8 € R? and § € S', the surface given by
raﬁgi Rz > (U,U) = (ua v, |’)/aﬁ9(u, ’U)|2) € R3a

is reqular at the point (B, |vape(B)[?), its tangent plane being horizontal, and the
First Fundamental Form being the identity matrixz. The coefficients of the Second
Fundamental Form are given by

e= éir(QO(j;E’ [{ /OOO r2 W(r) dr}2{ /j cosw V(%) dw}2

s

—/ TW(r)dr/ V(%)dw/ 7“3W(r)d7“/ cosQwV(TE"a))dw],
0 - 0

—T

2.5 o 2 (" i
;o _Sra {{/ r2w(7n)dr} / sinwV(%)dw/ cosw V() dw
0

7(e) - -

+/ T’W(T‘)d?"/ V(%)dw/ TBW(’I’)dT/ sinw coswV(T(ﬁ))dw}
0 -7 0

—T

g= 8:(20?;5 [{ /000 r2 W (r) dr}z{ /_7; SinwV(%) dw}2
_/OOOTW(T) dr /7T V(%) dw/ooo?"3 W (r)dr /Tr sinng(%) dw}.

—T —T

Proof. For simplicity, assume 8 = 0 and # = 1; the general case is obtained from
this after proper shift and rotation. Notice that

|’Y(¥01(u7 U)‘z = (%'—Ya(]l(ua U))2 + (%70401 (u7 v))za

where the real and imaginary parts of the curvelet are given by

Rrvaon (11, v) = /]R L W) L V() cos (2m(u,v) - €) e,

$Yao01(u,v) = /]Rz WS sy V(ZES) sin (2 (u, v) - €) dE.
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In particular,

a%gzm (u’v)Z—%/ aw (&) V(%’f) sin (2 (u,v) - €) d€,
T ) =~ [ W () V(2ES) sin (2n(u0) )
T ,0) = e / aw () V(Tiﬁ) cos (21, v) - €) d.
PO 1,0) = oyt [ W () V (255) cos (2m(us ) -€)

and furthermore,

a|%A)1|2 B Rva01 ~ 03001
5u (u,v) = 2Rv401(u,v) " (u,v) + 2 S¥q01(u, v) 5 (u,v)
= AT T w16y v (a8 cos (2m(u, v) - €) de
at(a) R2 o (@) ’

At the origin, (u,v) =0, it is

Aya01]?
ov

IYa01]?
ou

(0,0) = 0.

(07 O) -

So at (0,0, [Yas0(0,0)]? ) the tangent plane is spanned by both (1,0, M o) =

(1,0,0) and (0,1, %h} = (0,1,0). The coefficients of the First Fundamental
form are,

— |21 (0,0)]* = | (1,0, 22220L 0, 0)) | = 1,
F= 6%&01 (0,0) - 61:9?)01 (0,0) = (1 0, alva;ss\ (0, 0)) (O, ’B\Vggel (0, O)) 0,
G:|%(070>!2:}(0,173'ﬁ;—59'<0,0>)| =
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The coefficients of the Second Fundamental Form at (0, |401(0,0)|?) are,

ZBe2(0,0)

1 2 0 Ou? ,
= det (8 Laos 9La01| Ola01 ) = 0 ool
/EG _ 2 Ou 0 ou 0 ov 0
1

0
1 ou

01 2nl)
= 2 (£ R7001(0,0))” + 2 Rya01(0,0) %?}mm(o 0)

+2 (6u\y)/0601(0 0)) +2\yy°‘01(0 0 6u2 \970‘01(0 O)

[ e £y
[ glvv(%)v@ziﬁ)dg} }

-2 v v ava
| Feotow(@)vizy) dap

o J-
+ / / p? cosw W ( E)V(T(“’a)

_ 8:(;)5[/0 rW(r)dr/ V(45) do

f _ 1 det (BzFam Oluo01 o L01 ) — 82|7a01|2 (0 0)
/EG — F2 Oudv ou 0 ov 0 au ov ’
=2 %%’)’agl(o 0) §R"}’a01(0 0) + 2 §R’}/a01 (O 0) u3v §R7a01 (O 0)
+2%\Y’ya01(0 0) 0 \S"}/agl(o 0) + 2\9%01(0 0) qu \S’Yagl(o 0)
_ 8 €] arg& arg &
——mmﬂ/vwa>7@<m 6 W (1) v (255) e
+ [ aw () v (228) ]
8m2a
- UO W (r) dr /_WV(T(Q))dw
/0 3 W(r)dr [ sinw cosw V((—)d
oo 2 s s
+ {/ 2 W(r) dr} / sinw V(45) dw / coswV (=4 )dw},
0 —r .
1 8°r ar ar 32|%01|2
— t chl 01 201 —
g VEG — F? de ( o 9u |g Ov 0) Ov?
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V(EES) e | G W () V(EES) de
R2

2
v

/ r3W(T)dr/ sin2wV(T“(’l))dw
0

+{ /OOO P2 W (r) dr}Q{ /_W sinw V (745) dwﬂ, -

—T

T

Remark 1.2. Lemma 1.8 justifies the computation of the Dupin Indicatrix at the
center of surfaces I' g9 as means of approximating the shape of the highest level
curves for the square of moduli of curvelets v,4¢ nearby their locations 3 € R2.

Remark 1.3. The matrix representation of the Dupin Indicatrix of I'no1 at the
point (0, |7a01(0)|?) is given by

1IN /+1 0 0 1
T 0 e f x | =0.
Yy 0 f g Y

According to the sign of the sub-determinant resulting from removing the first row
and first column, the conics given by the Dupin Indicatrix is one of the following:

(i) If det (; g) = 0, the conic is degenerate. In this case, two parallel straight
lines.
(i) If det (% ) > 0, the conic is an ellipse.
(iii) Otherw1se it is a pair of hyperbolas.

In the computations below, let M = (87r20457(a)’1)72, and

Vi) :/’T V() () do, Hk(W)Z/OOOrkW(T)dr (e,

—T

IV,T(a): sin? w ( a) cos2w( (OL)) v@mwcosw(T )
01 = Vet (7(0) Ve (@) + Vit () Ve ()
+ 2vsinw(T Oé))VCObw(T (63 ) banJCOSUJ(T(a))'
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(oW Vs (7)) = 2 (W) s (W)W (7(0)) Ve (7()) )
= (W)Yo (7(@)) Veonss (7(0)
1y (W) (W1 (7(0)) Vs con (7(@) )
= 1 (W) 5 (W)2V1 (7(0))* (Vi o (7(@)) Vet (7(@)

~Vinweosa(7()?)

— (W)W (W) V1 (7(0) (Vs o (7(0)) Voo ((2))?
+ Veainw (7(@)) Veosz o (7()
2V (7(0)) Veosw (7(0)) Vainw cosas (7())

= 1y (W)2 5 (W)2V1 (7(@)* T
— 1y (W) o (W) 5 (W) V1 (1()) Ty 1 -

Definition. A curvelet v,g¢ is said to be elliptic (resp. hyperbolic, flat) provided
the Dupin Indicatrix at the center of the corresponding surface I'yp¢ is an ellipse
(resp. pair of hyperbolas, pair of parallel lines). The expression

. 2
sign (Hl(W)zﬂs(W)2vl (7(04)) L) — 11 (W) o (W) s (W) W1 (T(a)) HV,r(a))
(10)
is called the shape discriminant of the curvelet v,z3¢.

Lemma 1.9. IfV € C(R) is a positive function on its support, supp V = [—1,1],

then
1

1 1
57'(01)3/ WV (w) dw < Vg2, (T(a)) < T(a)3/ WV (w) dw. (11)
~1 —1
Proof. This is direct from the inequalities ¢?/2 < sin®¢ < ¢ for all -1 < ¢ < 1,
and the identity
m/7(c)

/_ V(TLOM)) SiHQde:T(a)/_ . )V(C)SiDQT(a)gdg (¢= T(Wa))

1
= 7(a) /_1 V(¢) sin? ()¢ d¢. (since ey > 1) O

Lemma 1.10. Let V € C*(R) be an even function strictly positive on its support,
suppV = [-1,1]. Then, for all a > 0,

Vi(r(@) = |V, @)7(e) >0, (12)
291 (+(@)) < Ve (7(0)) < Vi (r(a). 13
V(@) < Voo o (r(@)) < Vi (7(a), (14)

and in particular,

< Vi (T(a))v6082 w (T(a))

1
= 5 <4 (15)
2 vcosw<7(a))
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Proof. Identity (12) is direct by definition. To prove estimate (13), notice first that
0 < 7(a) < /4, and hence g < cos7(a) < cosT(a)w <1 for 1 <w < 1. This is
used in the identity below

/Tr V(%) coswdw = 7(a) /1 V(w) cos T(a)w dw.

- -1

Estimate (14) follows from a similar argument, and (15) is a direct consequence of
the previous estimates. ([l

Lemma 1.11. Consider the curvelet y,01 with both windows V' and W positive
in their respective domains. If the phase window is an even function, then f =0,
le] < a®7(a), and |g| < a®T(a)3, where the constants of proportionality depend at
most on the choice of windows V and W.

Proof. As V is an even function, Vsinw(T(a)) =0 as well as VSiHWCOSW(T(a)) =0
and furthermore, f = 0. Notice that the following are all strictly positive,

pi (W) >0, pa (W) >0, ps(W) >0,
vl(T(a)) > 0, vsinzw(T(O‘)) > 0, vCOS2w(T(Oé)) >0,
as well as Veosw (T(@)) > 0 by Lemma 1.10. It is then
w2aP 2
e = T ()Y ean (7(0)” = iy (W) (W)W (7)) Ve (7(0) )
w2aP
< 87_(7&) (Nz(W)2 - %M(W)Mg(W)) IV, @y (@)? (by Lemma 1.10)

= 872V, 2 (Ha(W)? = 3112 (W)t (W) ) a®r (),

2P
e> ST(Q) (%I"'QU/V)? - N1(W)M3(W)) ||V||L1(R)T(O{)2 (by Lemma 1.10)

= 872 V|z, ) (Lo (W) = 1y (W)t (W) ) a*7(a),

8m2ab

gl = Wul(W)ug(W)Vl(T(Oé))vsmm(f(a))

= W“l(W)N:%(W)T(O‘)||V||L1(R)T(O‘)3/1’2(V) (by Lemma 1.9)
= 87T2||V||L1(R)N2(V)H1(W)N3(W)0‘5T(04)37
where p, (V) = fil w?V (w) dw is the second moment of V. O

Proposition 1.1. Consider the curvelet v,01 with both the windows V and W
positive in their respective domains. If the phase window is an even function, then
the Dupin Indicatriz of the reqular surface T'no1 at the point (0, |'ya01(0)|2) 18

(i) A pair of parallel lines, provided

po(W)? _ Vi(7(@)) Veos2 o (7(@)) (16)
H (W) ps(W) VCOSW(T(OZ))Q 7

the distance d between those lines satisfies d < a~%/%7(a)~/2, where the
constants of proportionality depend at most on 'V and W;
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(i) An ellipse with area A and semi-azes a, b, satisfying A < a=>1(a)2,
a/b=T1(a), so long as

ps(W)* _ Vi(7(@) Voo (7(@)
1y (W) g (W) Veosw(t(@))®

(17)

(iii) Otherwise, a pair of hyperbolas having the same set of asymptotes. Their
semi-azes a, b, and the angle 8 between the two asymptotes satisfy a/b =
7(a), and tan 0 =< 7(«).

Proof. The classification follows from direct inspection of the shape discriminant

(10):

(i) If (16) holds, then the Dupin Indicatrix is the pair of parallel lines y? =
lg|=!, since e = 0. The distance between these lines is given by d =
2|lg|~/? < a=5/27(a)73/2, by Lemma 1.9.

(ii) If (17) is satisfied, the Dupin Indicatrix is the ellipse |e|z? + |g|y? = 1.
Its semi-axes have sizes a = |e|™%/? < a=%/27(a)"/? and b = |g|~/? =
a~527(a)73/2, and its area is given by A = w|eg|~"/? < a~%7(a)"2.

(iii) Notice that in this case it is e > 0, g < 0, and so the Dupin Indicatrix
reduces to the pair of hyperbolas |e|z? — |g|y? = 1, |g|y? — |e|z? = 1. The
set of asymptotes of both hyperbolas is given by the equations

1/2 1/2

1/2 1/2

y=0, le|*"“z + |g|*/“y = 0.

le|/"z — g

From the values of the slopes of both lines, it is tan8 = 2|eg|'/?(|e| —
lg|) < () (1— 7'(0[)2)71. Finally, the semi-axes are given by a = |e|~1/2,
b = |g|~'/%. The rest of the statement follows. O

Remark 1.4. Lemma 1.10 shows that it is possible to obtain a family of elliptical
curvelets {vag0} by choosing wisely the amplitude window. In particular, any
admissible function W € C°(R) satisfying puo (W )2, (W)L ps (W) =1 < 1/2 offers
such possibility.

1.2. The Curvelet Transform in L,(R?).

Proposition 1.2. Given real-valued smooth functions W e C°(0, 00) with support
in the interval [, aq] (o > 1) satisfying [~ W ()2 % =1, and V € C°(R) with
support in [—1 1] satisfying ||V'||L,w) = 1; then the following identity holds for all
functions f,g € La(R?):

-/ N [ [0 Taraamtds do(o) do. (18)

PTOOf' Set I(fa g) = fooofgl fRQ <fa 7a59><ga7a[30>d6 da(@) do. Tt is then

9):/000/81/ (F\Fa0) @ Aape) 4B dor(8) dax
:/OOO// / Wa(I€))V; ,e(é/l&l)e%w'fdf)
(

Wa(ICh Vi a>,9<</<|>e2“ﬂ<d<) 4B do(6) do

22}
=
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Consider the auxiliary functions

Fas(€) = FOWall€)) Va0 (E/1€))
Gt (€) = FEOWall€) Vriayo (€/1€]);

because the Fourier transform is unitary, it follows that

///FaO (B)dB do () do
:/ /S /R Foo(§)Gao(€)dE do(8) da
/f / Wa(l€h /Vf(a>,e(§/|€|)2do—(9)dad5

(interchange is allowed by Fubini’s Theorem)

- [ Rea@ [T water [T pviss

/ fle / Wa(€]) /z//:(:ws)?dsdadg

(apply the change of variables s = )

Ve [, FOTE [ wWalll)? dade
:/Qf(ﬁ)@/m L1 (15)? dov g
€]

(apply the change of variables ¢ = 1)

= [ o [ wior = (1.9, 0

Corollary 1.2.1 (Plancherel’s Theorem for the Continuous Curvelet Transform).
For each f € La(R?),

sy = [ [ [0 d5do(9) do. (19)

Remark 1.5. Use the previous corollary to construct an isometric isomorphism
between Ly(R?) and a subspace of the square integrable functions over the measure
space (€, 1), where Q = (0,00) x S' x R? is the scale/direction/location space, and
dp = dB do(0) da

) dwo da dg

E L2(R2) - LQ(Qmu)7

given by 7 f(c,0,8) = (f,Vape) for (a,6,8) € Q. The mapping 7 is called the
continuous curvelet transform, or simply the curvelet transform. On occasion
T f(a,0,3) is called the curvelet coefficient of f at the scale «, location 8 and
direction 6.

Lemma 1.12. The operator T : Ly(R?) — Lo(Q, 1) defined above is bounded, lin-
ear, one-to-one, and isometric on its range.

Proof. T is trivially linear by construction. Let f € La(IR?) be a function such that
0="T7f(,0,8) = (f,Yaps) = ([, Vape) for all (e, 8, B) € 2. As Ya0s is non-negative
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for each choice of o and 8, both §Rf and E‘sf must bf identically zero in the support
of the frequency of each curvelet and, therefore, f is identically zero everywhere.
It must then be that f is identically zero, which proves 7 one-to-one.

Finally, both boundedness and the isometry property of 7 are a direct conse-
quence of (19). O

Denote H = 7 Ly(R?), and call it the space of curvelet coefficients for the con-
tinuous curvelet transform in Ly(R?). Putting all together we finally obtain the
claimed result.

Proposition 1.3. The operator T : Ly(R?) — H constructed above is an isometric
isomorphism.

A Resolution of the Identity is needed in order to find the inverse of this operator
explicitly.

Theorem 1.1 (Calderén Resolution of the Identity for the Continuous Curvelet
Transform). Under the same hypotheses as in Proposition 1.2, the following Cal-
deron Resolution of the Identity holds:

_ /0 - /S 1 /R (Va0 Va0 () B do () dar (20)

Proof. Denote voly the volume of the d-dimensional unit ball, and A;_; the surface
area of the corresponding sphere. Let 0 < a1 < as, and p > 0. For functions
f,9 € La(R?), it is

/ /S /ﬁ|<p FrVap0) (9> Yope) dB do(6) da

< laz —onf A1p? vola || flloee) 9llzaze) [asollZ, g2

therefore, for each f € Lo(R?) the linear forms T = T(f; a1, a2, p;-): Lo(R?) — R
given by the integrals above are continuous. By the Riesz Representation Theorem
for the Hilbert Space Ls(R?), the functions

- / /S 1 /m<p £ Ya6)Vass(x) dB do(6) da

are well defined and belong to Lo(R?). In that case,

H / / / (f,7Vap6) Yape(x) dB do(6) do
st J1B8|<p Ly (R2?)
= - ’ y Ja « dp d )
geil;g@% <f /al /S1 /|z3|§p<f Yapo)Vape () dB da g>‘

HQ“Lz(RQ):l

- s ] f Y50 (G T d dor(8) dax
gGLQ(]R2) Q\[al,az]xSleg(O,p)

Hg”Lz(R?):l

sup {(/// [(f, 'yagg>|2dﬁdo(9) da)
g€ L2 (R?) O\ [av1, 2] XS x B2(0,p)

HQ||L2(R2):1

1/2

IN
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(///Q|<g’ Yago)|*dB do(0) da> 1/2}
- <///Q\[a1,a2]xsl B (0p) ((F Yo [2dB dor(8) da) 1/2 |

But the last integral converges to zero as a3 — 0, as,p — 00, since the same
integral over all of  converges by equation (19). The stated result follows. (]

Remark 1.6. This last result allows the construction of the inverse curvelet trans-
form as follows: Given F € ‘H, there is a unique f € Lo(R?) such that F(«, 6, 3) =
(fsYape). In that case

f(z) = / / / F(0,0. ) yogo () df do (8) dov
o JstJr2
Consequently, 7-1: H — Ly(R?) is defined using the integral operator above.

The space ‘H has an interesting structure.

Proposition 1.4. H = T Ly(R?) is a reproducing kernel Hilbert Space: For each
FeH,

P03 = [ [ Pla6,6)K(,5.0%0,5.6)d3 do(6) do.
0o JstJre
where the kernel K is defined by K(o/, 5, 6";, 3,0) = (Yapo, Yo' g0')-
Proof. Given F' € H, there exists a unique function f € Lo(R?) such that F(«, 0, 3) =
(fyYape). In that case, for another choice (o, 8, 5') € Q, it is
F@.0.8) = [ [ [ (o) G o] d6do(6) do 0
0o JstJre

1.3. The Curvelet Transform in L,(R?) for 1 < p < 2. Plancherel’s Theorem
can be extended from the exponent 2 to a general exponent p. Throughout this
section, denote p’ = p/(p — 1) and with a similar convention for any other letters.

Proposition 1.5. Assume there exists a constant A > 0 such that (o) < Aa™*
for some s > 3 and all o > m; then, the curvelet transform T : Ly(R?) — Lo(Q, 1)
has a bounded extension from L,(R?) to L, (Q, u), satisfying for all f € L,(R?),

||Tf||Lp/(Q,u,) < C(V7 ‘/I/? Oéo,A, mr, Svp) ||f||Lp(]R2)~

Proof. Both linearity and boundedness properties for 7 as an operator from Lo (R?)
to La(Q, u) were already proven in Lemma 1.12.
Given f € L;(R?), using (4), we have

KF v = | [ 1) v @] < Il 1o
< (04(2) - o%%) ||V||LOO(R) ||W||LOQ(O,00) O‘3/27—(a)1/2”f“Lm(R2)-

By hypothesis, a’/?7(a)'/? < 141772(73_5)/2 for all @ > 0, and therefore
1T fllo. ) <CV, W, a0, A, mzr, 8) || fll ) (m2)s
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thus, this gives a bounded and linear operator 7 : La(R?) N L1(R?) — Lo(Q, p) +
Lo (2, 1). By the Riesz-Thorin interpolation theorem, it has a bounded extension
from L) (R?) to Ly (Q, 1) satisfying

HTf”Lq(t)(Q) S C(Vva Wa «, Av mr, 8)(1_t)||f||Lp(t)(R2)
for any 0 < t < 1, where p(t) =2/(1 +t), and ¢q(t) = 2/(1 — t), as stated. O

1.4. Curvelet Frames in L(R?).

1.4.1. Semi-Discrete Curvelet Transform. We proceed to the discretization of the
continuous curvelet transform in two steps. In a first step, we consider a “uniform
subdivision of the domain (0, 00) x S! into cubes,” and force extra conditions in the
window functions so that the integral over each of these cubes equals the value of
their sizes multiplied by the evaluation of the functions at one of their points. By
“uniform subdivision into cubes” it is implied a partition in the following way

U (b, brt1] X Eng = (0,00) x S,

where 0 < b, < bp41, lOan ﬂ%nj = 0 for k # j, and o(E.x) = o(E,;) for all
possible indices n, k, j.

Such a construction is presented here based on similar ideas for wavelets as
developed in Daubechies [6] (see Figure 2): The interval (0, 00) is partitioned into
subintervals of the form (af,a(™], n € Z, for the same value ap > 1 as in the
support of the amplitude window W. For each level n, the circle is divided into
equally-sized mutually disjoint sectors with size 7,, (less than, but as close to 7(af)
as possible). This divides the circle uniformly into 7, := 27 /7, sectors, denoted
here by {E.x :k=1,...,n,}. The set of endpoints of these sectors is given by
{0k :k=1,...,m,}, where 0,3, = e?*"n.

Tn = sup{27/k < 7(ag) : k € N}, Nn =27/ Ty, = [7277 —‘a (21)

E,. = {eis ckty < s < (k4 1)1}, O = eF7n. (22)

For each function f € Ly(R?),

/Ooo/Sl /R2<f’ Yapo)Yase(T) dB do(0)do

n+1

- Zi/@;o /Ek /R2<fv'7aﬁe>'7aﬁ0($) dBdo(9) da.

n€Z k=1

Further conditions are imposed upon the functions defining our curvelets so that
each term in the previous sum satisfies

n+1

/0/ /<fﬁa;30)’7aﬁa($)dad0(9)dﬁ:Cao,n/ (fs You 80, ) Vap 86, (T) B,
ap JE,, Jr2 R2

where Cy, n > 0 is a positive constant that depends on the size of the integration
domain, which in this case is |af " — aff| 0(Enx) = aff (g — 1)7p.
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- 9n4

0n6

FIGURE 2. Representation of admissible set of pairs {(an, Hn,k)}
in (0,00) x S' and corresponding sectors { E,,;; } on each circle S!
used for discretization of the CCT.

Lemma 1.13. If there exists a constant C > 0 such that the function W used to
generate the amplitude windows satisfies W (p)?>+W (agp)? = C for all p € (1/ag, 1],
then necessarily C'logag =1, and

Za loga for all p > 0. (23)
nez

Similarly, if there exists a constant C' > 0 such that the function V used above to
generate the phase windows satisfies V(w)? +V(w—1)2 = C for allw € [0,1), then
it must be C = ||VHL ® =1, and

Z Ve, (E/IE)7 = 7 for all € £ 0. (24)

k=1

Proof. Given p > 0, there exists a unique integer n € Z such that ay < p < 046”1
For this p, the sum in (23) reduces to

W(ad ") + Wiag"p)® = C.

But notice

%) 1 Qo
1= [ wirs- | W(p)2%+ / W (o)? 2
0
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This proves (23). Now, given ¢ € R?\ {0}, and an integer n € Z, there exists a
unique k € {1,...,7,} such that arg(0,) < arg(&) < arg(0p,(x+1)) = arg(Onk) + .
For this point &, it is

MNn

T —arg(0, (k— ar arg(0,, 2
> Va0 (€/16])2 = £V (MEOECam) )y 1y (are(@)- el
k=1

n

Tn Tn Tn Tn

_ 1 {V<arg(5)arg(9nk) _ 1)2 _|_V(arg(5)£”g(9"’“)>2] =1lcC

But notice

1
1_||V||L2(R2)—/ |V(t)|[*dt = / Vit dt+/ V()2 dt
0

1
/Vt—l dt+/ V(t)*dt = /(C—V(t)Q)dtJr/ V(t)*dt =C.
0
This gives (24). O

Proposition 1.6. Let ®pp1(z) = vago(z), where o = aff and 0 = 0Ony,. If the
smooth functions W € C°(0,00), V. € CXP(R) used in the construction of the
curvelets yop0 satisfy the additional admissibility conditions given by Lemma 1.13,
then the following identities hold for all f € Lo(R?):

= (ogo) Y YSai B0 (2 a5 (25)

n€Z k=1

S 3 apn / U, sk 245 = i 1, o (26)

n€Z k=1
Proof. Notice that the integral

i () = / (F, Brsk) B () d

is the convolution ®,,0 * §>n0k x f, where q)nok(l‘) = ®,01(—x); therefore, it is a
Lo(R?) function. Its Fourier transform is given by Gnx(€) = |®ror(€)2f(£).
Consider for each m € N the sequence of functions {G,, (x)}m defined by

Mn

= Z Zagrngnk(x)

|n|<m k=1

These are also square integrable, with Fourier transforms given by

Mn
= > D apmgur()

In|<m k=1
Mn
=F©) Y. D apmal®nor(©)?
In|<m k=1
= .]/C\ Z O50 ag ‘§| ZTrL Tn,Onk £/|§|)
In|<m

)

|
~

€)Y anWag (1€1)%,

In|<m
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as a consequence of equation (24).

Observe that this sequence of Fourier transforms converges pointwise to the
function mg%o f(&) by virtue of equation (23); the convergence of the series in (25)
follows then from the Dominated Convergence Theorem.

To prove (26), observe that

3 2
Z ZOCOT"/R?Kfa(I)nﬁkH dﬂ

n€Z k=1
Mn

=3 > [ IFORWa () Vag . (¢/16)°

nezZ k=1

77n
=% [ TP agwa (ie))® (Zrnvagﬁ,ﬂ@/af) €
2 k=1

nez

=% [IROF agwag

ne”Z

£l)” de.

The first equality is obtained as in the proof of Proposition 1.2. Interchanging sum
and integral in the last expression is now allowed by the Monotone Convergence
Theorem, and our statement follows. ([

1.5. Discrete Curvelet Transform. In order to fully discretize the transform,
we need the following lemma.

Lemma 1.14. Suppose that h € Ly(RY) is a bandlimited function with SuppiAz C

[—M, M| for some M > 0. Consider the Fourier multiplier Q: Lo(R?) — Ly(R%)
given by Qf(§) = [h(§)I*f(€) for all f € Ly(R?). Then,

(@f9) = > (f,hz) (hzy9) (27)

z€Z4

for all f,g € La(R?), where h.(z) = h(z — & z); also,

—0. (28)
Lo (R4)

lim
n

|Qf Z <f>hz>hz

|z|<n

Proof. The identity (27) follows directly from the decomposition of both f(ﬁ)ﬁ(f)
and G(€)h(€) with respect to the following orthonormal basis of Ly ([—M, M%),

{(2M) =2 m=/M)E 5 € 79},
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The convergence in (28) is proven applying the identity (27) to the last line below:

‘Qf — Y (fiha)hs

|z[<n La(R)
= sup <Qf— > <f,hz>hz,g>
9E€L2(RY) |z|<n
HgHLQ(Rd):l
= sup |(Qf.9) = D (fihe) (hzsg)|- O
9gE€L2(RY) |z|<n

HQHLQ(Rd):l

Theorem 1.2. If the smooth functions W € C(0,00), V € C(R) used in
the construction of the curvelets yop0 satisfy the admissibility conditions given in
Lemma 1.13, then the family {pnzx(x) :n € Zik =1,...,0,; 2 € Z?} of functions

Snzi(@) = ag’*(log a0) V271 2@, 5. (2) (with = mag" " z),
is a tight frame in Lo(R?) with frame bound 1: For f € Ly(R?),

Z i Z (S, bnzi)|* = Hf||2L2(R2)~ (29)

n€Z k=1 zeZ?

Proof. This is a direct consequence of identities (26) and (27), since

/RJ(f, ®,.50)12d0 = (gni, f)-

It is then:

MNn
sl M = X - ab [ @unl?as

n€eZ k=1

Mn
=33 o (g f)

nezZ k=1
TI"L

:ZangZ Z|<faq)n0k('_ﬂ-a07nilz)>|2' U

nez k=1 z€Z2?

Associated to this frame (see Christensen [5]), the set of indices and correspond-

ing space of square-summable sequences over those indices are denoted respectively
by

F={(nzk) €Z* necZ,1<k<n,zecZ,
Nn
82(16‘) = {(Cn,k,z)(n,k,z)e]k‘ ‘Cnk,z S Ca Z Z Z |Cn,k,z|2 < OO}
n€Z k=1 zcz?2

For this frame, the synthesis operator T: l5(F) — Lo(R?) is given by

Mn
T{ank}(mz,k)e]F = Z Z Z ank¢nzk-

n€zZ k=1 zc7?2
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Its adjoint, the analysis operator T*: Lo(R?) — l5(F) is given by
T*f = {{f, bnzk) } (n,2.k)eF>

and thus the frame operator S: Lo(R?) — Lo(R?) is given by

Mn
Sf = TT*f = Z Z Z <fa ¢nzk>¢nzk-

n€Z k=1 z€Z?
Notice that, as with all tight frames with frame bound 1, the frame operator is
simply the identity.

Corollary 1.2.1. Under the same hypotheses as in Theorem 1.2, the following
series converges for all f € Lo(R?), and all permutation ¢: F — F:

f = Z <f, ¢<(n,z,k)> ¢<(n,z,k)~
(n,z,k)€EF

In particular,
n

f = Z Z Z <fa ¢nzk>¢nzka (30)

n€Z k=1 z€Z?

Proof. This is consequence of Theorem 5.1.6 in Christensen [5]. O
Proposition 1.7. The tight frame {¢nzk } (n,z,k)er 5 not a Riesz basis of Ly(R?).

Proof. For any index (ng, 2o, ko) € F, it i8 (Pnozokes Pnzk) = 0 for indices (n, z, k) €
F with n < ng— 1 or n > ng + 1, since the supports of the Fourier transform of the
respective curvelets are disjoint. By (30),

no+l N

¢nozoko - Z Z Z <¢n0z0k07¢nzk>¢nzk'

n=no—1 k=1 zcZ2

Notice that in particular,

2
(ProzokosProzoke) = p° (108 ) Tny H%(’;O(m;"ﬂ‘lz)a ||L2(R2)

no,ko

= Cy.w (log ap) 04(2)"07”0 < Cy,w (log ao)agnT(a{})

As ag > 1 and lim,_o 7(e) = 0, there exists N € N such that Cy w (log ag)afm, <
1 for all n < —N. In this case, choose ng < —N, and consider the sum

no+l Nn

Z Z Z ank(ybnzka

n=no—1k=12z¢c72

with Cpgzoke = ||¢n0z0k0||2L2(R2) — 1, Chzk = (Dnpzokos Pnzk) Otherwise. Notice this
sum converges to zero, but ¢ zok, 7 0; therefore, {¢nzk}(n,z,k)er is not an w-
independent sequence in Ly(R?), and by Theorem 6.1.1 in Christensen [5], it is not
a Riesz basis. (I

2. APPROXIMATION PROPERTIES OF CURVELET FRAMES
2.1. Characterization of Regularity.
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2.1.1. Lipschitz Regularity. Holschneider and Tchamitchian show in [9] how to an-
alyze the regularity 0 < s < 1 of a Holder function f € Lip (S,R), by means of
the decreasing rate of its wavelet coefficients. Propositions 2.1 and 2.2 and below
present similar results for functions f € Lip (s, RQ), employing curvelets instead.

Lemma 2.1. For 0 < s < 1/2, and any curvelet vape, there exists a constant
C = C(V,W,ap) > 0 such that the following estimate holds for all h € R? with
|h] < 1:

/ Nago(@ + ) = Yags(x)| dz < Cvwaea™?r(a) 7|h)". (31)
RZ
Proof. Given h € R?, Dpva01 (%) = [g2 —2mi(h - £) Yao01(£) €27%°¢ dE; hence,

Ditoon(@)] < 2 [ €] Foos (9] d

oo us
= 27r/ / plh - (cosw, sinw)| =W (£) WV(%) dw pdp
0 -7
1

oo
<2nlpla®?r(0) ([ W) ([ Vo), ==
0 -1
thus proving v,01 € Lip(l, RQ), with
Y001 (z + h) = Ya01(z)| < Cv,w a®2 7(a) /2 |A). (32)
The same estimate holds for the general curvelet, since
Yap0(® + h) = Yapo(z) = Ya01 (Ro(z — B) — Roh) — Yao1 (Ro(z — B)).
For a vector h € R? with |h| < 1, and any value 0 < s < 1/2,
/RQWQM(I +h) = Yape(r)| drv = /Rz [Ya01(y + Roh) — Yao1(y)| dy.

Set ¢(h) = |h|~%/ + |h|, and

I= / |Ya01(y + Roh) — Yao01(y)| dy,
ly|<¢(h)

II= / Y001 (y + Roh) — Yao01(y)| dy.
ly|>¢(h)

It is then [po|va01(y + Roh) — Ya01(y)|dy = I+ 11, and
/

1< Cywa®?r(a)Y2[h|(|h]~*/ + |h|)? (by (32))
= Cywa®? ()2 (|n]'=* + B + 2/n*~*/?)
< Cywa®?7r(a)/?|h)? (since |h| < 1,5 < 1/2)
I < / a01(y + Roh)| dy + / a01 (8)] dy
ly|>C¢(h) ly|>C¢(h)

1 1
< Cvwa of"’”r(a)*m/ ——— + —)dy (by (3) with k =2
’ yl>C(h) (ly + hl* |y|4) ( )

dy

< CV,W,ao 0475/27'(04)77/2/ —
lyl>[nl-=/2 Y]

< Cywiap o 27 ()2 |0)".
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Finally, notice that a~%/27(a)~7/2 > 1 > a®/?7(a)'/? for all & > 0. This proves
the statement. (]

Proposition 2.1. Given 0 < s <1, if f € Lip (S,Rz), then its curvelet coefficients

satisfy |(f,Yapo)| < C(V,W, a0, f) a™*27() =73/ for all a > 0, 8 € R? and
0 cSt.

Proof. Since g, Vapo(x)da =0, it is

[(f, Yap0)| = ’/ )mdfC’
< [ 11 = 6)| pasofo)] do
<0 / o= Bl hragae)] dz (f € Lip (s, %))
=y [ ol haon )] . (v=2-7)
Set ¢(a) = a~'r(a)"!, and
I- /|y|g<<a>'ys'%°1(y>'dy’ - /y><(a)y|swam<y>|dy.

Notice that [, |y[*|va01(y)|dy = I+ 11, and
I < ((a)*[ao1ll e (z2ym¢(@)?

< Cv,w,a0 Oé_s_l/zr(a)_s_?’/Q, (by (4))
IT < Cyv.w,ae oz_5/27'(a)_7/2/ ly|5~* dy (by (3) with k = 2)
ly|>¢(a)
Cvwa .
;;ﬁ/,so a—a—l/QT(a>—s—3/2
< Cywag 27 (a) 75 73/2, (since 0 < s <1) O

Proposition 2.2. Let {yap0(x) : @ > 0,3 € R2,0 € S'} be a family of curvelets for
which the aspect-ratio weight function satisfies the following condition: there exists
A >0 and 0 <r < 1/7 such that 7(a) > Aa™" for a > m,. Let f € Lo(R?), and
let frc denote the “large curvelet scales” of f:

frale /m /S/ (F, Yoo Ve () d3 dor(9) dox

If for some 3r/(1 —r) < s <1/2 and M > 0 the curvelet coefficients of a function
f € Ly(R?) satisfy

(£, Yapo)] < Ma="27(a) =732, (33)
then fra € Lip (S,RQ).

Proof. Notice fr¢ is uniformly bounded in x:

@< [ [ [ 100l aso(0)] 5 do(0) da

g ooMa_s_l/zT(a)_s_g/z/Sl /}R2\fya09(x—ﬁ)|dﬂdo(9)da (by (33))

mr
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< MCV,W,QQ/ a—s—l/QT(a)—s—3/2a—1/27_<a)—3/2 dov (by (4)’ p= 1)

mr
oo

< MCV,W’QO/ a_s_lT(a)_S_?’ do.

mr

But by hypothesis, a5 17(a) 573 < A= 3a"(5+3)=5=1 for all & > m,,; thus

oS} o (s+3)—s

/ a " 'r(a) P da < A_S_S/ Q) =s=l g — gms=3 M
. - . s—r(s+3)

since r(s + 3) — s < 0. This implies fr¢ is uniformly bounded, and the constant
depends at most on V', W, ag, m,, M, A, r and s.

Now, given h € R? with |h| < 1,

e+ )= i@ < [ [ [ 1l basate + 1) = 2ap0(0)] d5do(6) da

< MCV’W,ao\hP/ a_s_l/QT(oz)_3_3/2a_5/27'(oz)_7/2 da, (34)
zs

— C(V. W0, MBI [ @™ Pr(a)**da

< C(VWoan M, A SR [ arH975 5 da (35)

S C(MWQO,M,A,S,T,mT)‘h|S. (36)

Inequality (34) followed from both (33) on |(f,Yape)|, and (31) on the inner-most
integral. The step (35) is direct by the hypothesis 7(a)) > Aa~". Finally, (36)
follows from the fact that r(s +5) — s — 2 < 0 as a consequence of the hypothesis
3r/(1 —r) < s < 1. Indeed, for 0 < r < 1/7, 3r > 5r — 2, and furthermore,
s>3r/(1—r)>(5r—2)/(1—r).

This holds for all |h| < 1; together with the bound on |fLg| computed above, it
follows that |fra(z 4+ h) — fra(z)| < C|h|® for all h, uniformly in . O

2.1.2. Besov Regularity. The ideas for this section come from Borup and Nielsen
[1], in which the authors develop a new construction of tight frames for Lo(R?)
with flexible time-frequency localization, and adapt those frames to form atomic
decompositions for several smoothness spaces on R?.

Lemma 2.2. Let ag > 1; V,W admissible windows in the sense of Lemma 1.13,
and assume there exist constants 0 < My < My such that the aspect-ratio weight
function 7: (0,00) — (0, F) satisfies for all m € Z,

T(ay'
M1 S T(O(ZSBJF)I) S MQ, O[gl’Tm S 1.
Consider the corresponding tight frame {¢nzk : (n, 2z, k) € F}.

For each pair of indices (m,k) with m € Z and k = 1,...,1my,, set Ay, =
(ag 4T:/7T), bk = (0, (k — 1)Tm), and T R2 — R? the affine map given by
Tkt = Ap@ +bg. Let T ={Tpp :m €Z;k=1,...,0m}. Then Q = {Qmr =
SUPD ok M € Zik =1,... ,Mm} s an admissible covering of R? \ {0} structured
by X, and the family § = {|$m0k|2 :m € ZL;k=1,...,nm} is a bounded admissible
partition of unity associated to Q.
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Proof. Let A = {(m,k):m € Z;k =1,...,m,}, and consider in R?\ {0} the open
bounded set Q = {£ € R? 1 ag! < |¢] < ap,0 < arg¢ < 7/2}. Notice that for each
meZ;k=1,...,nn:

kaQ:{A (p)ermk:ozal<,0<a0,0<w<7r/2}
= {(ag" p,4;"w+(k—1)7m)' apt < p<ag0<w<m/2}

={(p,w): ol P <p<al (k—D)rn <w < (k+ 17}

= SuUpp Omok = Qmk-
Abusing notation, the size of the cubes Q,,; is computed with respect to the polar
coordinate system, and not the rectangular one; thus, |Qumk| = 2(ao — ag *)af 7.

Given £ € R2\{0}, it is € € Qup, with 1 = [log, [€]], and ks = | (arg &) /(27)
therefore, R? \ {0} C U, k) eA @mk-

Given mg € Z, ko € {1,...,Mmy}, if |m — mo| > 2, then trivially Qunok, N
Qmir = 0 for all k € {1,...,0m}. Also, Quor N Qmerr = 0 provided [k'],,, &
{[k — 1],,m0, [kz]nmo, [k + 1}7,1"0 }. It is then
{(mvk) eA: ka N ngko 7é (Z)}‘

=3+ {1 <k < Mmot1: Qumo+1)k N Qmoko 7 03
+ |{1 < k < Mmo—1 * Q(mo—l)k} N Qm()ko # ®}|
<8 [yt e

T [2mrlege) ] 2mr(og) 1]
o hzm m“)-lﬂ N hzm mo=1)- Ww
orr(og) 1] [2rr(og) ]

" Tarr(a m““) N 2ar(age )

<5 [ 2T —‘Jr[ 2 (af) ! —‘
- 2nT m"H 27 (e 1) 1
m0+1 mo—1
:5+r W r(aom )1§5+M1+M27
7(ag™)

and Q = {T,,xQ : (m, k) € A} is indeed an admissible covering of R? \ {0}, with
N(Q) <5+ M +M2

Let 0 < ¢ < 7/4, and consider the open bounded set Q* = {¢ € R? : aal <
€] < ap,0 < argé < 7/4 + €}, which is compactly contained in @, also satisfies
Uim.keaTme@% = R?\{0}, and for any (mo, ko) € A, [{(m, k) € A : QuuiNQmoky, =
0} < 5+ Mj+ My (the proof of these facts are identical to the previous and are left
to the reader). It is thus {T},x Q% : (m, k) € A} an admissible covering of R? \ {0}.

To show that £ is an admissible covering structured by ¥, it only remains to
prove that there exists a constant M > 0 such that ||A;}Am|| o < M for indices
(m,k),(m', k") € A for which T,,;Q N T,r@ # O holds. But notice that for

|m' —m| <1itis

7777/, m 77l Tn/
_ 0 «@ 0
A4, = (0 g -
m/m 0 'r_,17r/4 0 47p /7 T,,LT,
m’
&%)

HA;}AmHEW = max{af" "™, 7,7} } < max{ag, [T ( T (c
< max{ag, Ma}.

)
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For each (m,k) € A, set ¥p: R2\ {0} — R given by ¢i(€) = |pmor|>. The
family § = {¥mr : (m, k) € A} satisfies the first condition to be a bounded ad-
missible partition of unity associated to Q (supp ¥nr C Qmi for all (m,k) € A)
by definition of ggmo;g. The second condition (F is a partition of unity) is a di-
rect consequence of Lemma 1.13: Given ¢ € R? \ {0}, let mg = [log,, |¢]], and
ko(m, &) = |(arg&)2m/nyy,|. It is then

m mo+1 ko(m,&)+
Z Zwmk( =logayg Z Z W( Iél) V(%;emkf .
meZ k=1 m=mo k=ko(m,E)

The third condition is also satisfied. To prove it, a few estimates are needed:
(i) Forall0 < p < oo, (m, k) € A and z € Z2, there exists C = C(V, W, ag, p) >

0 such that
[6nzillz, @) = C(V, Wao) (agm) 7. (37)
I‘his follows from the definition of ¢,.x, and the fact that &wk(f) =
$001 (Tnké):
| Gnzrllz, z2) = |det Tok|" /7| G001 ., z2) (by [1, Lemma 1])

n 1-1/p, n
= (4o, /7) /p<a0/2(10g 040)1/27—71/2)||’YlOl||Lp(R2)~ (by Theorem 1.2)
(ii) For all 0 < p < oo and (n,k) € A,
1F ™ bkl r2) = | dnok * Snok L, 2).- (38)

(iii) The space L,(R?)X of functions in L,(R?) with frequencies compactly
supported on a given compact set K is a quasi-normed convolution algebra;
therefore, as supp ¥ux = Qnk, by [10, Proposition 1.5.3], there exists C' =
Cp > 0 such that

|Pnok * PnokllL,®2) < Cp |an\1/p_l||¢n0k||2L,,(R2)
= C(a0,0) (0§70) """ Nomokll2, g2, (39)
It is then, for 0 < p <1, (n,k) € A,
‘an|1/p71||‘7:711/)nkHLP(R2) <Gy |an‘2(1/p71)”(anOkH%p(H@) (by (38) and (39))
= C(V, W,a0,p) (ama) 7% (by (37))

and the statement follows from the hypothesis that afr, < 1 for n € Z, since
1/p—1/2>1/2: For 0 < p <1,

sup  [Quie P HIF M bl 1, (r2y < 00 0
(n,k)eA

Remark 2.1. Consider a family of curvelets satisfying the hypotheses of Lemma 2.2,
and with ag = 2. Set ¥,, = 77n 1|¢n0k| for all n € Z. Notice:

(i) Since Suppggngk ={eeR?: 2" L < ¢ <27FL Jarg € — O] < 70}, it s
supp ¢y, = {£ € R? : 2" < [g < 21

therefore, the family of the interiors of the previous annuli, ', is an ad-
missible covering of R? \ {0} with N(9Q') = 2.

Q' ={Q,, = B(0,2"™) \W" ez},
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(i) > ,cz¥n = 1, by Lemma 1.13, and thus § = {¢, : n € Z} gives a
bounded admissible partition of unity associated to 9Q’.

(iii) supn€Z|Q’n|1/i"*1||.7-"’11/)n||Lp(R2) < oo for all 0 < p < 1. The proof of this
fact follows the same lines as the end of the proof of Lemma 2.2.

‘ / / J ~/ \ Y
FIGURE 3. Left: One of the cubes @), in the covering Q' for the
description of Besov spaces B (LP(RQ)) as a decomposition space.
Right: One of the cubes @, in the covering £ for the description

of spaces of decomposition & (Lp(]Rz)) associated to curvelet tight
frames.

The spaces By (Lp (R2)) may be realized as the decomposition spaces

D(2.§)r G,

where w’ = {w), = 2°" : n € Z}, and D, f are the Fourier multipliers given by
5n\f = 1/)"]?. The choice of symbols of those multipliers, constructed from a frame
of curvelets, is precisely the link needed to measure Besov regularity of a function
f by means of suitable expressions on its curvelet coefficients (f, ¢nz). This is ac-
complished by means of two results: Proposition 2.3 gives an atomic decomposition
of the decomposition spaces generated from curvelet frames, and Proposition 2.4
uses this atomic decomposition to find suitable embeddings of decomposition spaces
between Besov spaces. In the rest of this section, it is assumed ag = 2.

Lemma 2.3. Given a tight frame of curvelets {¢nzr}, and 0 < p < oo, the se-
quences {Gnzk(T)}2ez2 belong to £,(Z2) for all x € R? and (n, k) € A, with

H{¢nzl~c (x)}ZEZ2 HEP(ZZ) < C'V,VV,p (22”7%)7—71_2(1/1{' : (40)

Proof. Recall the definition of ®,,4;, for (n,k) € A, 3 = w2712, z € Z?, and its
relation to ¢, from Theorem 1.2.

|nzk(0)] = 27/2(log 2)'/27)/%|®,,51,(0)| (by Theorem1.2)
<Cvw 2n/27'é/2(2”)3/27',1/2; (by (3) with exponent 0)
< Cv,w 2*"7,,. (41)

For z € 72, B = 727"z, by virtue of (3) with exponent j € N,
|2[27]®,,5(0)| = 7222V 3127 |, 41, (0) |

< O,y 29000 (2m)2/2 20 /22
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= Cvar; 93n/2;1/2-2],
thus,
|z‘2j|¢nzk(0)| = 2n/2(10g 2)1/2T}L/2‘Z|2j|¢nﬁk(0)| < Cvw, 22“7-71;%7
what gives _
702 [én21 (0)] < Cvwj 22" 7. (42)
Estimates (41) and (42) give for any 0 < p < oo,
(1 + |Tnz|2jp) |pnzk(0)]P < (CV,W,j 22nTn)p7
and therefore,
1
p . 92n p
Z |pn2k(0)]7 < (CV7W7]2 Tn) Z 1+ |Tnz|2jp'
z€7? z€7?

Let j > 1/p, and consider for each m € N the set [J,,, of points z € Z? located on
the border of the cube [—m,m]?. There are exactly 8m such indices on this set,
and for each of them, it is m < |z] < m+/2. Therefore,

1
S e Y e

z€Z? m=1zel,,
S + Z Z |7— z|2]p
m=1zel,,
1
S 1+8Tn2]pz W
m=

The sum in the right-hand side of the previous expression is finite, since 2jp—1 > 1
by the choice of j. It is then

1
Z 1 2jp — C T
z€Z? - |Tnz|
and (40) follows for @ = 0 with j = [1/p]. The result is also true for any other
x € R? by a simple shifting argument. [

Lemma 2.4. Consider in A the relation ~ given by (n1,k1) ~ (n2,k2) if and
only if supp @n ok, N SUPP Pnyok, # 0. For all ng € Z, ko € {1,..., 1m0}, let
Dhoko : L2(R?) — Lo(R?) denote the Fourier multiplier with symbol

Z ‘;Z)\?LOk‘Q-
(n,k)w(no,ko)
Assume the aspect-ratio weight function T satisfies the hypotheses of Lemma 2.2.
Then, for all 0 < p < oo, (ng, ko) € A and f € S(R?), it is
H{ fﬂ ¢)nozk0 }ZGZ2||€ (22) S CVW 22’”0/177—172[1/1]—' ||’ZAj’nok‘of||L (Rz)) (43)

Dnoko fllz, ®2) < Cvwyp Z 22n (=Pl || {( £, i) eezz|, L(22)° (44)
(n,k)~(no,ko)

where

-1 if 1 <p < oo.
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Proof. For all f € S'(R?), (ng, ko) € A, and z € Z2:

Fonami) = [ T Bupera() €

~

< /R (St G €)) FE) e
SINCE D, k)m(no ko) Ynk (§) is identically one in the support of q?nozko. It is then

<f7 ¢nozk0> - <Dn0k0 f’ ¢nozk'g>'
Suppose p < 1. Given (ng, ko) € A,
|<fa¢nozko>|p = |<Dnok’ofa ¢nozko>|p < ||¢nozk0’Dnokof”il(]R2)
< CP 22n0(1—p) ||¢n0Zk0Dn0kof||1[),p(]R2)'
The last step followed from Nikolski’s inequality (see Triebel [10], for example),

since the support of ¢y, .k, is contained in the cube [—270F1 2m0F1)2 and p < 1. It
is then

Z |<fa¢nozko>|p S C(p 22”0(1_1)) Z Hﬁbnozkoﬁnokofllgp(ﬂp)

z€72 2c72

= ¢, 22m1-n) 3 / (st (@) P f (@)|P de
]R2

z€Z2
= G, 22ro(t=?) / Dok F@)P[[{Snozo (@)} zcz2 [ zaydx - (by DCT)

< Cyyp 22m0017) (22n07n0)p7%2p[1/p1 ||5n0k0f||1£p(R2) (by (40))

— Cyvry 22n0T551_2r1/p1> HDnokongp(RQ)'

This proves (43) for 0 < p < 1. The estimate also holds for p = oo, where obviously
the sum over Z? is changed to the supremum:

‘<fu¢nozko>| = |<15n0k0 f> ¢nozko>‘
< N\ bnozkoll £y (®2) | Droko fll oo (22)
= 2"0/2(1og 2)2 73/ pio || 21 (22) [ Droko fl Lo rey (8 =727"0712)
< Cyw 2o/ 2712 (270 20 8/2) 1Dy o fl o 2 (by (4) for p=1)
< CV,WT;(}”ﬁnokofHLw(]RQy

Application of the Riesz-Thorin Interpolation Theorem gives (43) for 1 < p < oco.
To obtain (44), notice first that Dok flIL,®2) < 20 k)~ (no,ko) I Pk fl1 L, R2)-
ForO<p<1,itis

||D7ka||ip(R2) = /]RZ ‘ Z <f, ¢nzk>¢nzk($)‘p dx (by Lemma 1.14)

z€Z2
< DL Onztd) Pl bnzel7 sy (by MCT)
z€Z?
< O w2 @IS T f, i) P (by (4))

z€72
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As a consequence,
1/p
| Dnoko fllL,22) < Cvwp D 22"(171/]”)7572/’”( > I, fbnzk)lp) :
(n,k)~(no,ko) z€72
To estimate the same norms for p = oo notice that for all € R?,

Durf @) = | Y (. bnzt) (@)

z€72

< H{<f7 ¢nzk>}z€Z2 Heoo(Z2) }’{(ﬁnzk(x)}zeZ? ||€1(ZQ)
< Cvw 2277, Y |{(f, dnzk) Yzez2 sz(zz) (by (40))
This gives
IDngio fll) < Cvw D 227 [{{f Snai Yoeze [ ey
(n,k)N(TLU,kU)

For each (n,k) ~ (no, ko), estimates for each norm ||Dysf| 1, ®2) follow now for
1 < p < > by interpolation via the Riesz-Thorin interpolation theorem.

||anf||Lp(]R2) < CV,W (Tﬁl)l/p (22”7—;1)171/17“{<f3 ¢nzk>}z622 ||gp(22)
< CV7VV22n(1_1/p)Tn_1 H{<f7 ¢nzk>}z622 ng(Zz)~

Adding all those estimates in the expression on the left hand side of (44), the result
follows. O

Proposition 2.3. Let {¢n2k} be a tight frame of curvelets satisfying the hypotheses

in Lemma 2.2, and let &, (Lp(R?)) = D(Qag)%p((/;g)
position space, with associated Q-moderate weight w = {wnr, = 2"™° : (n, k) € A}.
(i) Let ((p) defined as in Lemma 2.4. If the curvelet coefficients of f € S'(R?)

satisfy

Nn 1/q
(ZZ(2n522n(1_1/p>75(p)H{<f7¢nzk>}zezz|‘€p(zz))q> <oo.  (45)

n€Z k=1

be the corresponding decom-

then f € @2(LP(R2)).
(ii) If f € &5 (Ly(R?)), then the curvelet coefficients (f, pnzk) satisfy

Tin q 1/q
(Z Z (2n32—2n/p7.sf1/p1—1 H{<f’ Grzk)} 2z ”51,(22)) ) < 00.

neZ k=1

Proof. Both statements follow from Lemma 2.4:

. 1/q
(i) Assume f € S'(R2), and let T,(f) = ( S iyen 2" IDurf 1%, 5)) - By

(44), it is
on’(1—1/p)_C(p) 7\ /e
Is(f)g( S (2 Cvar, 3 2 |\{<f,¢n/zk/>}zezz|\w))) .
(n,k)EA (n k")~ (n,k)

But (n/, k") ~ (n,k) implies |n — n’| < 1. As My < 7(2")/7(2"71) < My
by hypothesis, the following two simple estimates hold:

Tn > maX(Mg,Mfl)Tn/, (46)
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920/ (1-1/p) < (6:113?’6 125(171/;9) )22n(171/20)' (47)
—
Cp

By virtue of these inequalities, and the fact that ((p) < 0forall 0 < p < oo,
it is

o\ V4
Is(f)gcv,w,p< > (2o 3 ||{<f,¢n/zk/>}zez2||W2))) :

(n,k)eA (n k")~ (k)

1/p
For each (n,k) € A, the expression (ZZGZ2|<f7 ¢nzk>|1’) appears at
most 1+ N () = 6+ M; + M times in the right hand side of the previous

expression, each of them with one of the coefficients 22”(1*1/1’)715@) in
front, where (n',k’) ~ (n,k). Therefore, using estimates (46) and (47)
again, it is

1/q
q
L9 < Crpanas (5 (220D b)) )
(n,k)eA
Thus, if f satisfies (45), then f € &7 (L,(R?)).
(i) Assume f € &} (L,(R?)).

1/q
IIs(f) = ( Z (2ns2—2n/p7_3|—1/p-\—1H{<f7 ¢nzk>}zezz|’lp(zz))q)

(n,k)eA

1/q
~ q
S CV,W,p < Z (2n52—2n/p7_7%[1/p—‘—1 (22’”/1)7'%_2“/1)])||anf||Lp(R2)) )
(n,k)EA

~ 1/q
= OV,WVP ( Z 2ns||'anf||%p(R2)) .

(n,k)eA

The second estimate followed from (43). The previous expression is equiva-

lent to |f|D a.5)fahe) = |fles (L, (®?)), which is finite by hypothesis. Thus,
( ,S)pr{z) q r

II,(f) < oo and the statement is proved. O

Proposition 2.4. Let {¢n2} be a tight frame of curvelets satisfying the hypothe-
ses in Lemma 2.2. For 0 < p < o0, 0 < 8,q < o0 and s’ = %(max(l,l/p) —

min(1, 1/q)), the following embeddings hold:
B0 (1, (R?) — &;(Ly(R?)) — By~ (Ly(R?)).

Proof. The notation in this proof comes form remark 2.1. Recall that for each
n € Z, supp P, = U™, supp ¢y, with n, = 27/7,; hence, for all 0 < p < oo,
n € Z and k = 1,...,n,, there exists a constant ¢ > 0 independent of the size of
the support of either 1, or 1, such that (see [10, Proposition 1.5.1 and Theo-
rem 1.5.2, Remark 3]).

IF " ulln, @2y < el fllz, @e), (48)
[Dnkf 2,2y < ellf 1, r2)- (49)
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For the first embedding, notice that

S (21D ) = S (2D F (St ), e)

(n,k)eA (n,k)eA
n q
SC Z (2ns||f71(2n’+:1n—1 ”/ﬂHLP(Rz)>
(n,k)EA
) _ n q
ScZ(gnsnnH]—" 1(Zn/+:1n71 ”'ﬂHL,,(W)) )
nez

For the second embedding, for p > 1 and ¢ < 1, it is

> (2n5||fwnﬂup<w>)q = 3 (@ F (S Dy o)

nez neZ
q
= CZ (TSH "’“f )z (]Rz))
nez
LA q
CZ (2ns Z”anf”LP(RQ))
nez k=1
T
<e D0 (21D )
nezZ k=1

The other cases are obtained by applying the Riesz-Thorin interpolation theorem,
and using the bound on the sum over k (which is 7,,) for a given level n € Z. O

2.2. Linear Approximation. Consider for each positive integer m € N the finite-
dimensional linear sub-spaces X,,, = span{¢nzx}r,, C La2(R?), where F,, is a set
of indices defined by F,, = {(n,z,k) € F : max(|z1], |22]) < ma{™" /7, |n| < m}.
These are finite sets of indices associated with curvelets ¢, . satisfying:

(i) Bounded set of Scales: Only scales —m < n < m; therefore, the support
of the frequencies of the curvelets are contained in the annulus {27! <
€| <21}

(ii) Bounded set of Locations: For each scale n in the range, the set of locations
for the cuvelets indexed by I, are precisely those inside the cube centered
at the origin with side length m.

Lemma 2.5. The sets of indices {F,, }men satisfy the following properties:

(i) F,cFy,C---CF,, /F.

m
(i) [Fm| = > na(l+2(magt/x).
n=—m

Proof. Both assertions are trivial. ([l
Proposition 2.5. The families {¢nzt}(n 2 k)eF,, are frames for X,

Proof. The upper bound is trivial: Given f € X,,,
D bnai) P < DI s P = 1 o eey.
F

Frn

For the lower bound, set A, = inf { Sk, [(fs Pz 1 f € Xy | fll o2y = 1}. As
the intersection of the unit sphere with X,, is a compact set, there exists g € X,,
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with [|g]| £, 2y = 1 such that A, = > [(g, ¢nzk)|?, and thus A, > 0. It is then,
for all f € X,,,

D ML bz = 1 o) DI/ Nl a@e)s bz 2 Al @) O
Frm Fon

The corresponding frame operators are denoted by S,,: X,, — X,,, and the or-
thogonal projections by II,,: X — X,,. By Proposition 5.3.5 in Christensen [5],
for all f € La(R?), it is

Hmf = Z]Fm <fa S;Ll(rbnzk>¢nzk-

Notice that for all m € N, the errors of approximation by elements of the spaces
X, satisfy the following property:

E(f, Xm) T2 = I1f = W fl1 7,2y = 111702y = T 117, 2y -

The following results state equivalent conditions for a function f € Lo(R?) to belong
to approximation spaces Aj (Lg (R?), (Xm)meN) for0<s< o0, 0<q<oo:

Theorem 2.1. Let f € Ly(R?) and 0 < s < 0o. Then f € A5 (L2(R?), (X )men)
if and only if there exists M > 0 such that for all m € N,

_ (f+Sm bn=
113 gy — M~ < 5 ZZ P YA = Fi

/k’><¢w/z’k/ \Brzk
m

where || = ab+ab for a,b € C.

Proof. By Lemma 5.4.2 in Christensen [5], for each m € N,

I f117, 2y = Z|<Hmf, Pnzk)|”
—Z| Fo St bnzi)? D Fo St bnzn) — (Wi f, Gran)|?

- Z| mf ¢nzk

F\F,,

:Z|<f75;1¢nzk D £ St bnei) 2 = S (T f, bz
Fon F

S nz
+Z o] = D7 1M f, Gz

F\F,,

_ (f,Sm bnzi) . 2
- FZFZ (FrSmt bt wrir) <¢n,z,k,,¢nzk>] ”HMfHM(RZ)'

m

The statement follows. O
Theorem 2.2. Let f € Ly(R?), 0 < s < 0o, and for each m €N, j > m, set

Cm,j: Z |<f7¢nzk>|2_ Z |<Hmf>¢nzk>|2'

Fj+1\F; Fj+1\F;

Then,
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(i) f € A (L2(R?), (Xin)men) if and only if there exists M > 0 such that for
allm e N,

0
m23 Z Cm,j < M.

j=m
(11) f € A; (LQ(RQ)a (Xm)mGN) Zf and Only Zf
Z mqs_l( Z Cmﬂ-) < 0.
m=0 j=m
Proof. Notice that for each f € Ly(R?) and any m € N,
E(f, Xm) @2y = IF17 @2y = M f117, g2y
= ZF\FM | <fv ¢n2k>|2 - ZF\]FM |<Hmf7 ¢nzk> |2

S (X WbwdP = 3 Mnf 0l ).

g=m " Fjia\Fj Fj11\F;

Cm.j
The statements follow from the definition of approximation spaces. O
Lemma 2.6. For all f,g € Ly(R?), limy, || f — S f | £,r2) = 0.
Proof. For all g € R? with [|g||1,r2) = 1,
F=Smfo gl = | 3 (0 bnsk) (f 60z

F\F:,

< (S laon?) (1t bnmt)”

]F\]Fm ]F\]Fm

S(Z‘<fa¢nzk>|2)1/2—>0asm—>oo. O

F\F,,

Lemma 2.7. For each A € (0,1) and for each m € N, there exists a non-negative
integer (A, m) > 0 such that for all f € X,

M) < S | e Bnzi) 2 < 171 oy (50)

Furthermore, {Ily¢nzr @ (n,2,k) € Frypoaum)} s a frame for X, with frame
bounds A, 1, and associated frame operator & = ISy u(n,m) satisfying |G m|| <
L &5l <A

Proof. Consider a finite set of functions { f1,..., f;} in X,, satisfying || f;|| 1, m2) = 1
forall j =1,...,J, and such that

J
{f € Xt oy = 13 € | B(f, (1 =A%) /2).
j=1

There exists p(A\, m) € N such that for all j =1,...,J,

(1+>\1/2

2
) S T s Gz
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Given f € X \ {0}, set g = f/||fHL2(R2)7 and let jo € {1,...,J} such that
lg = fiollLame) < (1 —AY2)/2. Then,

9 1/2 ) 1/2
(S . 0020) " = ey (S o (9 00m)?)
1/2
2 (111 2a(k2) { (St s Sz )

- (ZF”‘FMA,m) [(fio = 9> Dnzk) ‘2) 1/2}

THAY2 1= \2
2 2

> ||l e

thus proving estimate (50).
Now, for each f € X,,,

MR ) < oo 1 One) 2= S 1 o) < 1711, e

therefore, {IL,,¢nzk }w,, nGam 1S @ frame for X,, with the claimed frame bounds.

In order to find the corresponding frame operators & ,,, notice that for f € X,,,

ZFvn‘Fu()\,m) <f7 Hm¢n2k> Hmd)nZk - Hm (ZFW,+M(>\,7H) <f’ ¢n2k>¢)RZk) = HmS'”LJFH(Aam) f'

) = N2 ),

The norm estimates for &y ,n = Iy Shqpuam) and 6;% = (HmSm+M(A,m))_1
follow from Proposition 5.4.4. in Christensen [5]. O

Proposition 2.6. For all A\ € (0,1), the sequence of operators {6;,1”Hm}m€N
converges weakly to the identity: For all f,g € Lo(R?), lim,, (f — GXjnHmf, g)=0.
Proof. For f € LQ(RQ)
f_ (.f - Hmf) + (Hmf - 6;,}%Hmf)
( f) + 6;\,17,1 (GA,mHmf - Hmf)
(T f) + 85, (TS promy o — T )
= (f - Hmf) + GX’ImHm (SerM()\,m)Hmf - f)7

and so, using both the boundedness of II,, and the norm estimates for 6;1,1 in
Lemma 2.7,

(f = &5l )| < [(F = T f.9)] + (S5 LT (S ) i f = £) 9)]

< = o fs 91+ 11653, (St ) o f = ) () 19 2 2)

< =T fy )|+ A7 (St wxnm) Do f = ) | a2y 191 2o 22) -
As lim,, (f — I, f, g) = 0 for all f, g € Ly(R?), it is enough to show that the term
1S m+nonm)mf — fllL,(r2) also tends to zero as m — oo. Notice that

[1SmapnnmyUmf = fllLa@2) < 1Smapnmymf — Smtpnm) fllLore2)
+ 1Smtuirmy f = fllz.®2)
S f = fllzo@2) + 1Smannm f — fllLa®2),

which tends to zero, since lim,,|[Sy, f — fl|L,®2) = 0. O
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