
IMI
Preprint Series

INDUSTRIAL

MATHEMATICS

INSTITUTE

Department of  Mathematics

University of  South Carolina

2008:06 
 
A generalized curvelet transform. 
Approximation properties   

F. J. Blanco-Silva  



A GENERALIZED CURVELET TRANSFORM. APPROXIMATION
PROPERTIES

FRANCISCO J. BLANCO-SILVA

Abstract. Some modifications are made to the original definitions of the

three Curvelet Transforms (continuous, semi-discrete and discrete—see [2], [3]
and [4]), which improves and simplifies the expressions of the related Parseval-

Plancherel formula and Calderón resolution of the identity. The results pre-

sented in this article cast new light on the structure and further properties of
curvelet-like schemes of approximation.

The discrete curvelet transform obtained here gives rise to a tight frame

for the space of square-integrable functions on the plane. Analysis based on
manipulation of the corresponding curvelet coefficients (with respect to this

frame) helps measure the regularity of functions in different smoothness spaces.

This information is used to offer characterizations of Lipschitz and Besov
spaces, as well as approximation spaces for sequences of finite-dimensional

linear spaces spanned by curvelets.

1. THE CURVELET TRANSFORM

The basic curvelets proposed by Candès and Donoho in [3] and [4] have Fourier
transforms obtained from tensor products of real-valued window functions for am-
plitude and phase, weighted accordingly with respect to a scaling parameter in
order to satisfy Calderón and Parseval-Plancherel integral identities (in a similar
fashion to the treatment of wavelets by Daubechies in [6]). But their choice allows
only representation of functions for which there exists ε > 0 such that f̂(ξ) = 0
for all ξ ∈ R2 with |ξ| < ε. To be able to treat general functions in L2(R2), they
introduce in the framework an auxiliary low-frequency radial wavelet together with
its shifts (but not its dilations).

We use this tensor product construction of curvelets while modifying slightly the
treatment of the shape of the support of their Fourier transforms. We introduce an
aspect-ratio weight function, which permits an alternative framework where no aux-
iliary non-curvelet functions are necessary for decomposition and reconstruction in
L2(R2), and simpler expressions are obtained for the corresponding curvelet trans-
forms. Proposition 1.2, its corollary 1.2.1 and theorem 1.1 present improvements to
the results of Candés and Donoho in this direction. Also notice how the integration
measure in the integral identities presented in the results of this paper (dβ dσ(θ) dα)
is much simpler than the corresponding in [3, Theorem 1] (dβ dσ(θ)α−3dα).

In §1.1 we present this new definition of curvelets, the construction of the corre-
sponding curvelet transform, and we explore some basic properties of both regarding
norm estimates and shape considerations. In §1.4 we perform a discretization of
this curvelet transform by means of very simple quadrature formulas performed
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evaluating the triple integrals in sequences αn in R, θnk ∈ S1, and βnk ∈ R2.
By carefully choosing these sequences, the discretizations are shown to offer tight
frames for the space L2(R2). We explore some properties of these particular frames
needed in section 2 for approximation purposes.

We point out that the conditions of admissibility for the windows W and V in
the construction of the tight frames presented in this dissertation are much simpler
than the ones obtained in [4]. In their case, the windows are required to satisfy

∞∑
j=−∞

W (2jr)2 = 1, r ∈ (3/4, 3/2);
∞∑

`=−∞

V (t− `)2 = 1, t ∈ (−1/2, 1/2).

In our case, the windows are required to satisfy, for some α0 > 1 fixed,

W (ρ)2 +W (α0ρ)2 =
1

logα0
, 1/α0 < ρ ≤ 1; V (ω)2 + V (ω − 1)2 = 1.

1.1. The Continuous Curvelet Transform.

1.1.1. Definition of Curvelets. Basic Properties. Define amplitude windows as dila-
tions of a common real-valued function W ∈ C∞c (0,∞) with

∫∞
0
W (t)2 dt

t = 1 and
suppW ⊂ [ 1

α0
, α0] for some α0 > 1: For each λ > 0, set Wλ(t) = λ−1/2W (t/λ).

Define phase windows as functions on the circle S1 parameterized as dilations
of a common real-valued smooth function V ∈ C∞c (R) with ‖V ‖L2(R) = 1 and
suppV ⊂ [−1, 1]: Given 0 < λ < π

2 and θ ∈ S1, let Vλ,θ : S1 → R parameterized by
λ−1/2V

(
ω−ω0
λ

)
, for ω ∈ [ω0 − π, ω0 + π) where ω0 is the only value in [−π, π) for

which θ = eiω0 .
We then define the curvelets γαβθ in the frequency domain as follows.

Definition. A curvelet is a complex-valued function γαβθ : R2 → C defined for each
scale 0 < α <∞, location β ∈ R2 and direction θ ∈ S1 by its Fourier transform as

γ̂αβθ(ξ) = Wα(|ξ|)Vτ(α),θ(ξ/|ξ|)e2πiβ·ξ, (1)

where the aspect-ratio weight function τ : (0,∞)→ (0, π4 ) has an absolute maximum
at mτ > 0 and satisfies:

(i) τ |(0,mτ ) is non-decreasing, with lim
α→0

τ(α) = 0.

(ii) τ |(mτ ,∞) is non-increasing, with lim
α→∞

τ(α) = 0.

Remark 1.1. The support of the Fourier transform of a curvelet γαβθ is the annular
wedge

{
ξ ∈ R2 : α−1

0 α ≤ |ξ| ≤ α0α, |arg ξ − ω0| < τ(α)
}

; the aspect ratio between

the difference of its radii and the angular span is
[(α2

0−1
α0

)
α : 2τ(α)

]
. The size of

these regions is |supp γ̂αβθ| =
(
α2

0 − 1
α2

0

)
α2 τ(α).

Notice that, according to this construction, there is an obvious relation among
curvelets within the same scaling factor α: γαβθ(x) = γα01

(
Rθ(x−β)

)
, where Rθ is

the rotation with center the origin sending 1 to θ. But unlike wavelets, no relation
exists between different scaled basic curvelets γα01 and γα′01 a priori.

Some useful bounds and basic properties of the curvelets γαβθ are stated below.
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Figure 1. The support of the Fourier transform of a curvelet γαβθ
for α > 0, β ∈ R2 and θ ∈ S1.

1.1.2. Norm estimates of curvelets.

Lemma 1.1. Given admissible phase and amplitude windows V , W (respectively),
the following estimate holds for the frequency-domain k-th Laplacian of curvelets,
for all k ≥ 0:

‖∆kγ̂α01‖L∞(R2) ≤ Ck,V,W
(
ατ(α)

)−2k−1/2
, (2)

for some constant Ck,V,W > 0.

Proof. Estimate (2) follows trivially for k = 0 from the definition of curvelets, since
for ρ > 0, 0 ≤ ω < 2π,

γ̂α01

(
ρeiω

)
= α−1/2τ(α)−1/2W (ρ/α)V

(
ω/τ(α)

)
.

For k > 0, recall that the expression in polar coordinates of the k-th Laplacian of
differentiable functions ϕ : R2 → R is given by

∆kϕ =
2k∑
j=1

bk+ 1−j
2 c∑

m=0

cm,j
ρj+2m−1

∂2k−j+1ϕ

∂ρ2k−j+1−2m∂ω2m
,

for some real values cm,j .
For the Fourier transform of curvelets γα01, it is

∂2k−j+1γ̂α01

(
ρeiω

)
∂ρ2k−j+1−2m∂ω2m

=
(
ατ(α)

)−1/2
α2m−1+j−2k ∂

2k−j+1−2mW
(
ρ
α

)
∂ρ2k−j+1−2m

τ(α)−2m
∂2mV

(
ω

τ(α)

)
∂ω2m

,

and thus, the k-th Laplacians ∆kγ̂α01 are given by the expression:(
ατ(α)

)1/2∆kγ̂α01

=
2k∑
j=1

bk+ 1−j
2 c∑

m=0

cm,j
ρj+2m−1α

2m−1+j−2kW (2k−j+1−2m)
(
ρ
α

)
τ(α)−2mV (2m)

(
ω

τ(α)

)

= α−2k
2k∑
j=1

bk+ 1−j
2 c∑

m=0

cm,jτ(α)−2m
[(
α
ρ

)j+2m−1
W (2k−j+1−2m)

(
ρ
α

)]
V (2m)

(
ω

τ(α)

)
.
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As τ(α) < 1 for all α > 0, it is τ(α)−2m ≤ τ(α)−2k for all m = 0, . . . , bk + 1−j
2 c;

j = 1, . . . , 2k; and thus the following estimate holds:

|∆kγ̂α01(ξ)|

≤
(
ατ(α)

)−2k−1/2 (max|cm,j |
) 2k∑
j=1

bk+ 1−j
2 c∑

m=0

sup
t>0

∣∣∣W (2k−j+1−2m)(t)
tj+2m−1

∣∣∣ ‖V (2m)‖L∞(R)︸ ︷︷ ︸
Ck,V,W

,

which gives the statement. �

Lemma 1.2. Curvelets belong to the Schwartz class S(R2). In particular, for all
α > 0, β ∈ R2, θ ∈ S2 and k ≥ 0,

|x− β|2k |γαβθ(x)| ≤
(
α2

0 − 1
α2

0

)
Ck,V,W α3/2−2kτ(α)1/2−2k. (3)

Proof. Since their Fourier transforms are C∞c (R2) functions, curvelets belong triv-
ially to the Schwartz space S(R2). As the inverse Fourier transform of each par-
tial derivative satisfies

(
∂2kbγα01

∂ξ2j
1 ∂ξ

2(k−j)
2

)∨(x) = (2πi)2kx2j
1 x

2(k−j)
2 γα01(x), the following

identity for the inverse Fourier transform of the k-th Laplacian holds:

(
∆kγ̂α01

)∨(x) =
k∑
j=0

(2πi)2k
(
k
j

)
x2j

1 x
2(k−j)
2 γα01(x) = (−1)k(2π)2k|x|2kγα01(x).

Thus,

|x− β|2k
∣∣γα01

(
Rθ(x− β)

)∣∣ ≤ (2π)−2k

∫
R2
|∆kγ̂α01(ξ)| dξ.

Upper bounds for the integral on the right hand side of the estimate above may be
found using the size of the support of the Fourier transform of curvelets, |supp γ̂αβθ|
(see remark 1.1), and the L∞ norm of the k-th Laplacian:

|x− β|2k |γαβθ(x)| ≤ (2π)−2k
(
α2

0 − 1
α2

0

)
α2τ(α) ‖∆kγ̂α01‖L∞(R2).

Using the estimate (2) on the inequality above yields (3). �

Lemma 1.3. Curvelets belong to the space Lp(R2) for all 0 < p ≤ ∞. An estimate
for the Lp–(quasi)norms is given by

‖γαβθ‖Lp(R2) ≤ C(V,W,α0, p)α3/2−2/pτ(α)1/2−2/p. (4)

Proof. For all x ∈ R2, α > 0, β ∈ R2 and θ ∈ S1,

|γαβθ(x)| ≤
∫

R2
|γ̂αβθ(ξ)| dξ ≤ |supp γ̂αβθ|‖γ̂αβθ‖L∞(R2)

≤
(
α2

0 − 1
α2

0

)
‖W‖L∞(0,∞) ‖V ‖L∞(R)α

3/2τ(α)1/2.

This gives (4) for p = ∞. For 0 < p ≤ 1, given α > 0, set ζ(α) = α−1τ(α)−1, and
consider the following decomposition:∫

R2
|γα01(x)|p dx =

∫
B2(0,ζ(α))

|γα01(x)|p dx︸ ︷︷ ︸
I

+
∫

R2\B2(0,ζ(α))

|γα01(x)|p dx︸ ︷︷ ︸
II

.
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Term I above is estimated by means of the essential supremum of |γα01| in the
integration domain, B2

(
0, ζ(α)

)
:

I =
∫
B2(0,ζ(α))

|γα01(x)|p dx ≤ |B2

(
0, ζ(α)

)
| ‖γα01‖pL∞(R2)

≤ πζ(α)2
(
α2

0 − 1
α2

0

)p‖W‖pL∞(0,∞)‖V ‖
p
L∞(R)α

3p/2τ(α)p/2
(
by (3) with k = 0

)
= π

(
α2

0 − 1
α2

0

)p‖W‖pL∞(0,∞)‖V ‖
p
L∞(R)α

3p/2−2τ(α)p/2−2.

To estimate II, set k(p) = d1/pe+ 1, and let

C̃p,V,W,α0 = (2π)−2k(p)
(
α2

0 − α−2
0

)
Ck(p),V,W

with Ck(p),V,W the constant from Lemma 1.2 for k = k(p).

II =
∫

R2\B2(0,ζ(α))

|γα01(x)|p dx

≤ C̃pp,V,W,α0
α3p/2−2k(p)pτ(α)p/2−2k(p)p

∫
R2\B2(0,ζ(α))

dx

|x|2k(p)p(
by (3) with k = k(p)

)
= C̃pp,V,W,α0

α3p/2−2k(p)pτ(α)p/2−2k(p)p 2π
(
ατ(α)

)2k(p)p−2

2k(p)p− 2
.

This last step is true since 1− k(p)p < 0. Thus,(∫
R2
|γα01(x)|p dx

)1/p

≤ C(V,W,α0, p)α3/2−2/pτ(α)1/2−2/p,

where

C(V,W,α0, p)

= 2
(
α2

0 − 1
α2

0

)
max

{
π1/p‖W‖L∞(0,∞) ‖V ‖L∞(R),

(2π)1/p−2k(p)Ck(p),V,W(
2k(p)p− 2

)1/p }
.

After appropriate shift and rotation, estimate (4) is obtained for all 0 < p ≤ 1,
α > 0, β ∈ R2 and θ ∈ S1.

The cases 1 < p <∞ of (4) follow from Hölder’s inequality:

‖γαβθ‖Lp(R2) ≤ ‖γαβθ‖
1/p
L1(R2) ‖γαβθ‖

1−1/p
L∞(R2) ≤ C(V,W,α0, p)α3/2−2/pτ(α)1/2−2/p.

�

Other estimates for the Lp–(quasi)norms are possible by direct computation, and
posterior interpolation between the new estimates. The following are some useful
examples.

Lemma 1.4. For 2 ≤ p ≤ ∞,

‖γαβθ‖Lp(R2) ≤ C(V,W,α0, p)α3/2−2/pτ(α)1/2−1/p. (5)

Proof. Notice first that we have an exact value for the L2–norm of curvelets:

‖γαβθ‖L2(R2) = C(V,W )α1/2, (6)
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with C(V,W ) = ‖V ‖L2(R)

( ∫
R r

2W (r)2 dr
)1/2

. Indeed:

‖γαβθ‖2L2(R2) =
∫

R2
|γαβθ(x)|2 dx =

∫
R2
|γ̂αβθ(ξ)|2 dξ

(
by Plancherel’s Theorem

)
=
∫ ∞

0

∫
S1

1
αW

(
ρ
α

)2 1
τ(α)V

(
argω−arg θ

τ(α)

)2
ρ dρ dσ(ω)

= α

∫ ∞
0

ρ
αW

(
ρ
α

)2 dρ
α

∫ arg θ+π

arg θ−π
V
(
s−arg θ
τ(α)

)2 ds
τ(α)

= α
(∫

R
r2W (r)2 dr

)
‖V ‖2L2(R).

(
with r = ρ

α , dr = dρ
α

)
This gives equation (5) for p = 2, and further use of Hölder’s inequality together
with the L∞–norm obtained in (4), gives (5) for all 2 < p <∞:

‖γαβθ‖Lp(R2) ≤ ‖γαβθ‖
2/p
L2(R2)‖γαβθ‖

1−2/p
L∞(R2)

≤ C(V,W, p, α0)(α1/2)2/p
(
α3/2τ(α)1/2

)1−2/p
�

Lemma 1.5. For 1 ≤ p ≤ 2,

‖γαβθ‖Lp(R2) ≤ C(V,W,α0, p)α3/2−2/pτ(α)3/2−3/p. (7)

Proof. This is a direct consequence of Hölder’s inequality together with estimates (6)
and (4) for p = 1:

‖γαβθ‖Lp(R2) ≤ ‖γαβθ‖
2/p−1
L1(R2)‖γαβθ‖

2−2/p
L2(R2)

≤ C(V,W,α0, p)
(
α−1/2τ(α)−3/2

)2/p−1(α1/2)2−2/p. �

Lemma 1.6. For 1 ≤ p ≤ 2, and all m ∈ N,

‖γαβθ‖Lp(R2) ≤ C(m,V,W,α0, p)α2/p−1/2τ(α)1/p−1/2
(
1 + α−2mτ(α)−2m

)2/p−1
.

(8)

Proof. Using equation (3) twice (one with k = 0, one with k = m), it is

|γαβθ(x)| ≤ C(m,V,W,α0)
α3/2τ(α)1/2

(
1 + α−2mτ(α)−2m

)
1 + |x− β|2m

.

Integrating the previous expression, the following bound for the L1–norm of curvelets
is obtained:

‖γαβθ‖L1(R2)

≤ C(m,V,W,α0)
(∫

R2

dx

1 + |x− β|2m
)

︸ ︷︷ ︸
π2

m csc
(
π
m

)
α3/2τ(α)1/2

(
1 + α−2mτ(α)−2m

)
.

This gives (8) for p = 1. Further interpolation between (6) and this estimate
gives (8) for 1 < p < 2:

‖γαβθ‖Lp(R2) ≤ ‖γαβθ‖
2/p−1
L1(R2) ‖γαβθ‖

2−2/p
L2(R2)

≤ C(m,V,W,α0, p)
(
α3/2τ(α)1/2

(
1 + α−2mτ(α)−2m

))2/p−1

(α1/2)2−2/p.�
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Lemma 1.7. For 1 ≤ p ≤ ∞, and all m ∈ N,

‖γαβθ‖Lp(R2) ≤ C(m,V,W,α0, p)α3/2τ(α)1/2
(
1 + α−2mτ(α)−2m

)1/p
. (9)

Proof. Interpolation between (8) for p = 1, m ∈ N, and (4) for p = ∞ gives
estimate (9) directly:

‖γαβθ‖Lp(R2) ≤ ‖γαβθ‖
1/p
L1(R2)‖γαβθ‖

1−1/p
L∞(R2)

≤ C(m,V,W,α0, p)
(
α3/2τ(α)1/2

(
1 + α−2mτ(α)−2m

))1/p(
α3/2τ(α)1/2

)1−1/p
.�

1.1.3. Shape of curvelets. The modulus of the curvelet γαβθ is a smooth function
in R2 with graph presenting a “plateau” effect: its mass is concentrated in a region
around the location β. This region appears to the naked eye as the interior of
an ellipse with axes being both θ and θ⊥, and eccentricity proportional to τ(α).
Outside of this region, the graph decreases to zero rapidly. In order to explain this
phenomenon, the use of differential geometry is needed.

Lemma 1.8. For any α > 0, β ∈ R2 and θ ∈ S1, the surface given by

Γαβθ : R2 3 (u, v) 7→
(
u, v, |γαβθ(u, v)|2

)
∈ R3,

is regular at the point
(
β, |γαβθ(β)|2

)
, its tangent plane being horizontal, and the

First Fundamental Form being the identity matrix. The coefficients of the Second
Fundamental Form are given by

e =
8π2α5

τ(α)

[{∫ ∞
0

r2W (r) dr
}2{∫ π

−π
cosω V

(
ω

τ(α)

)
dω
}2

−
∫ ∞

0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω

∫ ∞
0

r3W (r) dr
∫ π

−π
cos2 ω V

(
ω

τ(α)

)
dω

]
,

f = −8π2α5

τ(α)

[{∫ ∞
0

r2W (r) dr
}2
∫ π

−π
sinω V

(
ω

τ(α)

)
dω

∫ π

−π
cosω V

(
ω

τ(α)

)
dω

+
∫ ∞

0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω

∫ ∞
0

r3W (r) dr
∫ π

−π
sinω cosω V

(
ω

τ(α)

)
dω

]
,

g =
8π2α5

τ(α)

[{∫ ∞
0

r2W (r) dr
}2{∫ π

−π
sinω V

(
ω

τ(α)

)
dω
}2

−
∫ ∞

0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω

∫ ∞
0

r3W (r) dr
∫ π

−π
sin2 ω V

(
ω

τ(α)

)
dω

]
.

Proof. For simplicity, assume β = 0 and θ = 1; the general case is obtained from
this after proper shift and rotation. Notice that

|γα01(u, v)|2 =
(
<γα01(u, v)

)2 +
(
=γα01(u, v)

)2
,

where the real and imaginary parts of the curvelet are given by

<γα01(u, v) =
∫

R2

1
α1/2 W

( |ξ|
α

)
1

τ(α)1/2 V
(

arg ξ
τ(α)

)
cos
(
2π(u, v) · ξ

)
dξ,

=γα01(u, v) =
∫

R2

1
α1/2 W

( |ξ|
α

)
1

τ(α)1/2 V
(

arg ξ
τ(α)

)
sin
(
2π(u, v) · ξ

)
dξ.
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In particular,

∂<γα01

∂u
(u, v) = − 2π

α1/2τ(α)1/2

∫
R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
sin
(
2π(u, v) · ξ

)
dξ,

∂<γα01

∂v
(u, v) = − 2π

α1/2τ(α)1/2

∫
R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
sin
(
2π(u, v) · ξ

)
dξ,

∂=γα01

∂u
(u, v) = 2π

α1/2τ(α)1/2

∫
R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
cos
(
2π(u, v) · ξ

)
dξ,

∂=γα01

∂v
(u, v) = 2π

α1/2τ(α)1/2

∫
R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
cos
(
2π(u, v) · ξ

)
dξ,

and furthermore,

∂|γα01|2

∂u
(u, v) = 2<γα01(u, v)

∂<γα01

∂u
(u, v) + 2=γα01(u, v)

∂=γα01

∂u
(u, v)

=
4π

ατ(α)

[
−
∫

R2
W
( |ζ|
α

)
V
(

arg ζ
τ(α)

)
cos
(
2π(u, v) · ζ

)
dζ∫

R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
sin
(
2π(u, v) · ξ

)
dξ

+
∫

R2
W
( |ζ|
α

)
V
(

arg ζ
τ(α)

)
sin
(
2π(u, v) · ζ

)
dζ∫

R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
cos
(
2π(u, v) · ξ

)
dξ

]
,

∂|γα01|2

∂v
(u, v) =

4π
ατ(α)

[
−
∫

R2
W
( |ζ|
α

)
V
(

arg ζ
τ(α)

)
cos
(
2π(u, v) · ζ

)
dζ∫

R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
sin
(
2π(u, v) · ξ

)
dξ

+
∫

R2
W
( |ζ|
α

)
V
(

arg ζ
τ(α)

)
sin
(
2π(u, v) · ζ

)
dζ∫

R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
cos
(
2π(u, v) · ξ

)
dξ

]
.

At the origin, (u, v) = 0, it is

∂|γα01|2

∂u
(0, 0) =

∂|γα01|2

∂v
(0, 0) = 0.

So at
(
0, 0, |γαβθ(0, 0)|2

)
the tangent plane is spanned by both (1, 0, ∂|γα01|2

∂u

∣∣
0
) =

(1, 0, 0) and (0, 1, ∂|γα01|2
∂v

∣∣
0
) = (0, 1, 0). The coefficients of the First Fundamental

form are,

E =
∣∣∂Γα01

∂u (0, 0)
∣∣2 =

∣∣(1, 0, ∂|γαβθ|2∂u (0, 0)
)∣∣2 = 1,

F = ∂Γα01

∂u (0, 0) · ∂Γα01

∂v (0, 0) =
(
1, 0, ∂|γαβθ|

2

∂u (0, 0)
)
·
(
0, 1, ∂|γαβθ|

2

∂v (0, 0)
)

= 0,

G =
∣∣∂Γα01

∂v (0, 0)
∣∣2 =

∣∣(0, 1, ∂|γαβθ|2∂v (0, 0)
)∣∣2 = 1.
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The coefficients of the Second Fundamental Form at
(
0, |γα01(0, 0)|2

)
are,

e =
1√

EG− F 2
det
(
∂2Γα01

∂u2

∣∣∣
0

∂Γα01

∂u

∣∣∣
0

∂Γα01

∂v

∣∣∣
0

)
=

∣∣∣∣∣∣∣
0 0 ∂2|γα01|2

∂u2 (0, 0)
1 0 ∂|γα01|2

∂u (0, 0)
0 1 ∂|γα01|2

∂v (0, 0)

∣∣∣∣∣∣∣
= 2

(
∂
∂u<γα01(0, 0)

)2 + 2<γα01(0, 0) ∂2

∂u2<γα01(0, 0)

+ 2
(
∂
∂u=γα01(0, 0)

)2 + 2=γα01(0, 0) ∂2

∂u2=γα01(0, 0)

=
8π2

ατ(α)

[
−
∫

R2
W
( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

∫
R2
ξ2
1 W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

+
{∫

R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ
}2
]

=
8π2

ατ(α)

[
−
∫ ∞

0

∫ π

−π
ρW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ∫ ∞

0

∫ π

−π
ρ3 cos2 ωW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ

+
{∫ ∞

0

∫ π

−π
ρ2 cosωW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ

}2
]

=
8π2α5

τ(α)

[
−
∫ ∞

0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω∫ ∞

0

r3W (r) dr
∫ π

−π
cos2 ω V

(
ω

τ(α)

)
dω

+
{∫ ∞

0

r2W (r) dr
}2{∫ π

−π
cosω V

(
ω

τ(α)

)
dω
}2
]
,

f =
1√

EG− F 2
det
(
∂2Γα01

∂u∂v

∣∣∣
0

∂Γα01

∂u

∣∣∣
0

∂Γα01

∂v

∣∣∣
0

)
=
∂2|γα01|2

∂u ∂v
(0, 0)

= 2 ∂
∂u<γα01(0, 0) ∂

∂v<γα01(0, 0) + 2<γα01(0, 0) ∂2

∂u ∂v<γα01(0, 0)

+ 2 ∂
∂u=γα01(0, 0) ∂

∂v=γα01(0, 0) + 2=γα01(0, 0) ∂2

∂u ∂v=γα01(0, 0)

= − 8π2

ατ(α)

[ ∫
R2
W
( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

∫
R2
ξ1ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

+
∫

R2
ξ1W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

∫
R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

]
= −8π2α5

τ(α)

[ ∫ ∞
0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω∫ ∞

0

r3W (r) dr
∫ π

−π
sinω cosω V

(
ω

τ(α)

)
dω

+
{∫ ∞

0

r2W (r) dr
}2
∫ π

−π
sinω V

(
ω

τ(α)

)
dω

∫ π

−π
cosω V

(
ω

τ(α)

)
dω

]
,

g =
1√

EG− F 2
det
(
∂2Γα01

∂v2

∣∣∣
0

∂Γα01

∂u

∣∣∣
0

∂Γα01

∂v

∣∣∣
0

)
=
∂2|γα01|2

∂v2
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=
8π2

ατ(α)

[
−
∫

R2
W
( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

∫
R2
ξ2
2 W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ

+
{∫

R2
ξ2W

( |ξ|
α

)
V
(

arg ξ
τ(α)

)
dξ
}2
]

=
8π2

ατ(α)

[
−
∫ ∞

0

∫ π

−π
ρW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ∫ ∞

0

∫ π

−π
ρ3 sin2 ωW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ

+
{∫ ∞

0

∫ π

−π
ρ2 sinωW

(
ρ
α

)
V
(

ω
τ(α)

)
dω dρ

}2
]

=
8π2α5

τ(α)

[
−
∫ ∞

0

rW (r) dr
∫ π

−π
V
(

ω
τ(α)

)
dω∫ ∞

0

r3W (r) dr
∫ π

−π
sin2 ω V

(
ω

τ(α)

)
dω

+
{∫ ∞

0

r2W (r) dr
}2{∫ π

−π
sinω V

(
ω

τ(α)

)
dω
}2
]
. �

Remark 1.2. Lemma 1.8 justifies the computation of the Dupin Indicatrix at the
center of surfaces Γαβθ as means of approximating the shape of the highest level
curves for the square of moduli of curvelets γαβθ nearby their locations β ∈ R2.

Remark 1.3. The matrix representation of the Dupin Indicatrix of Γα01 at the
point

(
0, |γα01(0)|2

)
is given by 1

x
y

>±1 0 0
0 e f
0 f g

  1
x
y

 = 0.

According to the sign of the sub-determinant resulting from removing the first row
and first column, the conics given by the Dupin Indicatrix is one of the following:

(i) If det
( e f

f g

)
= 0, the conic is degenerate. In this case, two parallel straight

lines.
(ii) If det

( e f
f g

)
> 0, the conic is an ellipse.

(iii) Otherwise, it is a pair of hyperbolas.

In the computations below, let M =
(
8π2α5τ(α)−1

)−2, and

Vf

(
λ
)

=
∫ π

−π
V
(
ω
λ

)
f(ω) dω, µk(W ) =

∫ ∞
0

rkW (r) dr (k ∈ N),

IV,τ(α) = Vsin2 ω

(
τ(α)

)
Vcos2 ω

(
τ(α)

)
− Vsinω cosω

(
τ(α)

)2
,

IIV,τ(α) = Vsin2 ω

(
τ(α)

)
Vcosω

(
τ(α)

)2 + Vsinω

(
τ(α)

)2Vcos2 ω

(
τ(α)

)
+ 2Vsinω

(
τ(α)

)
Vcosω

(
τ(α)

)
Vsinω cosω

(
τ(α)

)
.

Then,

M det
( e f

f g

)
=
(
µ2(W )2Vcosω

(
τ(α)

)2 − µ1(W )µ3(W )V1

(
τ(α)

)
Vcos2 ω

(
τ(α)

))
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µ2(W )2Vsinω

(
τ(α)

)2 − µ1(W )µ3(W )V1

(
τ(α)

)
Vsin2 ω

(
τ(α)

))
−
(
µ2(W )2Vsinω

(
τ(α)

)
Vcosω

(
τ(α)

)
+ µ1(W )µ3(W )V1

(
τ(α)

)
Vsinω cosω

(
τ(α)

))2

= µ1(W )2µ3(W )2V1

(
τ(α)

)2(Vsin2 ω

(
τ(α)

)
Vcos2 ω

(
τ(α)

)
− Vsinω cosω

(
τ(α)

)2)
− µ1(W )µ2(W )2µ3(W )V1

(
τ(α)

)(
Vsin2 ω

(
τ(α)

)
Vcosω

(
τ(α)

)2
+ Vsinω

(
τ(α)

)2Vcos2 ω

(
τ(α)

)
+ 2Vsinω

(
τ(α)

)
Vcosω

(
τ(α)

)
Vsinω cosω

(
τ(α)

))
= µ1(W )2µ3(W )2V1

(
τ(α)

)2
IV,τ(α)

− µ1(W )µ2(W )2µ3(W )V1

(
τ(α)

)
IIV,τ(α).

Definition. A curvelet γαβθ is said to be elliptic (resp. hyperbolic, flat) provided
the Dupin Indicatrix at the center of the corresponding surface Γαβθ is an ellipse
(resp. pair of hyperbolas, pair of parallel lines). The expression

sign
(
µ1(W )2µ3(W )2V1

(
τ(α)

)2
IV,τ(α) − µ1(W )µ2(W )2µ3(W )V1

(
τ(α)

)
IIV,τ(α)

)
(10)

is called the shape discriminant of the curvelet γαβθ.

Lemma 1.9. If V ∈ C∞c (R) is a positive function on its support, suppV = [−1, 1],
then

1
2
τ(α)3

∫ 1

−1

ω2V (ω) dω ≤ Vsin2 ω

(
τ(α)

)
≤ τ(α)3

∫ 1

−1

ω2V (ω) dω. (11)

Proof. This is direct from the inequalities ζ2/2 ≤ sin2 ζ ≤ ζ2 for all −1 ≤ ζ ≤ 1,
and the identity∫ π

−π
V
(

ω
τ(α)

)
sin2 ω dω = τ(α)

∫ π/τ(α)

−π/τ(α)

V (ζ) sin2 τ(α)ζ dζ
(
ζ = ω

τ(α)

)
= τ(α)

∫ 1

−1

V (ζ) sin2 τ(α)ζ dζ.
(
since π

τ(α) > 1
)

�

Lemma 1.10. Let V ∈ C∞c (R) be an even function strictly positive on its support,
suppV = [−1, 1]. Then, for all α > 0,

V1

(
τ(α)

)
= ‖V ‖L1(R)τ(α) > 0, (12)

√
2

2
V1

(
τ(α)

)
≤ Vcosω

(
τ(α)

)
≤ V1

(
τ(α)

)
, (13)

1
2
V1

(
τ(α)

)
≤ Vcos2 ω

(
τ(α)

)
≤ V1

(
τ(α)

)
, (14)

and in particular,
1
2
≤

V1

(
τ(α)

)
Vcos2 ω

(
τ(α)

)
Vcosω

(
τ(α)

)2 ≤ 4 (15)
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Proof. Identity (12) is direct by definition. To prove estimate (13), notice first that
0 < τ(α) < π/4, and hence

√
2

2 ≤ cos τ(α) ≤ cos τ(α)ω ≤ 1 for 1 ≤ ω ≤ 1. This is
used in the identity below∫ π

−π
V
(

ω
τ(α)

)
cosω dω = τ(α)

∫ 1

−1

V (ω) cos τ(α)ω dω.

Estimate (14) follows from a similar argument, and (15) is a direct consequence of
the previous estimates. �

Lemma 1.11. Consider the curvelet γα01 with both windows V and W positive
in their respective domains. If the phase window is an even function, then f = 0,
|e| � α5τ(α), and |g| � α5τ(α)3, where the constants of proportionality depend at
most on the choice of windows V and W .

Proof. As V is an even function, Vsinω

(
τ(α)

)
= 0 as well as Vsinω cosω

(
τ(α)

)
= 0

and furthermore, f = 0. Notice that the following are all strictly positive,

µ1(W ) > 0, µ2(W ) > 0, µ3(W ) > 0,

V1

(
τ(α)

)
> 0, Vsin2 ω

(
τ(α)

)
> 0, Vcos2 ω

(
τ(α)

)
> 0,

as well as Vcosω

(
τ(α)

)
> 0 by Lemma 1.10. It is then

e =
8π2α5

τ(α)

(
µ2(W )2Vcosω

(
τ(α)

)2 − µ1(W )µ3(W )V1

(
τ(α)

)
Vcos2 ω

(
τ(α)

))
≤ 8π2α5

τ(α)

(
µ2(W )2 − 1

2µ1(W )µ3(W )
)
‖V ‖L1(R)τ(α)2

(
by Lemma 1.10

)
= 8π2‖V ‖L1(R)

(
µ2(W )2 − 1

2µ1(W )µ3(W )
)
α5τ(α),

e ≥ 8π2α5

τ(α)

(√
2

2 µ2(W )2 − µ1(W )µ3(W )
)
‖V ‖L1(R)τ(α)2

(
by Lemma 1.10

)
= 8π2‖V ‖L1(R)

(√
2

2 µ2(W )2 − µ1(W )µ3(W )
)
α5τ(α),

|g| = 8π2α5

τ(α)
µ1(W )µ3(W )V1

(
τ(α)

)
Vsin2 ω

(
τ(α)

)
� 8π2α5

τ(α)
µ1(W )µ3(W )τ(α)‖V ‖L1(R)τ(α)3µ2(V )

(
by Lemma 1.9

)
= 8π2‖V ‖L1(R)µ2(V )µ1(W )µ3(W )α5τ(α)3,

where µ2(V ) =
∫ 1

−1
ω2V (ω) dω is the second moment of V . �

Proposition 1.1. Consider the curvelet γα01 with both the windows V and W
positive in their respective domains. If the phase window is an even function, then
the Dupin Indicatrix of the regular surface Γα01 at the point

(
0, |γα01(0)|2

)
is

(i) A pair of parallel lines, provided

µ2(W )2

µ1(W )µ3(W )
=

V1

(
τ(α)

)
Vcos2 ω

(
τ(α)

)
Vcosω

(
τ(α)

)2 , (16)

the distance d between those lines satisfies d � α−5/2τ(α)−3/2, where the
constants of proportionality depend at most on V and W ;
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(ii) An ellipse with area A and semi-axes a, b, satisfying A � α−5τ(α)−2,
a/b � τ(α), so long as

µ2(W )2

µ1(W )µ3(W )
<

V1

(
τ(α)

)
Vcos2 ω

(
τ(α)

)
Vcosω

(
τ(α)

)2 . (17)

(iii) Otherwise, a pair of hyperbolas having the same set of asymptotes. Their
semi-axes a, b, and the angle θ between the two asymptotes satisfy a/b �
τ(α), and tanθ � τ(α).

Proof. The classification follows from direct inspection of the shape discriminant
(10):

(i) If (16) holds, then the Dupin Indicatrix is the pair of parallel lines y2 =
|g|−1, since e = 0. The distance between these lines is given by d =
2|g|−1/2 � α−5/2τ(α)−3/2, by Lemma 1.9.

(ii) If (17) is satisfied, the Dupin Indicatrix is the ellipse |e|x2 + |g|y2 = 1.
Its semi-axes have sizes a = |e|−1/2 � α−5/2τ(α)−1/2 and b = |g|−1/2 �
α−5/2τ(α)−3/2, and its area is given by A = π|eg|−1/2 � α−5τ(α)−2.

(iii) Notice that in this case it is e > 0, g < 0, and so the Dupin Indicatrix
reduces to the pair of hyperbolas |e|x2 − |g|y2 = 1, |g|y2 − |e|x2 = 1. The
set of asymptotes of both hyperbolas is given by the equations

|e|1/2x− |g|1/2y = 0, |e|1/2x+ |g|1/2y = 0.

From the values of the slopes of both lines, it is tanθ = 2|eg|1/2
(
|e| −

|g|
)
� τ(α)

(
1− τ(α)2

)−1. Finally, the semi-axes are given by a = |e|−1/2,
b = |g|−1/2. The rest of the statement follows. �

Remark 1.4. Lemma 1.10 shows that it is possible to obtain a family of elliptical
curvelets {γαβθ} by choosing wisely the amplitude window. In particular, any
admissible function W ∈ C∞c (R) satisfying µ2(W )2µ1(W )−1µ3(W )−1 < 1/2 offers
such possibility.

1.2. The Curvelet Transform in L2(R2).

Proposition 1.2. Given real-valued smooth functions W ∈ C∞c (0,∞) with support
in the interval [ 1

α0
, α0] (α0 > 1) satisfying

∫∞
0
W (t)2 dt

t = 1, and V ∈ C∞c (R) with
support in [−1, 1], satisfying ‖V ‖L2(R) = 1; then the following identity holds for all
functions f, g ∈ L2(R2):

〈f, g〉 =
∫ ∞

0

∫
S1

∫
R2
〈f, γαβθ〉〈g, γαβθ〉dβ dσ(θ) dα. (18)

Proof. Set I(f, g) =
∫∞

0

∫
S1

∫
R2〈f, γαβθ〉〈g, γαβθ〉dβ dσ(θ) dα. It is then

I(f, g) =
∫ ∞

0

∫
S1

∫
R2
〈f̂ , γ̂αβθ〉〈ĝ, γ̂αβθ〉dβ dσ(θ) dα

=
∫ ∞

0

∫
S1

∫
R2

(∫
R2
f̂(ξ)Wα(|ξ|)Vτ(α),θ(ξ/|ξ|)e−2πiβ·ξdξ

)
(∫

R2
ĝ(ζ)Wα(|ζ|)Vτ(α),θ(ζ/|ζ|)e2πiβ·ζdζ

)
dβ dσ(θ) dα.
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Consider the auxiliary functions

Fαθ(ξ) = f̂(ξ)Wα(|ξ|)Vτ(α),θ(ξ/|ξ|)

Gαθ(ξ) = ĝ(ξ)Wα(|ξ|)Vτ(α),θ(ξ/|ξ|);

because the Fourier transform is unitary, it follows that

I(f, g) =
∫ ∞

0

∫
S1

∫
R2
F̂αθ(β)Ĝαθ(β)dβ dσ(θ) dα

=
∫ ∞

0

∫
S1

∫
R2
Fαθ(ξ)Gαθ(ξ)dξ dσ(θ) dα

=
∫

R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

Wα(|ξ|)2

∫
S1
Vτ(α),θ(ξ/|ξ|)2 dσ(θ) dα dβ

(interchange is allowed by Fubini’s Theorem)

=
∫

R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

Wα(|ξ|)2

∫ ω+π

ω−π

1
τ(α)V

(
ω−ω0
τ(α)

)2
dω0 dα dξ

=
∫

R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

Wα(|ξ|)2

∫ π/τ(α)

−π/τ(α)

V (s)2 ds dα dξ

(apply the change of variables s = ω−ω0
τ(α) )

= ‖V ‖2L2(R)

∫
R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

Wα(|ξ|)2 dα dξ

=
∫

R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

1
αW

( |ξ|
α

)2
dα dξ(

apply the change of variables t = |ξ|
α

)
=
∫

R2
f̂(ξ)ĝ(ξ)

∫ ∞
0

W (t)2 dt
t dξ = 〈f, g〉. �

Corollary 1.2.1 (Plancherel’s Theorem for the Continuous Curvelet Transform).
For each f ∈ L2(R2),

‖f‖2L2(R2) =
∫ ∞

0

∫
S1

∫
R2
|〈f, γαβθ〉|2 dβ dσ(θ) dα. (19)

Remark 1.5. Use the previous corollary to construct an isometric isomorphism
between L2(R2) and a subspace of the square integrable functions over the measure
space (Ω, µ), where Ω = (0,∞)×S1×R2 is the scale/direction/location space, and
dµ = dβ dσ(θ) dα:

T : L2(R2)→ L2(Ω, µ),

given by T f(α, θ, β) = 〈f, γαβθ〉 for (α, θ, β) ∈ Ω. The mapping T is called the
continuous curvelet transform, or simply the curvelet transform. On occasion
T f(α, θ, β) is called the curvelet coefficient of f at the scale α, location β and
direction θ.

Lemma 1.12. The operator T : L2(R2)→ L2(Ω, µ) defined above is bounded, lin-
ear, one-to-one, and isometric on its range.

Proof. T is trivially linear by construction. Let f ∈ L2(R2) be a function such that
0 = T f(α, θ, β) = 〈f, γαβθ〉 = 〈f̂ , γ̂αβθ〉 for all (α, θ, β) ∈ Ω. As γ̂α0θ is non-negative
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for each choice of α and θ, both <f̂ and =f̂ must be identically zero in the support
of the frequency of each curvelet and, therefore, f̂ is identically zero everywhere.
It must then be that f is identically zero, which proves T one-to-one.

Finally, both boundedness and the isometry property of T are a direct conse-
quence of (19). �

Denote H = T L2(R2), and call it the space of curvelet coefficients for the con-
tinuous curvelet transform in L2(R2). Putting all together we finally obtain the
claimed result.

Proposition 1.3. The operator T : L2(R2)→ H constructed above is an isometric
isomorphism.

A Resolution of the Identity is needed in order to find the inverse of this operator
explicitly.

Theorem 1.1 (Calderón Resolution of the Identity for the Continuous Curvelet
Transform). Under the same hypotheses as in Proposition 1.2, the following Cal-
derón Resolution of the Identity holds:

f(x) =
∫ ∞

0

∫
S1

∫
R2
〈f, γαβθ〉γαβθ(x) dβ dσ(θ) dα. (20)

Proof. Denote vold the volume of the d-dimensional unit ball, and Ad−1 the surface
area of the corresponding sphere. Let 0 < α1 < α2, and ρ > 0. For functions
f, g ∈ L2(R2), it is∫ α2

α1

∫
S1

∫
|β|≤ρ

〈f, γαβθ〉〈g, γαβθ〉 dβ dσ(θ) dα

≤ |α2 − α1|A1ρ
2 vol2 ‖f‖L2(R2) ‖g‖L2(R2) ‖γαβθ‖2L2(R2);

therefore, for each f ∈ L2(R2) the linear forms T = T (f ;α1, α2, ρ ; ·) : L2(R2)→ R
given by the integrals above are continuous. By the Riesz Representation Theorem
for the Hilbert Space L2(R2), the functions

x 7→
∫ α2

α1

∫
S1

∫
|β|≤ρ

〈f, γαβθ〉γαβθ(x) dβ dσ(θ) dα

are well defined and belong to L2(R2). In that case,∥∥∥∥∥f −
∫ α2

α1

∫
S1

∫
|β|≤ρ

〈f, γαβθ〉γαβθ(x) dβ dσ(θ) dα

∥∥∥∥∥
2

L2(R2)

= sup
g∈L2(R2)
‖g‖L2(R2)=1

∣∣∣∣∣
〈
f −

∫ α2

α1

∫
S1

∫
|β|≤ρ

〈f, γαβθ〉γαβθ(x) dβ dα, g

〉∣∣∣∣∣
= sup

g∈L2(R2)
‖g‖L2(R2)=1

∣∣∣∣∣
∫∫∫

Ω\[α1,α2]×S1×B2(0,ρ)

〈f, γαβθ〉〈g, γαβθ〉 dβ dσ(θ) dα

∣∣∣∣∣
≤ sup

g∈L2(R2)
‖g‖L2(R2)=1

{(∫∫∫
Ω\[α1,α2]×S1×B2(0,ρ)

|〈f, γαβθ〉|2dβ dσ(θ) dα
)1/2
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Ω

|〈g, γαβθ〉|2dβ dσ(θ) dα
)1/2}

=

(∫∫∫
Ω\[α1,α2]×S1×B2(0,ρ)

|〈f, γαβθ〉|2dβ dσ(θ) dα

)1/2

.

But the last integral converges to zero as α1 → 0, α2, ρ → ∞, since the same
integral over all of Ω converges by equation (19). The stated result follows. �

Remark 1.6. This last result allows the construction of the inverse curvelet trans-
form as follows: Given F ∈ H, there is a unique f ∈ L2(R2) such that F (α, θ, β) =
〈f, γαβθ〉. In that case

f(x) =
∫ ∞

0

∫
S1

∫
R2
F (α, θ, β) γαβθ(x) dβ dσ(θ) dα.

Consequently, T −1 : H → L2(R2) is defined using the integral operator above.

The space H has an interesting structure.

Proposition 1.4. H = T L2(R2) is a reproducing kernel Hilbert Space: For each
F ∈ H,

F (α′, θ′, β′) =
∫ ∞

0

∫
S1

∫
R2
F (α, θ, β)K(α′, β′, θ′;α, β, θ) dβ dσ(θ) dα,

where the kernel K is defined by K(α′, β′, θ′;α, β, θ) = 〈γαβθ, γα′β′θ′〉.

Proof. Given F ∈ H, there exists a unique function f ∈ L2(R2) such that F (α, θ, β) =
〈f, γαβθ〉. In that case, for another choice (α′, θ′, β′) ∈ Ω, it is

F (α′, θ′, β′) =
∫ ∞

0

∫
S1

∫
R2
〈f, γαβθ〉〈γα′β′θ′ , γαβθ〉 dβ dσ(θ) dα. �

1.3. The Curvelet Transform in Lp(R2) for 1 ≤ p < 2. Plancherel’s Theorem
can be extended from the exponent 2 to a general exponent p. Throughout this
section, denote p′ = p/(p− 1) and with a similar convention for any other letters.

Proposition 1.5. Assume there exists a constant A > 0 such that τ(α) ≤ Aα−s

for some s ≥ 3 and all α ≥ mτ ; then, the curvelet transform T : L2(R2)→ L2(Ω, µ)
has a bounded extension from Lp(R2) to Lp′(Ω, µ), satisfying for all f ∈ Lp(R2),

‖T f‖Lp′ (Ω,µ) ≤ C(V,W,α0, A,mτ , s, p) ‖f‖Lp(R2).

Proof. Both linearity and boundedness properties for T as an operator from L2(R2)
to L2(Ω, µ) were already proven in Lemma 1.12.

Given f ∈ L1(R2), using (4), we have

|〈f, γαβθ〉| =
∣∣∣∣∫

R2
f(x) γαβθ(x) dx

∣∣∣∣ ≤ ‖γαβθ‖L∞(R2) ‖f‖L1(R2)

≤
(
α2

0 − 1
α2

0

)
‖V ‖L∞(R) ‖W‖L∞(0,∞) α

3/2τ(α)1/2‖f‖L∞(R2).

By hypothesis, α3/2τ(α)1/2 ≤ Am(3−s)/2
τ for all α > 0, and therefore

‖T f‖L∞(Ω) ≤ C(V,W,α0, A,mτ , s) ‖f‖L1(R2);
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thus, this gives a bounded and linear operator T : L2(R2) ∩ L1(R2) → L2(Ω, µ) +
L∞(Ω, µ). By the Riesz-Thorin interpolation theorem, it has a bounded extension
from Lp(t)(R2) to Lq(t)(Ω, µ) satisfying

‖T f‖Lq(t)(Ω) ≤ C(V,W,α0, A,mτ , s)(1−t)‖f‖Lp(t)(R2)

for any 0 < t < 1, where p(t) = 2/(1 + t), and q(t) = 2/(1− t), as stated. �

1.4. Curvelet Frames in L2(R2).

1.4.1. Semi-Discrete Curvelet Transform. We proceed to the discretization of the
continuous curvelet transform in two steps. In a first step, we consider a “uniform
subdivision of the domain (0,∞)×S1 into cubes,” and force extra conditions in the
window functions so that the integral over each of these cubes equals the value of
their sizes multiplied by the evaluation of the functions at one of their points. By
“uniform subdivision into cubes” it is implied a partition in the following way⋃

n∈Z
k=1,...,ηn

(bn, bn+1]× Enk = (0,∞)× S1,

where 0 < bn < bn+1,
o

Enk ∩
o

Enj = ∅ for k 6= j, and σ(Enk) = σ(Enj) for all
possible indices n, k, j.

Such a construction is presented here based on similar ideas for wavelets as
developed in Daubechies [6] (see Figure 2): The interval (0,∞) is partitioned into
subintervals of the form (αn0 , α

n+1
0 ], n ∈ Z, for the same value α0 > 1 as in the

support of the amplitude window W . For each level n, the circle is divided into
equally-sized mutually disjoint sectors with size τn (less than, but as close to τ(αn0 )
as possible). This divides the circle uniformly into ηn := 2π/τn sectors, denoted
here by {Enk : k = 1, . . . , ηn}. The set of endpoints of these sectors is given by
{θnk : k = 1, . . . , ηn}, where θnk = eikτn .

τn = sup{2π/k ≤ τ(αn0 ) : k ∈ N}, ηn = 2π/τn =
⌈ 2π
τ(αn0 )

⌉
, (21)

Enk = {eis : kτn ≤ s < (k + 1)τn}, θnk = eikτn . (22)

For each function f ∈ L2(R2),∫ ∞
0

∫
S1

∫
R2
〈f, γαβθ〉γαβθ(x) dβ dσ(θ)dα

=
∑
n∈Z

ηn∑
k=1

∫ αn+1
0

αn0

∫
Enk

∫
R2
〈f, γαβθ〉γαβθ(x) dβ dσ(θ) dα.

Further conditions are imposed upon the functions defining our curvelets so that
each term in the previous sum satisfies∫ αn+1

0

αn0

∫
Enk

∫
R2
〈f, γαβθ〉γαβθ(x) dα dσ(θ) dβ = Cα0,n

∫
R2
〈f, γαn0 βθnk〉γαn0 βθnk(x) dβ,

where Cα0,n > 0 is a positive constant that depends on the size of the integration
domain, which in this case is |αn+1

0 − αn0 |σ(Enk) = αn0 (α0 − 1)τn.
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En0

E(n−1)0

τn

θn0

θn1

θn2

θn3

θn4

θn5

θn6

θn7

αnαn−1

Figure 2. Representation of admissible set of pairs
{

(αn, θnk)
}

in (0,∞) × S1 and corresponding sectors
{
Enk

}
on each circle S1

used for discretization of the CCT.

Lemma 1.13. If there exists a constant C > 0 such that the function W used to
generate the amplitude windows satisfies W (ρ)2+W (α0ρ)2 = C for all ρ ∈ (1/α0, 1],
then necessarily C logα0 = 1, and∑

n∈Z
αn0Wαn0

(ρ)2 = 1
logα0

for all ρ > 0. (23)

Similarly, if there exists a constant C > 0 such that the function V used above to
generate the phase windows satisfies V (ω)2 +V (ω− 1)2 = C for all ω ∈ [0, 1), then
it must be C = ‖V ‖2L2(R) = 1, and

ηn∑
k=1

Vτn,θnk(ξ/|ξ|)2 = 1
τn

for all ξ 6= 0. (24)

Proof. Given ρ > 0, there exists a unique integer n ∈ Z such that αn0 < ρ ≤ αn+1
0 .

For this ρ, the sum in (23) reduces to

W (α1−n
0 ρ)2 +W (α−n0 ρ)2 = C.

But notice

1 =
∫ ∞

0

W (ρ)2 dρ
ρ =

∫ 1

1/α0

W (ρ)2 dρ
ρ +

∫ α0

1

W (ρ)2 dρ
ρ

=
∫ 1

1/α0

(
C −W (α0ρ)2

)
dρ
ρ +

∫ α0

1

W (ρ)2 dρ
ρ

=
∫ α0

1

(
C −W (ρ)2

)
dρ
ρ +

∫ α0

1

W (ρ)2 dρ
ρ = C logα0.
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This proves (23). Now, given ξ ∈ R2 \ {0}, and an integer n ∈ Z, there exists a
unique k ∈ {1, . . . , ηn} such that arg(θnk) < arg(ξ) ≤ arg(θn(k+1)) = arg(θnk) + τn.
For this point ξ, it is

ηn∑
k=1

Vτn,θnk(ξ/|ξ|)2 = 1
τn
V
(

arg(ξ)−arg(θn(k−1))

τn

)2

+ 1
τn
V
(

arg(ξ)−arg(θnk)
τn

)2

= 1
τn

[
V
(

arg(ξ)−arg(θnk)
τn

− 1
)2

+ V
(

arg(ξ)−arg(θnk)
τn

)2
]

= 1
τn
C.

But notice

1 = ‖V ‖2L2(R2) =
∫

R2
|V (t)|2 dt =

∫ 0

−1

V (t)2 dt+
∫ 1

0

V (t)2 dt

=
∫ 1

0

V (t− 1)2 dt+
∫ 1

0

V (t)2 dt =
∫ 1

0

(
C − V (t)2

)
dt+

∫ 1

0

V (t)2 dt = C.

This gives (24). �

Proposition 1.6. Let Φnβk(x) = γαβθ(x), where α = αn0 and θ = θnk. If the
smooth functions W ∈ C∞c (0,∞), V ∈ C∞c (R) used in the construction of the
curvelets γαβθ satisfy the additional admissibility conditions given by Lemma 1.13,
then the following identities hold for all f ∈ L2(R2):

f = (logα0)
∑
n∈Z

ηn∑
k=1

αn0 τn

∫
R2
〈f,Φnβk〉Φnβk(x) dβ, (25)

∑
n∈Z

ηn∑
k=1

αn0 τn

∫
R2
|〈f,Φnβk〉|2 dβ = 1

logα0
‖f‖2L2(R2). (26)

Proof. Notice that the integral

gnk(x) =
∫

R2
〈f,Φnβk〉Φnβk(x) dβ

is the convolution Φn0k ∗ Φ̃n0k ∗ f , where Φ̃n0k(x) = Φn0k(−x); therefore, it is a
L2(R2) function. Its Fourier transform is given by ĝnk(ξ) = |Φ̂n0k(ξ)|2f̂(ξ).

Consider for each m ∈ N the sequence of functions
{
Gm(x)

}
m

defined by

Gm(x) =
∑
|n|≤m

ηn∑
k=1

αn0 τngnk(x).

These are also square integrable, with Fourier transforms given by

Ĝm(ξ) =
∑
|n|≤m

ηn∑
k=1

αn0 τnĝnk(ξ)

= f̂(ξ)
∑
|n|≤m

ηn∑
k=1

αn0 τn|Φ̂n0k(ξ)|2

= f̂(ξ)
∑
|n|≤m

αn0Wαn0

(
|ξ|
)2 ηn∑

k=1

τnVτn,θnk(ξ/|ξ|)2

= f̂(ξ)
∑
|n|≤m

αn0Wαn0

(
|ξ|
)2
,
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as a consequence of equation (24).
Observe that this sequence of Fourier transforms converges pointwise to the

function 1
logα0

f̂(ξ) by virtue of equation (23); the convergence of the series in (25)
follows then from the Dominated Convergence Theorem.

To prove (26), observe that

∑
n∈Z

ηn∑
k=1

αn0 τn

∫
R2
|〈f,Φnβk〉|2 dβ

=
∑
n∈Z

ηn∑
k=1

αn0 τn

∫
R2
|f̂(ξ)|2Wαn0

(
|ξ|
)2
Vαn0 ,τn

(
ξ/|ξ|

)2
dξ

=
∑
n∈Z

∫
R2
|f̂(ξ)|2 αn0Wαn0

(
|ξ|
)2( ηn∑

k=1

τnVαn0 ,τn
(
ξ/|ξ|

)2)
dξ

=
∑
n∈Z

∫
R2
|f̂(ξ)|2 αn0Wαn0

(
|ξ|
)2
dξ.

The first equality is obtained as in the proof of Proposition 1.2. Interchanging sum
and integral in the last expression is now allowed by the Monotone Convergence
Theorem, and our statement follows. �

1.5. Discrete Curvelet Transform. In order to fully discretize the transform,
we need the following lemma.

Lemma 1.14. Suppose that h ∈ L2(Rd) is a bandlimited function with supp ĥ ⊂
[−M,M ]d for some M > 0. Consider the Fourier multiplier Q : L2(Rd)→ L2(Rd)
given by Q̂f(ξ) = |ĥ(ξ)|2f̂(ξ) for all f ∈ L2(Rd). Then,

〈Qf, g〉 =
∑
z∈Zd
〈f, hz〉 〈hz, g〉 (27)

for all f, g ∈ L2(Rd), where hz(x) = h
(
x− π

M z
)
; also,

lim
n

∥∥∥∥∥Qf − ∑
|z|<n

〈f, hz〉hz

∥∥∥∥∥
L2(Rd)

= 0. (28)

Proof. The identity (27) follows directly from the decomposition of both f̂(ξ)ĥ(ξ)

and ĝ(ξ)ĥ(ξ) with respect to the following orthonormal basis of L2

(
[−M,M ]d

)
,

{
(2M)−d/2e−i(πz/M)·ξ : z ∈ Zd

}
.
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The convergence in (28) is proven applying the identity (27) to the last line below:∥∥∥∥∥Qf − ∑
|z|<n

〈f, hz〉hz

∥∥∥∥∥
L2(Rd)

= sup
g∈L2(Rd)
‖g‖

L2(Rd)=1

∣∣∣∣∣∣
〈
Qf −

∑
|z|<n

〈f, hz〉hz, g

〉∣∣∣∣∣∣
= sup

g∈L2(Rd)
‖g‖

L2(Rd)=1

∣∣∣∣∣∣〈Qf, g〉 −
∑
|z|<n

〈f, hz〉 〈hz, g〉

∣∣∣∣∣∣ . �

Theorem 1.2. If the smooth functions W ∈ C∞c (0,∞), V ∈ C∞c (R) used in
the construction of the curvelets γαβθ satisfy the admissibility conditions given in
Lemma 1.13, then the family {φnzk(x) : n ∈ Z; k = 1, . . . , ηn; z ∈ Z2} of functions

φnzk(x) = α
n/2
0 (logα0)1/2τ1/2

n Φnβk(x) (with β = πα−n−1
0 z),

is a tight frame in L2(R2) with frame bound 1: For f ∈ L2(R2),∑
n∈Z

ηn∑
k=1

∑
z∈Z2

|〈f, φnzk〉|2 = ‖f‖2L2(R2). (29)

Proof. This is a direct consequence of identities (26) and (27), since∫
R2
|〈f,Φnβk〉|2dβ = 〈gnk, f〉.

It is then:

1
logα0

‖f‖2L2(R2) =
∑
n∈Z

ηn∑
k=1

αn0 τn

∫
R2
|〈f,Φnβk〉|2 dβ

=
∑
n∈Z

ηn∑
k=1

αn0 τn 〈gnk, f〉

=
∑
n∈Z

αn0 τn

ηn∑
k=1

∑
z∈Z2

|〈f,Φn0k(· − πα−n−1
0 z)〉|2. �

Associated to this frame (see Christensen [5]), the set of indices and correspond-
ing space of square-summable sequences over those indices are denoted respectively
by

F = {(n, z, k) ∈ Z4 : n ∈ Z, 1 ≤ k ≤ ηn, z ∈ Z2},

`2(F) =
{

(cn,k,z)(n,k,z)∈F : cn,k,z ∈ C,
∑
n∈Z

ηn∑
k=1

∑
z∈Z2

|cn,k,z|2 <∞
}
.

For this frame, the synthesis operator T : `2(F)→ L2(R2) is given by

T{cnzk}(n,z,k)∈F =
∑
n∈Z

ηn∑
k=1

∑
z∈Z2

cnzkφnzk.
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Its adjoint, the analysis operator T ∗ : L2(R2)→ `2(F) is given by

T ∗f = {〈f, φnzk〉}(n,z,k)∈F,

and thus the frame operator S : L2(R2)→ L2(R2) is given by

Sf = TT ∗f =
∑
n∈Z

ηn∑
k=1

∑
z∈Z2

〈f, φnzk〉φnzk.

Notice that, as with all tight frames with frame bound 1, the frame operator is
simply the identity.

Corollary 1.2.1. Under the same hypotheses as in Theorem 1.2, the following
series converges for all f ∈ L2(R2), and all permutation ς : F→ F:

f =
∑

(n,z,k)∈F

〈f, φς(n,z,k)〉φς(n,z,k).

In particular,

f =
∑
n∈Z

ηn∑
k=1

∑
z∈Z2

〈f, φnzk〉φnzk, (30)

Proof. This is consequence of Theorem 5.1.6 in Christensen [5]. �

Proposition 1.7. The tight frame {φnzk}(n,z,k)∈F is not a Riesz basis of L2(R2).

Proof. For any index (n0, z0, k0) ∈ F, it is 〈φn0z0k0 , φnzk〉 = 0 for indices (n, z, k) ∈
F with n < n0− 1 or n > n0 + 1, since the supports of the Fourier transform of the
respective curvelets are disjoint. By (30),

φn0z0k0 =
n0+1∑

n=n0−1

ηn∑
k=1

∑
z∈Z2

〈φn0z0k0 , φnzk〉φnzk.

Notice that in particular,

〈φn0z0k0 ,φn0z0k0〉 = αn0
0 (logα0)τn0

∥∥γ
α
n0
0 (πα

−n0−1
0 z)θn0,k0

∥∥2

L2(R2)

= CV,W (logα0)α2n0
0 τn0 ≤ CV,W (logα0)α2n

0 τ(αn0 )

As α0 > 1 and limα→0 τ(α) = 0, there exists N ∈ N such that CV,W (logα0)αn0 τn <
1 for all n ≤ −N . In this case, choose n0 ≤ −N , and consider the sum

n0+1∑
n=n0−1

ηn∑
k=1

∑
z∈Z2

cnzkφnzk,

with cn0z0k0 = ‖φn0z0k0‖2L2(R2) − 1, cnzk = 〈φn0z0k0 , φnzk〉 otherwise. Notice this
sum converges to zero, but cn0z0k0 6= 0; therefore, {φnzk}(n,z,k)∈F is not an ω-
independent sequence in L2(R2), and by Theorem 6.1.1 in Christensen [5], it is not
a Riesz basis. �

2. APPROXIMATION PROPERTIES OF CURVELET FRAMES

2.1. Characterization of Regularity.
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2.1.1. Lipschitz Regularity. Holschneider and Tchamitchian show in [9] how to an-
alyze the regularity 0 < s ≤ 1 of a Hölder function f ∈ Lip

(
s,R

)
, by means of

the decreasing rate of its wavelet coefficients. Propositions 2.1 and 2.2 and below
present similar results for functions f ∈ Lip

(
s,R2

)
, employing curvelets instead.

Lemma 2.1. For 0 < s ≤ 1/2, and any curvelet γαβθ, there exists a constant
C = C(V,W,α0) > 0 such that the following estimate holds for all h ∈ R2 with
|h| ≤ 1: ∫

R2
|γαβθ(x+ h)− γαβθ(x)| dx ≤ CV,W,α0α

−5/2τ(α)−7/2|h|s. (31)

Proof. Given h ∈ R2, Dhγα01(x) =
∫

R2 −2πi(h · ξ) γ̂α01(ξ) e2πix·ξ dξ; hence,

|Dhγα01(x)| ≤ 2π
∫

R2
|h · ξ| |γ̂α01(ξ)| dξ

= 2π
∫ ∞

0

∫ π

−π
ρ|h · (cosω, sinω)| 1

α1/2W
(
ρ
α

)
1

τ(α)1/2V
(

ω
τ(α)

)
dω ρdρ

≤ 2π|h|α5/2 τ(α)1/2
(∫ ∞

0

r2W (r) dr
)(∫ 1

−1

V (ζ) dζ
)
,

(
r = ρ

α , ζ = ω
τ(α)

)
thus proving γα01 ∈ Lip

(
1,R2

)
, with

|γα01(x+ h)− γα01(x)| ≤ CV,W α5/2 τ(α)1/2 |h|. (32)

The same estimate holds for the general curvelet, since

γαβθ(x+ h)− γαβθ(x) = γα01

(
Rθ(x− β)−Rθh

)
− γα01

(
Rθ(x− β)

)
.

For a vector h ∈ R2 with |h| < 1, and any value 0 < s ≤ 1/2,∫
R2
|γαβθ(x+ h)− γαβθ(x)| dx =

∫
R2
|γα01(y +Rθh)− γα01(y)| dy.

Set ζ(h) = |h|−s/2 + |h|, and

I =
∫
|y|≤ζ(h)

|γα01(y +Rθh)− γα01(y)| dy,

II =
∫
|y|>ζ(h)

|γα01(y +Rθh)− γα01(y)| dy.

It is then
∫

R2 |γα01(y +Rθh)− γα01(y)| dy = I + II, and

I ≤ CV,Wα5/2τ(α)1/2 |h|
(
|h|−s/2 + |h|

)2 (
by (32)

)
= CV,Wα

5/2 τ(α)1/2
(
|h|1−s + |h|3 + 2|h|2−s/2

)
≤ CV,Wα5/2τ(α)1/2|h|s

(
since |h| ≤ 1, s ≤ 1/2

)
II ≤

∫
|y|>ζ(h)

|γα01(y +Rθh)| dy +
∫
|y|>ζ(h)

|γα01(y)| dy

≤ CV,W,α0 α
−5/2τ(α)−7/2

∫
|y|>ζ(h)

( 1
|y + h|4

+
1
|y|4

)
dy

(
by (3) with k = 2

)
≤ CV,W,α0 α

−5/2τ(α)−7/2

∫
|y|>|h|−s/2

dy

|y|4

≤ CV,W,α0 α
−5/2τ(α)−7/2|h|s.
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Finally, notice that α−5/2τ(α)−7/2 ≥ 1 ≥ α5/2τ(α)1/2 for all α > 0. This proves
the statement. �

Proposition 2.1. Given 0 < s ≤ 1, if f ∈ Lip
(
s,R2

)
, then its curvelet coefficients

satisfy |〈f, γαβθ〉| ≤ C(V,W,α0, f)α−s−1/2τ(α)−s−3/2 for all α > 0, β ∈ R2 and
θ ∈ S1.

Proof. Since
∫

R2 γαβθ(x) dx = 0, it is

|〈f, γαβθ〉| =
∣∣∣ ∫

R2

(
f(x)− f(β)

)
γαβθ(x) dx

∣∣∣
≤
∫

R2
|f(x)− f(β)| |γαβθ(x)| dx

≤ Cf
∫

R2
|x− β|s|γαβθ(x)| dx

(
f ∈ Lip

(
s,R2

))
= Cf

∫
R2
|y|s|γα01(y)| dy.

(
y = x− β

)
Set ζ(α) = α−1τ(α)−1, and

I =
∫
|y|≤ζ(α)

|y|s|γα01(y)| dy, II =
∫
|y|>ζ(α)

|y|s|γα01(y)| dy.

Notice that
∫

R2 |y|s|γα01(y)| dy = I + II, and

I ≤ ζ(α)s‖γα01‖L∞(R2)πζ(α)2

≤ CV,W,α0 α
−s−1/2τ(α)−s−3/2,

(
by (4)

)
II ≤ CV,W,α0 α

−5/2τ(α)−7/2

∫
|y|>ζ(α)

|y|s−4 dy
(
by (3) with k = 2

)
≤ CV,W,α0

2− s
α−s−1/2τ(α)−s−3/2

≤ CV,W,α0α
−s−1/2τ(α)−s−3/2.

(
since 0 < s ≤ 1

)
�

Proposition 2.2. Let {γαβθ(x) : α > 0, β ∈ R2, θ ∈ S1} be a family of curvelets for
which the aspect-ratio weight function satisfies the following condition: there exists
A > 0 and 0 < r < 1/7 such that τ(α) ≥ Aα−r for α > mτ . Let f ∈ L2(R2), and
let fLG denote the “ large curvelet scales” of f :

fLG(x) =
∫ ∞
mτ

∫
S1

∫
R2
〈f, γαβθ〉γαβθ(x) dβ dσ(θ) dα.

If for some 3r/(1− r) < s ≤ 1/2 and M > 0 the curvelet coefficients of a function
f ∈ L2(R2) satisfy

|〈f, γαβθ〉| ≤Mα−s−1/2τ(α)−s−3/2, (33)

then fLG ∈ Lip
(
s,R2

)
.

Proof. Notice fLG is uniformly bounded in x:

|fLG(x)| ≤
∫ ∞
mτ

∫
S1

∫
R2
|〈f, γαβθ〉| |γαβθ(x)| dβ dσ(θ) dα

≤
∫ ∞
mτ

M α−s−1/2τ(α)−s−3/2

∫
S1

∫
R2
|γα0θ(x− β)| dβ dσ(θ) dα

(
by (33)

)
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≤M CV,W,α0

∫ ∞
mτ

α−s−1/2τ(α)−s−3/2α−1/2τ(α)−3/2 dα
(
by (4), p = 1

)
≤M CV,W,α0

∫ ∞
mτ

α−s−1τ(α)−s−3 dα.

But by hypothesis, α−s−1τ(α)−s−3 ≤ A−s−3αr(s+3)−s−1 for all α > mτ ; thus∫ ∞
mτ

α−s−1τ(α)−s−3 dα ≤ A−s−3

∫ ∞
mτ

αr(s+3)−s−1 dα = A−s−3 m
r(s+3)−s
τ

s− r(s+ 3)
<∞,

since r(s + 3) − s < 0. This implies fLG is uniformly bounded, and the constant
depends at most on V , W , α0, mτ , M , A, r and s.

Now, given h ∈ R2 with |h| < 1,

|fLG(x+ h)− fLG(x)| ≤
∫ ∞
mτ

∫
S1

∫
R2
|〈f, γαβθ〉||γαβθ(x+ h)− γαβθ(x)| dβdσ(θ) dα

≤M CV,W,α0 |h|s
∫ ∞
mτ

α−s−1/2τ(α)−s−3/2α−5/2τ(α)−7/2 dα, (34)

= C(V,W,α0,M)|h|s
∫ ∞
mτ

α−s−3τ(α)−s−5 dα

≤ C(V,W,α0,M,A, s)|h|s
∫ ∞
mτ

αr(s+5)−s−3 dα (35)

≤ C(V,W,α0,M,A, s, r,mτ )|h|s. (36)

Inequality (34) followed from both (33) on |〈f, γαβθ〉|, and (31) on the inner-most
integral. The step (35) is direct by the hypothesis τ(α) ≥ Aα−r. Finally, (36)
follows from the fact that r(s + 5) − s− 2 < 0 as a consequence of the hypothesis
3r/(1 − r) < s ≤ 1. Indeed, for 0 < r < 1/7, 3r > 5r − 2, and furthermore,
s > 3r/(1− r) > (5r − 2)/(1− r).

This holds for all |h| < 1; together with the bound on |fLG| computed above, it
follows that |fLG(x+ h)− fLG(x)| ≤ C|h|s for all h, uniformly in x. �

2.1.2. Besov Regularity. The ideas for this section come from Borup and Nielsen
[1], in which the authors develop a new construction of tight frames for L2(R2)
with flexible time-frequency localization, and adapt those frames to form atomic
decompositions for several smoothness spaces on Rd.

Lemma 2.2. Let α0 > 1; V,W admissible windows in the sense of Lemma 1.13,
and assume there exist constants 0 < M1 ≤ M2 such that the aspect-ratio weight
function τ : (0,∞)→ (0, π4 ) satisfies for all m ∈ Z,

M1 ≤
τ(αm0 )
τ(αm+1

0 )
≤M2, αm0 τm ≤ 1.

Consider the corresponding tight frame {φnzk : (n, z, k) ∈ F}.
For each pair of indices (m, k) with m ∈ Z and k = 1, . . . , ηm, set Am =( αm0 0
0 4τn/π

)
, bmk =

(
0, (k − 1)τm

)
, and Tmk : R2 → R2 the affine map given by

Tmkx = Amx + bmk. Let T = {Tmk : m ∈ Z; k = 1, . . . , ηm}. Then Q = {Qmk =
supp φ̂m0k : m ∈ Z; k = 1, . . . , ηm} is an admissible covering of R2 \ {0} structured
by T, and the family F = {|φ̂m0k|2 : m ∈ Z; k = 1, . . . , ηm} is a bounded admissible
partition of unity associated to Q.
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Proof. Let Λ = {(m, k) : m ∈ Z; k = 1, . . . , ηm}, and consider in R2 \ {0} the open
bounded set Q = {ξ ∈ R2 : α−1

0 < |ξ| < α0, 0 < arg ξ < π/2}. Notice that for each
m ∈ Z; k = 1, . . . , ηm:

TmkQ = {Am
(
ρ
ω

)
+ bmk : α−1

0 < ρ < α0, 0 < ω < π/2}
= {
(
αm0 ρ,

4τn
π ω + (k − 1)τm

)
: α−1

0 < ρ < α0, 0 < ω < π/2}
= {(ρ, ω) : αm−1

0 < ρ < αm+1
0 , (k − 1)τm < ω < (k + 1)τm}

= suppφm0k = Qmk.

Abusing notation, the size of the cubes Qmk is computed with respect to the polar
coordinate system, and not the rectangular one; thus, |Qmk| = 2(α0 − α−1

0 )αn0 τn.
Given ξ ∈ R2\{0}, it is ξ ∈ Qmk, withm = blogα0

|ξ|c, and k = b(arg ξ)ηm/(2π)c;
therefore, R2 \ {0} ⊂ ∪(m,k)∈ΛQmk.

Given m0 ∈ Z, k0 ∈ {1, . . . , ηm0}, if |m − m0| > 2, then trivially Qm0k0 ∩
Qmk = ∅ for all k ∈ {1, . . . , ηm}. Also, Qm0k ∩ Qm0k′ = ∅ provided [k′]ηm0

6∈
{[k − 1]ηm0

, [k]ηm0
, [k + 1]ηm0

}. It is then

|{(m, k) ∈ Λ : Qmk ∩Qm0k0 6= ∅}|
= 3 + |{1 ≤ k ≤ ηm0+1 : Q(m0+1)k ∩Qm0k0 6= ∅}|

+ |{1 ≤ k ≤ ηm0−1 : Q(m0−1)k ∩Qm0k0 6= ∅}|
≤ 3 +

⌈ ηm0
ηm0+1

⌉
+
⌈ ηm0
ηm0−1

⌉
= 3 +

⌈
d2πτ(αm0

0 )−1e
d2πτ(αm0+1

0 )−1e

⌉
+
⌈
d2πτ(αm0

0 )−1e
d2πτ(αm0−1

0 )−1e

⌉
≤ 5 +

d2πτ(αm0
0 )−1e

d2πτ(αm0+1
0 )−1e

+
d2πτ(αm0

0 )−1e
d2πτ(αm0−1

0 )−1e

≤ 5 +
⌈

2πτ(αm0
0 )−1

2πτ(αm0+1
0 )−1

⌉
+
⌈

2πτ(αm0
0 )−1

2πτ(αm0−1
0 )−1

⌉
= 5 +

⌈τ(αm0+1
0 )

τ(αm0
0 )

⌉
+
⌈τ(αm0−1

0 )
τ(αm0

0 )

⌉
≤ 5 +M1 +M2,

and Q = {TmkQ : (m, k) ∈ Λ} is indeed an admissible covering of R2 \ {0}, with
N(Q) ≤ 5 +M1 +M2.

Let 0 < ε < π/4, and consider the open bounded set Q?ε = {ξ ∈ R2 : α−1
0 <

|ξ| < α0, 0 < arg ξ < π/4 + ε}, which is compactly contained in Q, also satisfies
∪(m,k)∈ΛTmkQ

?
ε = R2\{0}, and for any (m0, k0) ∈ Λ, |{(m, k) ∈ Λ : Qmk∩Qm0k0 =

∅}| ≤ 5+M1 +M2 (the proof of these facts are identical to the previous and are left
to the reader). It is thus {TmkQ?ε : (m, k) ∈ Λ} an admissible covering of R2 \ {0}.

To show that Q is an admissible covering structured by T, it only remains to
prove that there exists a constant M > 0 such that

∥∥A−1
m′Am

∥∥
`∞
≤ M for indices

(m, k), (m′, k′) ∈ Λ for which TmkQ ∩ Tm′k′Q 6= ∅ holds. But notice that for
|m′ −m| ≤ 1 it is

A−1
m′Am =

(
α−m

′
0 0

0 τ−1
m′ π/4

)(
αm0 0
0 4τm/π

)
=
(
αm−m

′
0 0

0 τmτ
−1
m′

)
.∥∥A−1

m′Am
∥∥
`∞

= max{αm−m
′

0 , τmτ
−1
m′ } ≤ max{α0, dτ(αm0 )τ(αm

′

0 )−1e}
≤ max{α0,M2}.
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For each (m, k) ∈ Λ, set ψnk : R2 \ {0} → R given by ψnk(ξ) = |φ̂m0k|2. The
family F = {ψmk : (m, k) ∈ Λ} satisfies the first condition to be a bounded ad-
missible partition of unity associated to Q (suppψnk ⊂ Qmk for all (m, k) ∈ Λ)
by definition of φ̂m0k. The second condition (F is a partition of unity) is a di-
rect consequence of Lemma 1.13: Given ξ ∈ R2 \ {0}, let m0 = blogα0

|ξ|c, and
k0(m, ξ) = b(arg ξ)2π/ηmc. It is then∑

m∈Z

ηm∑
k=1

ψmk(ξ) = logα0

m0+1∑
m=m0

k0(m,ξ)+1∑
k=k0(m,ξ)

W
( |ξ|
αm0

)2
V
(

arg ξ−θmk
τm

)2 = 1.

The third condition is also satisfied. To prove it, a few estimates are needed:
(i) For all 0 < p ≤ ∞, (m, k) ∈ Λ and z ∈ Z2, there exists C = C(V,W,α0, p) >

0 such that

‖φnzk‖Lp(R2) = C(V,W,α0)
(
αn0 τn

)3/2−1/p
. (37)

This follows from the definition of φnzk, and the fact that φ̂n0k(ξ) =
φ̂001

(
Tnkξ

)
:

‖φnzk‖Lp(R2) = |detTnk|1−1/p‖φ001‖Lp(R2)

(
by [1, Lemma 1]

)
=
(
4αn0 τn/π

)1−1/p(
α
n/2
0 (logα0)1/2τ1/2

n

)
‖γ101‖Lp(R2).

(
by Theorem 1.2

)
(ii) For all 0 < p ≤ ∞ and (n, k) ∈ Λ,

‖F−1ψnk‖Lp(R2) = ‖φn0k ∗ φn0k‖Lp(R2). (38)

(iii) The space Lp(R2)K of functions in Lp(R2) with frequencies compactly
supported on a given compact set K is a quasi-normed convolution algebra;
therefore, as suppψnk = Qnk, by [10, Proposition 1.5.3], there exists C =
Cp > 0 such that

‖φn0k ∗ φn0k‖Lp(R2) ≤ Cp |Qnk|1/p−1‖φn0k‖2Lp(R2)

= C(α0, p)
(
αn0 τn

)1/p−1‖φn0k‖2Lp(R2) (39)

It is then, for 0 < p ≤ 1, (n, k) ∈ Λ,

|Qnk|1/p−1‖F−1ψnk‖Lp(R2) ≤ Cp |Qnk|2(1/p−1)‖φn0k‖2Lp(R2)

(
by (38) and (39)

)
= C(V,W,α0, p)

(
αn0 τn

)1/p−1/2
,
(
by (37)

)
and the statement follows from the hypothesis that αn0 τn ≤ 1 for n ∈ Z, since
1/p− 1/2 > 1/2: For 0 < p ≤ 1,

sup
(n,k)∈Λ

|Qnk|1/p−1‖F−1ψnk‖Lp(R2) <∞. �

Remark 2.1. Consider a family of curvelets satisfying the hypotheses of Lemma 2.2,
and with α0 = 2. Set ψn =

∑ηn
k=1|φ̂n0k|2 for all n ∈ Z. Notice:

(i) Since supp φ̂n0k = {ξ ∈ R2 : 2n−1 ≤ |ξ| ≤ 2n+1, |arg ξ − θnk| ≤ τn}, it is

suppψn = {ξ ∈ R2 : 2n−1 ≤ |x| ≤ 2n+1};
therefore, the family of the interiors of the previous annuli, Q′, is an ad-
missible covering of R2 \ {0} with N(Q′) = 2.

Q′ =
{
Q′n = B2

(
0, 2n+1

)
\B2

(
0, 2n−1

)
: n ∈ Z

}
.
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(ii)
∑
n∈Z ψn = 1, by Lemma 1.13, and thus F′ = {ψn : n ∈ Z} gives a

bounded admissible partition of unity associated to Q′.
(iii) supn∈Z|Q′n|1/p−1‖F−1ψn‖Lp(R2) < ∞ for all 0 < p < 1. The proof of this

fact follows the same lines as the end of the proof of Lemma 2.2.

Figure 3. Left: One of the cubes Q′n in the covering Q′ for the
description of Besov spaces Bsq

(
Lp(R2)

)
as a decomposition space.

Right: One of the cubes Qnk in the covering Q for the description
of spaces of decomposition Gs

q

(
Lp(R2)

)
associated to curvelet tight

frames.

The spaces Bsq
(
Lp(R2)

)
may be realized as the decomposition spaces

D
(
Q′,F′

)`q(Z,ω′)
Lp(R2)

,

where ω′ = {ω′n = 2sn : n ∈ Z}, and Dnf are the Fourier multipliers given by
D̂nf = ψnf̂ . The choice of symbols of those multipliers, constructed from a frame
of curvelets, is precisely the link needed to measure Besov regularity of a function
f by means of suitable expressions on its curvelet coefficients 〈f, φnzk〉. This is ac-
complished by means of two results: Proposition 2.3 gives an atomic decomposition
of the decomposition spaces generated from curvelet frames, and Proposition 2.4
uses this atomic decomposition to find suitable embeddings of decomposition spaces
between Besov spaces. In the rest of this section, it is assumed α0 = 2.

Lemma 2.3. Given a tight frame of curvelets {φnzk}, and 0 < p < ∞, the se-
quences {φnzk(x)}z∈Z2 belong to `p(Z2) for all x ∈ R2 and (n, k) ∈ Λ, with∥∥{φnzk(x)}z∈Z2

∥∥
`p(Z2)

≤ CV,W,p
(
22nτn

)
τ−2d1/pe
n . (40)

Proof. Recall the definition of Φnβk for (n, k) ∈ Λ, β = π2−n−1z, z ∈ Z2, and its
relation to φnzk from Theorem 1.2.

|φnzk(0)| = 2n/2(log 2)1/2τ1/2
n |Φnβk(0)|

(
by Theorem1.2

)
≤ CV,W 2n/2τ1/2

n (2n)3/2τ1/2
n ;

(
by (3) with exponent 0

)
≤ CV,W 22nτn. (41)

For z ∈ Z2, β = π2−n−1z, by virtue of (3) with exponent j ∈ N,

|z|2j |Φnβk(0)| = π−2j22j(n+1)|β|2j |Φnβk(0)|

≤ CV,W,j 22j(n+1)(2n)3/2−2jτ1/2−2j
n
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= CV,W,j 23n/2τ1/2−2j
n ;

thus,

|z|2j |φnzk(0)| = 2n/2(log 2)1/2τ1/2
n |z|2j |Φnβk(0)| ≤ CV,W,j 22nτ1−2j

n ,

what gives
|τnz|2j |φnzk(0)| ≤ CV,W,j 22nτn. (42)

Estimates (41) and (42) give for any 0 < p <∞,(
1 + |τnz|2jp

)
|φnzk(0)|p ≤

(
CV,W,j 22nτn

)p
,

and therefore, ∑
z∈Z2

|φnzk(0)|p ≤
(
CV,W,j 22nτn

)p ∑
z∈Z2

1
1 + |τnz|2jp

.

Let j > 1/p, and consider for each m ∈ N the set �m of points z ∈ Z2 located on
the border of the cube [−m,m]2. There are exactly 8m such indices on this set,
and for each of them, it is m ≤ |z| ≤ m

√
2. Therefore,∑

z∈Z2

1
1 + |τnz|2jp

= 1 +
∞∑
m=1

∑
z∈�m

1
1 + |τnz|2jp

≤ 1 +
∞∑
m=1

∑
z∈�m

1
|τnz|2jp

≤ 1 + 8τ−2jp
n

∞∑
m=1

1
|z|2jp−1

.

The sum in the right-hand side of the previous expression is finite, since 2jp−1 > 1
by the choice of j. It is then∑

z∈Z2

1
1 + |τnz|2jp

≤ Cpτ−2jp
n ,

and (40) follows for x = 0 with j = d1/pe. The result is also true for any other
x ∈ R2 by a simple shifting argument. �

Lemma 2.4. Consider in Λ the relation ∼ given by (n1, k1) ∼ (n2, k2) if and
only if suppφn10k1 ∩ suppφn20k2 6= ∅. For all n0 ∈ Z, k0 ∈ {1, . . . , ηn0}, let
D̃n0k0 : L2(R2)→ L2(R2) denote the Fourier multiplier with symbol∑

(n,k)∼(n0,k0)

|φ̂n0k|2.

Assume the aspect-ratio weight function τ satisfies the hypotheses of Lemma 2.2.
Then, for all 0 < p ≤ ∞, (n0, k0) ∈ Λ and f ∈ S(R2), it is∥∥{〈f, φn0zk0〉}z∈Z2

∥∥
`p(Z2)

≤ CV,W,p 22n0/pτ1−2d1/pe
n0

‖D̃n0k0f‖Lp(R2), (43)

‖Dn0k0f‖Lp(R2) ≤ CV,W,p
∑

(n,k)∼(n0,k0)

22n(1−1/p)τ ζ(p)n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

, (44)

where

ζ(p) =

{
1− 2/p if 0 < p ≤ 1,
−1 if 1 < p ≤ ∞.
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Proof. For all f ∈ S ′(R2), (n0, k0) ∈ Λ, and z ∈ Z2:

〈f, φn0zk0〉 =
∫

R2
f̂(ξ) φ̂n0zk0(ξ) dξ

≤
∫

R2

(∑
(n,k)∼(n0,k0)ψnk(ξ)

)
f̂(ξ) φ̂n0zk0 dξ,

since
∑

(n,k)∼(n0,k0) ψnk(ξ) is identically one in the support of φ̂n0zk0 . It is then

〈f, φn0zk0〉 = 〈D̃n0k0f, φn0zk0〉.

Suppose p ≤ 1. Given (n0, k0) ∈ Λ,

|〈f,φn0zk0〉|p = |〈D̃n0k0f, φn0zk0〉|p ≤ ‖φn0zk0D̃n0k0f‖
p
L1(R2)

≤ Cp 22n0(1−p)‖φn0zk0D̃n0k0f‖
p
Lp(R2).

The last step followed from Nikolski’s inequality (see Triebel [10], for example),
since the support of φ̂n0zk0 is contained in the cube [−2n0+1, 2n0+1]2, and p ≤ 1. It
is then∑

z∈Z2

|〈f,φn0zk0〉|p ≤ Cp 22n0(1−p)
∑
z∈Z2

‖φn0zk0D̃n0k0f‖
p
Lp(R2)

= Cp 22n0(1−p)
∑
z∈Z2

∫
R2
|φn0zk0(x)D̃n0k0f(x)|p dx

= Cp 22n0(1−p)
∫

R2
|D̃n0k0f(x)|p

∥∥{φn0zk0(x)}z∈Z2

∥∥p
`p(Z2)

dx
(
by DCT

)
≤ CV,W,p 22n0(1−p)(22n0τn0

)p
τ−2pd1/pe
n0

‖D̃n0k0f‖
p
Lp(R2)

(
by (40)

)
= CV,W,p 22n0τp(1−2d1/pe)

n0
‖D̃n0k0f‖

p
Lp(R2).

This proves (43) for 0 < p ≤ 1. The estimate also holds for p =∞, where obviously
the sum over Z2 is changed to the supremum:

|〈f,φn0zk0〉| = |〈D̃n0k0f, φn0zk0〉|

≤ ‖φn0zk0‖L1(R2)‖D̃n0k0f‖L∞(R2)

= 2n0/2(log 2)1/2τ1/2
n0
‖Φn0βk0‖L1(R2)‖D̃n0k0f‖L∞(R2)

(
β = π2−n0−1z

)
≤ CV,W 2n0/2τ1/2

n0

(
2−n0/2τ−3/2

n0

)
‖D̃n0k0f‖L∞(R2)

(
by (4) for p = 1

)
≤ CV,W τ−1

n0
‖D̃n0k0f‖L∞(R2).

Application of the Riesz-Thorin Interpolation Theorem gives (43) for 1 < p <∞.
To obtain (44), notice first that ‖Dn0k0f‖Lp(R2) ≤

∑
(n,k)∼(n0,k0)‖Dn,kf‖Lp(R2).

For 0 < p ≤ 1, it is

‖Dnkf‖pLp(R2) =
∫

R2

∣∣∣ ∑
z∈Z2

〈f, φnzk〉φnzk(x)
∣∣∣p dx (

by Lemma 1.14
)

≤
∑
z∈Z2

|〈f, φnzk〉|p‖φnzk‖pLp(R2)

(
by MCT

)
≤ CpV,W 22n(p−1)τp−2

n

∑
z∈Z2

|〈f, φnzk〉|p.
(
by (4)

)
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As a consequence,

‖Dn0k0f‖Lp(R2) ≤ CV,W,p
∑

(n,k)∼(n0,k0)

22n(1−1/p)τ1−2/p
n

( ∑
z∈Z2

|〈f, φnzk〉|p
)1/p

.

To estimate the same norms for p =∞ notice that for all x ∈ R2,

|Dnkf(x)| =
∣∣∣ ∑

z∈Z2

〈f, φnzk〉φnzk(x)
∣∣∣

≤
∥∥{〈f, φnzk〉}z∈Z2

∥∥
`∞(Z2)

∥∥{φnzk(x)}z∈Z2

∥∥
`1(Z2)

≤ CV,W 22nτ−1
n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`∞(Z2)

(
by (40)

)
This gives

‖Dn0k0f‖L∞(R2) ≤ CV,W
∑

(n,k)∼(n0,k0)

22nτ−1
n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`∞(Z2)

For each (n, k) ∼ (n0, k0), estimates for each norm ‖Dnkf‖Lp(R2) follow now for
1 < p <∞ by interpolation via the Riesz-Thorin interpolation theorem.

‖Dnkf‖Lp(R2) ≤ CV,W
(
τ−1
n

)1/p(22nτ−1
n

)1−1/p∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

≤ CV,W 22n(1−1/p)τ−1
n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

.

Adding all those estimates in the expression on the left hand side of (44), the result
follows. �

Proposition 2.3. Let {φnzk} be a tight frame of curvelets satisfying the hypotheses
in Lemma 2.2, and let Gs

q

(
Lp(R2)

)
= D

(
Q,F

)`q(Λ,ω)

Lp(R2 be the corresponding decom-
position space, with associated Q-moderate weight ω = {ωnk = 2ns : (n, k) ∈ Λ}.

(i) Let ζ(p) defined as in Lemma 2.4. If the curvelet coefficients of f ∈ S ′(R2)
satisfy(∑
n∈Z

ηn∑
k=1

(
2ns22n(1−1/p)τ ζ(p)n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

<∞. (45)

then f ∈ Gs
q

(
Lp(R2)

)
.

(ii) If f ∈ Gs
q

(
Lp(R2)

)
, then the curvelet coefficients 〈f, φnzk〉 satisfy(∑

n∈Z

ηn∑
k=1

(
2ns2−2n/pτ2d1/pe−1

n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

<∞.

Proof. Both statements follow from Lemma 2.4:

(i) Assume f ∈ S ′(R2), and let Is(f) =
(∑

(n,k)∈Λ 2nqs‖Dnkf‖qLp(R2)

)1/q

. By
(44), it is

Is(f) ≤
( ∑

(n,k)∈Λ

(
2nsCV,W,p

∑
(n′,k′)∼(n,k)

22n′(1−1/p)τ
ζ(p)
n′

∥∥{〈f, φn′zk′〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

.

But (n′, k′) ∼ (n, k) implies |n − n′| ≤ 1. As M1 ≤ τ(2n)/τ(2n−1) ≤ M2

by hypothesis, the following two simple estimates hold:

τn ≥ max(M2,M
−1
1 )τn′ , (46)
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22n′(1−1/p) ≤
(

max
ε=−1,0,1

2ε(1−1/p)︸ ︷︷ ︸
Cp

)
22n(1−1/p). (47)

By virtue of these inequalities, and the fact that ζ(p) < 0 for all 0 < p ≤ ∞,
it is

Is(f) ≤ CV,W,p
( ∑

(n,k)∈Λ

(
2ns22n(1−1/p)τ ζ(p)n

∑
(n′,k′)∼(n,k)

∥∥{〈f, φn′zk′〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

.

For each (n, k) ∈ Λ, the expression
(∑

z∈Z2 |〈f, φnzk〉|p
)1/p

appears at
most 1+N(Q) = 6+M1 +M2 times in the right hand side of the previous
expression, each of them with one of the coefficients 22n(1−1/p)τ

ζ(p)
n in

front, where (n′, k′) ∼ (n, k). Therefore, using estimates (46) and (47)
again, it is

Is(f) ≤ CV,W,p,M1,M2

( ∑
(n,k)∈Λ

(
2ns22n(1−1/p)τ ζ(p)n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

Thus, if f satisfies (45), then f ∈ Gs
q

(
Lp(R2)

)
.

(ii) Assume f ∈ Gs
q

(
Lp(R2)

)
.

IIs(f) :=
( ∑

(n,k)∈Λ

(
2ns2−2n/pτ2d1/pe−1

n

∥∥{〈f, φnzk〉}z∈Z2

∥∥
`p(Z2)

)q)1/q

≤ CV,W,p
( ∑

(n,k)∈Λ

(
2ns2−2n/pτ2d1/pe−1

n

(
22n/pτ1−2d1/pe

n

)
‖D̃nkf‖Lp(R2)

)q)1/q

= CV,W,p

( ∑
(n,k)∈Λ

2ns‖D̃nkf‖qLp(R2)

)1/q

.

The second estimate followed from (43). The previous expression is equiva-
lent to |f |

D(Q,F)
`q(Λ,ω)

Lp(R2)

= |f |Gsq(Lp(R2)), which is finite by hypothesis. Thus,

IIs(f) <∞ and the statement is proved. �

Proposition 2.4. Let {φnzk} be a tight frame of curvelets satisfying the hypothe-
ses in Lemma 2.2. For 0 < p ≤ ∞, 0 < s, q < ∞ and s′ = 1

2

(
max(1, 1/p) −

min(1, 1/q)
)
, the following embeddings hold:

Bs+1/(2q)
q

(
Lp(R2)

)
↪→ Gs

q

(
Lp(R2)

)
↪→ Bs−s

′

q

(
Lp(R2)

)
.

Proof. The notation in this proof comes form remark 2.1. Recall that for each
n ∈ Z, suppψn = ∪ηnk=1 suppψnk, with ηn = 2π/τn; hence, for all 0 < p ≤ ∞,
n ∈ Z and k = 1, . . . , ηn, there exists a constant c > 0 independent of the size of
the support of either ψn or ψnk, such that (see [10, Proposition 1.5.1 and Theo-
rem 1.5.2, Remark 3]).

‖F−1ψn‖Lp(R2) ≤ c‖f‖Lp(R2), (48)

‖Dnkf‖Lp(R2) ≤ c‖f‖Lp(R2). (49)
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For the first embedding, notice that∑
(n,k)∈Λ

(
2ns‖Dnkf‖Lp(R2)

)q
=

∑
(n,k)∈Λ

(
2ns‖DnkF−1

(∑n+1
n′=n−1ψn′ f̂

)
‖Lp(R2)

)q
≤ c

∑
(n,k)∈Λ

(
2ns
∥∥F−1

(∑n+1
n′=n−1ψn′ f̂

)∥∥
Lp(R2)

)q
≤ c

∑
n∈Z

(
2nsηn

∥∥F−1
(∑n+1

n′=n−1ψn′ f̂
)∥∥
Lp(R2)

)q
.

For the second embedding, for p ≥ 1 and q < 1, it is∑
n∈Z

(
2ns‖F−1ψnf̂‖Lp(R2)

)q
=
∑
n∈Z

(
2ns
∥∥F−1ψnF

(∑ηn
k=1D̃nkf

)∥∥
Lp(R2)

)q
≤ c

∑
n∈Z

(
2ns
∥∥(∑ηn

k=1D̃nkf
)∥∥
Lp(R2)

)q
≤ c

∑
n∈Z

(
2ns

ηn∑
k=1

‖D̃nkf‖Lp(R2)

)q
≤ c

∑
n∈Z

ηn∑
k=1

(
2ns‖D̃nkf‖Lp(R2)

)q
.

The other cases are obtained by applying the Riesz-Thorin interpolation theorem,
and using the bound on the sum over k (which is ηn) for a given level n ∈ Z. �

2.2. Linear Approximation. Consider for each positive integer m ∈ N the finite-
dimensional linear sub-spaces Xm = span{φnzk}Fm ⊂ L2(R2), where Fm is a set
of indices defined by Fm = {(n, z, k) ∈ F : max(|z1|, |z2|) ≤ mαn+1

0 /π, |n| ≤ m}.
These are finite sets of indices associated with curvelets φnzk satisfying:

(i) Bounded set of Scales: Only scales −m ≤ n ≤ m; therefore, the support
of the frequencies of the curvelets are contained in the annulus {2−m−1 ≤
|ξ| ≤ 2m+1}.

(ii) Bounded set of Locations: For each scale n in the range, the set of locations
for the cuvelets indexed by Fm are precisely those inside the cube centered
at the origin with side length m.

Lemma 2.5. The sets of indices {Fm}m∈N satisfy the following properties:
(i) F1 ⊂ F2 ⊂ · · · ⊂ Fm ↗ F.

(ii) |Fm| =
m∑

n=−m
ηn
(
1 + 2bmαn+1

0 /πc
)
.

Proof. Both assertions are trivial. �

Proposition 2.5. The families {φnzk}(n,z,k)∈Fm are frames for Xm.

Proof. The upper bound is trivial: Given f ∈ Xm,∑
Fm

|〈f, φnzk〉|2 ≤
∑

F
|〈f, φnzk〉|2 = ‖f‖L2(R2).

For the lower bound, set Am = inf
{∑

Fm |〈f, φnzk〉|2 : f ∈ Xm, ‖f‖L2(R2) = 1
}

. As
the intersection of the unit sphere with Xm is a compact set, there exists g ∈ Xm
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with ‖g‖L2(R2) = 1 such that Am =
∑

Fm |〈g, φnzk〉|2, and thus Am > 0. It is then,
for all f ∈ Xm,∑

Fm

|〈f, φnzk〉|2 = ‖f‖L2(R2)

∑
Fm

|〈f/‖f‖L2(R2), φnzk〉|2 ≥ Am‖f‖L2(R2). �

The corresponding frame operators are denoted by Sm : Xm → Xm, and the or-
thogonal projections by Πm : X → Xm. By Proposition 5.3.5 in Christensen [5],
for all f ∈ L2(R2), it is

Πmf =
∑

Fm〈f, S
−1
m φnzk〉φnzk.

Notice that for all m ∈ N, the errors of approximation by elements of the spaces
Xm satisfy the following property:

E(f,Xm)2
L2(R2) = ‖f −Πmf‖2L2(R2) = ‖f‖2L2(R2) − ‖Πmf‖2L2(R2).

The following results state equivalent conditions for a function f ∈ L2(R2) to belong
to approximation spaces Asq

(
L2(R2), (Xm)m∈N

)
for 0 < s <∞, 0 < q ≤ ∞:

Theorem 2.1. Let f ∈ L2(R2) and 0 < s <∞. Then f ∈ As∞
(
L2(R2), (Xm)m∈N

)
if and only if there exists M > 0 such that for all m ∈ N,

‖f‖2L2(R2) −Mm−2s ≤ 1
2

∑
Fm

∑
Fm

[ 〈f,S−1
m φnzk〉

〈f,S−1
m φn′z′k′ 〉〈φn′z′k′ ,φnzk〉

]
≤ ‖f‖2L2(R2),

where
[
a
b

]
= ab+ ab for a, b ∈ C.

Proof. By Lemma 5.4.2 in Christensen [5], for each m ∈ N,

‖Πmf‖2L2(R2) =
∑

F
|〈Πmf, φnzk〉|2

=
∑
Fm

|〈f, S−1
m φnzk〉|2 −

∑
Fm

|〈f, S−1
m φnzk〉 − 〈Πmf, φnzk〉|2

−
∑

F\Fm

|〈Πmf, φnzk〉|2

=
∑
Fm

|〈f, S−1
m φnzk〉|2 −

∑
Fm

|〈f, S−1
m φnzk〉|2 −

∑
Fm

|〈Πmf, φnzk〉|2

+
∑
Fm

[〈f,S−1
m φnzk〉

〈Πmf,φnzk〉
]
−
∑

F\Fm

|〈Πmf, φnzk〉|2

=
∑
Fm

∑
Fm

[ 〈f,S−1
m φnzk〉

〈f,S−1
m φn′z′k′ 〉〈φn′z′k′ ,φnzk〉

]
− ‖Πmf‖2L2(R2).

The statement follows. �

Theorem 2.2. Let f ∈ L2(R2), 0 < s <∞, and for each m ∈ N, j ≥ m, set

ζm,j =
∑

Fj+1\Fj

|〈f, φnzk〉|2 −
∑

Fj+1\Fj

|〈Πmf, φnzk〉|2.

Then,
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(i) f ∈ As∞
(
L2(R2), (Xm)m∈N

)
if and only if there exists M > 0 such that for

all m ∈ N,

m2s
∞∑
j=m

ζm,j ≤M.

(ii) f ∈ Asq
(
L2(R2), (Xm)m∈N

)
if and only if

∞∑
m=0

mqs−1
( ∞∑
j=m

ζm,j

)q/2
<∞.

Proof. Notice that for each f ∈ L2(R2) and any m ∈ N,

E(f,Xm)2
L2(R2) = ‖f‖2L2(R2) − ‖Πmf‖2L2(R2)

=
∑

F\Fm |〈f, φnzk〉|2 −
∑

F\Fm |〈Πmf, φnzk〉|2

=
∞∑
j=m

( ∑
Fj+1\Fj

|〈f, φnzk〉|2 −
∑

Fj+1\Fj

|〈Πmf, φnzk〉|2︸ ︷︷ ︸
ζm,j

)
.

The statements follow from the definition of approximation spaces. �

Lemma 2.6. For all f, g ∈ L2(R2), limm‖f − Smf‖L2(R2) = 0.

Proof. For all g ∈ R2 with ‖g‖L2(R2) = 1,

|〈f−Smf, g〉| =
∣∣∣ ∑

F\Fm

〈g, φnzk〉 〈f, φnzk〉
∣∣∣

≤
( ∑

F\Fm

|〈g, φnzk|2
)1/2( ∑

F\Fm

|〈f, φnzk〉|2
)1/2

≤
( ∑

F\Fm

|〈f, φnzk〉|2
)1/2

→ 0 as m→∞. �

Lemma 2.7. For each λ ∈ (0, 1) and for each m ∈ N, there exists a non-negative
integer µ(λ,m) ≥ 0 such that for all f ∈ Xm,

λ ‖f‖2L2(R2) ≤
∑

Fm+µ(λ,m)
|〈f, φnzk〉|2 ≤ ‖f‖2L2(R2). (50)

Furthermore, {Πmφnzk : (n, z, k) ∈ Fm+µ(λ,m)} is a frame for Xm with frame
bounds λ, 1, and associated frame operator Sλ,m = ΠmSm+µ(λ,m) satisfying ‖Sλ,m‖ ≤
1, ‖S−1

λ,m‖ ≤ λ−1.

Proof. Consider a finite set of functions {f1, . . . , fJ} inXm satisfying ‖fj‖L2(R2) = 1
for all j = 1, . . . , J , and such that

{f ∈ Xm : ‖f‖L2(R2) = 1} ⊂
J⋃
j=1

B
(
fj , (1− λ1/2)/2

)
.

There exists µ(λ,m) ∈ N such that for all j = 1, . . . , J ,(1 + λ1/2

2

)2

≤
∑

Fm+µ(λ,m)
|〈fj , φnzk〉|2.
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Given f ∈ Xm \ {0}, set g = f/‖f‖L2(R2), and let j0 ∈ {1, . . . , J} such that
‖g − fj0‖L2(R2) ≤ (1− λ1/2)/2. Then,(∑

Fm+µ(λ,m)
|〈f, φnzk〉|2

)1/2

= ‖f‖L2(R2)

(∑
Fm+µ(λ,m)

|〈g, φnzk〉|2
)1/2

≥ ‖f‖L2(R2)

{(∑
Fm+µ(λ,m)

|〈fj0 , φnzk〉|2
)1/2

−
(∑

Fm+µ(λ,m)
|〈fj0 − g, φnzk〉|2

)1/2}
≥ ‖f‖L2(R2)

(1 + λ1/2

2
− 1− λ1/2

2

)
= λ1/2‖f‖L2(R2),

thus proving estimate (50).
Now, for each f ∈ Xm,

λ ‖f‖2L2(R2) ≤
∑

Fm+µ(λ,m)
|〈f, φnzk〉|2 =

∑
Fm+µ(λ,m)

|〈f,Πmφnzk〉|2 ≤ ‖f‖2L2(R2);

therefore, {Πmφnzk}Fm+µ(λ,m) is a frame for Xm with the claimed frame bounds.
In order to find the corresponding frame operators Sλ,m, notice that for f ∈ Xm,∑

Fm+µ(λ,m)
〈f,Πmφnzk〉Πmφnzk = Πm

(∑
Fm+µ(λ,m)

〈f, φnzk〉φnzk

)
= ΠmSm+µ(λ,m)f.

The norm estimates for Sλ,m = ΠmSm+µ(λ,m) and S−1
λ,m =

(
ΠmSm+µ(λ,m)

)−1

follow from Proposition 5.4.4. in Christensen [5]. �

Proposition 2.6. For all λ ∈ (0, 1), the sequence of operators {S−1
λ,mΠm}m∈N

converges weakly to the identity: For all f, g ∈ L2(R2), limm〈f −S−1
λ,mΠmf, g〉 = 0.

Proof. For f ∈ L2(R2),

f−S−1
λ,mΠmf =

(
f −Πmf

)
+
(
Πmf −S−1

λ,mΠmf
)

=
(
f −Πmf

)
+ S−1

λ,m

(
Sλ,mΠmf −Πmf

)
=
(
f −Πmf

)
+ S−1

λ,m

(
ΠmSm+µ(λ,m)Πmf −Πmf

)
=
(
f −Πmf

)
+ S−1

λ,mΠm

(
Sm+µ(λ,m)Πmf − f

)
;

and so, using both the boundedness of Πm and the norm estimates for S−1
λ,m in

Lemma 2.7,

|〈f −S−1
λ,mΠmf, g〉| ≤ |〈f −Πmf, g〉|+ |〈S−1

λ,mΠm

(
Sm+µ(λ,m)Πmf − f

)
, g〉|

≤ |〈f −Πmf, g〉|+ ‖S−1
λ,mΠm

(
Sm+µ(λ,m)Πmf − f

)
‖L2(R2)‖g‖L2(R2)

≤ |〈f −Πmf, g〉|+ λ−1‖
(
Sm+µ(λ,m)Πmf − f

)
‖L2(R2)‖g‖L2(R2).

As limm〈f − Πmf, g〉 = 0 for all f, g ∈ L2(R2), it is enough to show that the term
‖Sm+µ(λ,m)Πmf − f‖L2(R2) also tends to zero as m→∞. Notice that

‖Sm+µ(λ,m)Πmf − f‖L2(R2) ≤ ‖Sm+µ(λ,m)Πmf − Sm+µ(λ,m)f‖L2(R2)

+ ‖Sm+µ(λ,m)f − f‖L2(R2)

≤ ‖Πmf − f‖L2(R2) + ‖Sm+µ(λ,m)f − f‖L2(R2),

which tends to zero, since limm‖Smf − f‖L2(R2) = 0. �
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Birkhäuser Verlag, Basel, 1983.


	IMI_Cover_08_06
	2008:06
	F. J. Blanco-Silva 

	Blanco-Silva1

