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ON THE CONSTRUCTION OF BASES AND FRAMES
FOR SPACES OF DISTRIBUTIONS

GEORGE KYRIAZIS AND PENCHO PETRUSHEV

Abstract. We introduce a new method for constructing bases and frames
for general distribution spaces and employ it to the construction of bases for
modulation spaces on Rn and frames for Triebel-Lizorkin and Besov spaces
on the sphere. Conceptually, our scheme allows the freedom to prescribe the
nature, form, or some properties of the constructed basis or frame elements.
For instance, they can be linear combinations of a small fixed number of shifts
and dilates of any sufficiently smooth and rapidly decaying function. On the
sphere, our frame elements consist of smooth functions supported on small
shrinking caps.

1. Introduction

Bases and frames are a workhorse in Harmonic analysis in making various spaces
of functions and distributions more accessible for study and utilization. Wavelets
[18] are one of the most striking example of bases playing a pivotal role in The-
oretical and Computational Harmonic analysis. The ϕ-transform of Frazier and
Jawerth [5, 6, 7] is an example of a frame which has had a significant impact in
Harmonic analysis. Orthogonal expansions were recently used for the development
of frames of a similar nature in non-standard settings such as on the sphere [19, 20],
interval [23, 15] and ball [24, 16] with weights, and in the context of Hermite [25]
and Laguerre [12] expansions.

We begin with a general description of our “small perturbation argument” method
for constructing bases and frames for spaces of distributions. Assume that H is a
separable Hilbert space of functions (e.g. some L2-space) and

S ⊂ H ⊂ S ′,
where S is a linear space of test functions and S ′ is the associated space of distri-
butions. Suppose

L ⊂ S ′
is a quasi-Banach space of distributions with associated sequence space `(X ) which
is a quasi-Banach space as well. Targeted spaces L are the modulation spaces on
Rn, the homogeneous and inhomogeneous Triebel-Lizorkin and Besov spaces on Rn,
and Triebel-Lizorkin and Besov spaces on the unit sphere Sn in Rn+1, unit ball in
Rn, and interval with weights as well as Triebel-Lizorkin and Besov spaces in the
context of Hermite and Laguerre expansions. We consider two scenarios:

(i) there is an orthonormal basis Ψ = {ψξ}ξ∈X in H which provides an isomor-
phism between L and `(X ), or
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(ii) there is a frame Ψ = {ψξ}ξ∈X in H which allows to characterize L in terms
of `(X ).

The central idea of our method is to construct a new system Θ = {θξ}ξ∈X ⊂ H
which approximates Ψ sufficiently well in a specific sense, while at the same time
the nature, form or some specific properties of the elements {θξ} can be prescribed
in advance. To make this scheme work we rely on two basic principles: Localization
and Approximation. The measure of localization is in terms of the size of the various
inner products of the form 〈ψξ, ψη〉, 〈θη, ψξ〉, 〈ψξ, θη〉, more precisely, in terms
of boundedness of the respective operators on `2(X ) and `(X ). The measure of
approximation is in terms of the size of the inner products of the form 〈ψη, ψξ − θξ〉,
〈ψη − θη, ψξ〉. In fact, the critical step is to construct {θξ} so that the operators
with matrices

(〈ψη, ψξ − θξ〉)ξ,η∈X and (〈ψη − θη, ψξ〉)ξ,η∈X

have sufficiently small norms on `2(X ) and `(X ). The good localization and ap-
proximation properties of the new system Θ will guarantee that it is a basis or
frame for the distribution spaces of interest.

The goal of this paper is two-fold: First, to develop our “small perturbation
argument” method for construction of bases and frames in a general setup of dis-
tribution spaces, and second, to apply these results for developing new bases and
frames for specific spaces of distributions. Choosing from various possible applica-
tions, we consider two key examples that best demonstrate the versatility of our
general scheme. Building upon the Wilson basis we shall construct new bases for
the modulation spaces on Rn. The emphasis, however, will be on the construc-
tion of frames for Triebel-Lizorkin and Besov spaces on the sphere with elements
supported on small shrinking caps. These frames are reminiscent of compactly
supported wavelets on Rn. The situation in our second example is much more
complicated than on Rn since there are no dilation or translation operators on the
sphere. Other meaningful applications of our scheme would be to the construction
of frames on the interval and ball with weights, and in the context of Hermite and
Laguerre expansions, which we shall not pursue here.

A relevant theme is the study of the localization and self-localization of frames,
initiated by Gröchenig in [9, 10]. Our understanding of localization is different but
related to the one in [9, 10]. Our idea of using the basic principles of localization
and approximation mentioned above for constructing bases and frames for spaces
of distributions has its roots in our previous developments, where bases and frames
were constructed for Triebel-Lizorkin and Besov spaces on Rn. Most of our previous
results on bases and frames from [13, 14, 22] can now be derived as applications of
the general theory developed in this article.

The paper is organized as follows: In §2 we develop our general method for
construction of bases (§2.2) and frames (§2.3) for distribution spaces. In §3 we apply
the general scheme from §2.2 to the construction of a basis for modulation spaces.
In §4 we make an application of our general results from §2.3 to the construction
of frames for the Triebel-Lizorkin and Besov spaces on the sphere.

Some useful notation: We shall denote |x| := (
∑
i |xi|2)1/2 for x ∈ Rn. Positive

constants will be denoted by c, c1, c2, . . . and they will be allowed to vary at every
occurrence; a ∼ b will stand for c1a ≤ b ≤ c2a.
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2. General scheme for construction of bases and frames

2.1. The setting. We assume that H is a separable complex Hilbert space (of
functions) and S ⊂ H is a linear subspace (of test functions) furnished with a
locally convex topology induced by a sequence of norms or semi-norms. Let S ′ be
the dual of S consisting of all continuous linear functionals on S. We also assume
that H ⊂ S ′. The pairing of f ∈ S ′ and φ ∈ S will be denoted by 〈f, φ〉 := f(φ)
and we assume that it is consistent with the inner product 〈f, g〉 in H. Typical
examples are

(a) H := L2(Rn), S := S(Rn) is the Schwartz class on Rn, and S ′ is the dual
space of all tempered distributions on Rn;

(b) H := L2(Rn), S = S∞(Rn) is the set of all functions φ in the Schwartz class
S(Rn) such that

∫
φ(x)xα = 0 for α ∈ Zn+, and S ′ is its dual;

(c) H := L2(Sn), S := C∞(Sn) with Sn being the unit sphere in Rn+1, and S ′
is its dual;

(d) H := L2(Bn, µ), where B is the unit ball in Rn and dµ := (1− |x|)γ−1/2dx,
S := C∞(Bn), and S ′ is its dual;

(e) H := L2(I, µ), where I := I1 × · · · × In is a box in Rn and µ is a product
Jacobi measure on I, S := C∞(I), and S ′ is its dual.

Our next assumption is that L ⊂ S ′ with norm ‖ · ‖L is a quasi-Banach space
of distributions, which is continuously embedded in S ′. Further, we assume that
S ⊂ H ∩ L and S is dense in H and L with respect to their respective norms.

We also assume that `(X ) with norm ‖ ·‖`(X ) is an associated to L quasi-Banach
space of complex-valued sequences with domain a countable index set X . Coupled
with a basis or frame Ψ the sequence space `(X ) will be utilized for characterization
of the space L. In addition to being a quasi-norm we assume that ‖ · ‖`(X ) obeys
the conditions:

(i) For any ξ ∈ X the projections Pξ : `(X ) 7→ C defined by Pξ(h) = hξ for
h = (hη) ∈ `(X ) are uniformly bounded on `(X ), i.e. |hξ| ≤ c‖h‖`(X ) for ξ ∈ X .

(ii) For any sequence (hξ)ξ∈X ∈ `(X ) one has ‖(hξ)‖`(X ) = ‖(|hξ|)‖`(X ).
(iii) If the sequences (hξ)ξ∈X , (gξ)ξ∈X ∈ `(X ) and |hξ| ≤ |gξ| for ξ ∈ X , then

‖(hξ)‖`(X ) ≤ c‖(gξ)‖`(X ).
(iv) Compactly supported sequences are dense in `(X ).

2.2. Construction of bases for spaces of distributions.

2.2.1. The old basis. Given spaces S ⊂ H ⊂ S ′, L, and `(X ) as described in §2.1
with X a countable index set, we assume that Ψ := {ψξ : ξ ∈ X} ⊂ S is an
orthonormal basis for H, that is, 〈ψξ, ψη〉 = δξ,η for ξ, η ∈ X , and any f ∈ H
(2.1) f =

∑

ξ∈X
〈f, ψξ〉ψξ in H and ‖f‖H = ‖(〈f, ψξ〉)ξ‖`2(X ).

We also assume that Ψ is a basis for the space L in the following sense:
(a) Every f ∈ L has a unique representation in terms of {ψξ}ξ∈X and

(2.2) f =
∑

ξ∈X
〈f, ψξ〉ψξ in L.

(b) The operator SΨf := (〈f, ψξ〉)ξ∈X is bounded as an operator from L to `(X ).
(c) For any sequence h ∈ `(X ) the operator TΨh :=

∑
ξ∈X hξψξ is well defined

and bounded as an operator from `(X ) to L.
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Consequently, for any f ∈ L
(2.3) c1‖f‖L ≤ ‖(〈f, ψξ〉)‖`(X ) ≤ c2‖f‖L
for some constants c1, c2 > 0.

Remark 2.1. In (2.1)-(2.2) above and throughout the rest of this section when we
write “in H” or “in L” it will always mean that the convergence of the respective
series is unconditional in H or in L. For unconditional convergence and bases we
refer the reader to [17].

2.2.2. Construction of a new basis. Our idea is to first construct by perturbing Ψ
a new basis Θ = {θξ : ξ ∈ X} for H with elements θξ ∈ H and then to show that
under some additional localization and approximation conditions Θ is a basis for L.
Since Ψ is a basis for H, we have

(2.4) θξ =
∑

η∈X
〈θξ, ψη〉ψη in H.

Denote by A the transformation matrix

(2.5) A := (aξ,η)ξ,η∈X , aξ,η := 〈θξ, ψη〉.
Our key assumption is that the operator A with matrix A is bounded and invertible
on `2(X ) and A−1 is also bounded on `2(X ). Observe that if

(2.6) D = (dξ,η)ξ,η∈X := (〈ψξ − θξ, ψη〉)ξ,η∈X ,
then A = I −D and, therefore, A−1 exists and is bounded on `2(X ) if

(2.7) ‖D‖`2(X )7→`2(X ) < 1.

This is our main assumption in constructing Θ as a Riesz basis for H. The gist of
our method is to approximate ψξ by θξ in such a way that D satisfies (2.7).

We shall show that under these conditions Θ is a Riesz basis for H. To proceed,
let

(2.8) A−1 =: (bξ,η)ξ,η∈X

and define

(2.9) θ̃ξ :=
∑
η

bη,ξψη, ξ ∈ X .

Since (A−1)∗ =
(
bη,ξ
)
ξ,η∈X is the adjoint matrix of A−1 and

‖(A−1)∗‖`2(X )7→`2(X ) = ‖A−1‖`2(X )7→`2(X ) <∞,

each vector row of (A−1)∗ belongs to `2(X ) and hence θ̃ξ from (2.9) is well defined
and θ̃ξ ∈ H. Evidently, bη,ξ = 〈θ̃ξ, ψη〉 and hence 〈ψη, θ̃ξ〉 = bη,ξ.

We set Θ̃ := {θ̃ξ : ξ ∈ X}. Then it is easy to see that the pair (Θ, Θ̃) is a
biorthogonal system in H, i.e. 〈θη, θ̃ξ〉 = δξ,η. Indeed,

〈θη, θ̃ξ〉 =
∑
ω

bω,ξ〈θη, ψω〉 =
∑
ω

aη,ωbω,ξ = (AA−1)η,ξ = δη,ξ.
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Proposition 2.2. If A,A−1,AT , (A−1)T are bounded on `2(X ), then Θ (with dual
Θ̃) is a Riesz basis for H. Consequently, for every f ∈ H
(2.10) f =

∑

ξ∈X
〈f, θ̃ξ〉θξ in H and

(2.11) c1‖f‖H ≤ ‖(〈f, θ̃ξ〉)ξ‖`2(X ) ≤ c2‖f‖H .
Proof. It is well know that (see e.g. [28]) a necessary and sufficient condition for
Θ ⊂ H to be a Riesz basis for H is that Θ satisfies the conditions:

(i) Θ is complete in H (the closed span of Θ is all of H).
(ii) There exist constants c′, c′′ > 0 such that for any compactly supported

sequence h = (hξ)ξ∈X one has

(2.12) c′‖h‖`2(X ) ≤
∥∥∑

ξ∈X
hξθξ

∥∥
H
≤ c′′‖h‖`2(X ).

We shall first prove that for any ξ ∈ X
(2.13) ψξ =

∑

ω∈X
〈ψξ, θ̃ω〉θω =

∑

ω∈X
bξ,ωθω in H.

To this end we shall utilize this lemma:

Lemma 2.3. The operator Th :=
∑
ξ∈X hξθξ is well defined and bounded as an

operator from `2(X ) to H.

Proof. Let h = (hξ)ξ∈X be a compactly supported sequence of complex numbers.
Then by the boundedness of AT on `2(X ) and (2.1) we have

‖Th‖H =
∥∥(〈∑

ξ∈X
hξθξ, ψη

〉)
η

∥∥
`2(X )

=
∥∥(∑

ξ∈X
hξ〈θξ, ψη〉

)
η

∥∥
`2(X )

≤ c‖AT ‖`2(X ) 7→`2(X )‖h‖`2(X ) ≤ c‖h‖`2(X ).

Since compactly supported sequences are dense in `2(X ), it follows that the operator
T is bounded as an operator from `2(X ) to H. It also follows that for any sequence
{hξ} ∈ `2(X ) the series

∑
ξ∈X hξθξ converges unconditionally in `2(X ). �

We now prove (2.13). Since A−1 = (bξ,η)ξ,η∈X and ‖A−1‖`2(X ) 7→`2(X ) < ∞, we
have (bξ,ω)ω ∈ `2(X ) and applying Lemma 2.3 it follows that gξ :=

∑
ω∈X bξ,ωθω is

a well defined element of H. On the other hand,

〈gξ, ψη〉 =
∑

ω∈X
bξ,ω〈θω, ψη〉 =

∑

ω∈X
bξ,ωaω,η = (A−1A)ξ,η = δξ,η,

yielding gξ = ψξ. Hence, (2.13) holds.
As a basis Ψ := {ψξ} is complete in H and now (2.13) implies that Θ := {θξ} is

complete in H as well.
We now turn to the proof of (2.12). Let h = (hξ)ξ∈X be a compactly supported

sequence of complex numbers. Then by Lemma 2.3
∥∥∑

ξ∈X hξθξ
∥∥
H
≤ c‖h‖`2(X ),

which gives the right-hand side estimate in (2.12).
For the other direction, denote briefly f :=

∑
ξ∈X hξθξ. As was shown above the

system Θ := {θ̃ξ}, defined in (2.9), is the dual of Θ and hence for ξ ∈ X
hξ = 〈f, θ̃ξ〉 =

〈
f,
∑

η∈X
bη,ξψη

〉
=
∑

η∈X
bη,ξ
〈
f, ψη

〉
,
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which yields

‖h‖`2(X ) ≤ ‖(A−1)T ‖`2(X ) 7→`2(X )

∥∥(〈f, ψη
〉)∥∥

`2(X )
≤ c
∥∥(〈f, ψη

〉)∥∥
`2(X )

≤ c‖f‖H .
Here we used the boundedness of (A−1)T on `2(X ) and (2.1). Thus (2.12) is
established and hence Θ is a Riesz basis. This in turn implies (2.10)-(2.11). �

Our next aim is to show that under some reasonable conditions on A and A−1

the system Θ is an unconditional basis for L.

Theorem 2.4. Let A and A−1 be bounded on `2(X ) and assume that the operators
AT and (A−1)T with matrices AT and (A−1)T are bounded on `(X ). Then Θ (with
dual Θ̃) is an unconditional basis for L in the following sense:

(a) Every f ∈ L has a unique representation in terms of {θξ}ξ∈X and

(2.14) f =
∑

ξ∈X
〈f, θ̃ξ〉θξ,

where by definition 〈f, θ̃ξ〉 :=
∑
η∈X 〈f, ψη〉〈ψη, θ̃ξ〉 and the series converges uncon-

ditionally in L.
(b) The operator Sf := {〈f, θ̃ξ〉} is bounded as an operator from L to `(X ).
(c) The operator Th :=

∑
ξ∈X hξθξ is well defined and bounded as an operator

from `(X ) to L.
Consequently, T ◦ S = I the identity on L and there exist constants c1, c2 > 0

such that

(2.15) c1‖f‖L ≤ ‖(〈f, θ̃ξ〉)ξ‖`(X ) ≤ c2‖f‖L for f ∈ L.
Proof. We first prove the boundedness of the operator S : L → `(X ). By (2.9)
〈ψξ, θ̃η〉 = bξ,η and using that (A−1)T is bounded on `(X ), we get

‖Sf‖`(X ) = ‖(〈f, θ̃ξ〉)‖`(X ) ≤
∥∥(∑

η∈X
〈f, ψη〉〈ψη, θ̃ξ〉

)
ξ

∥∥
`(X )

≤ ∥∥(
∑

η∈X
bη,ξ〈f, ψη〉

)
ξ

∥∥
`(X )
≤ ‖(A−1)T ‖`(X )7→`(X )‖(〈f, ψξ〉)‖`(X )(2.16)

≤ c‖(〈f, ψξ〉)‖`(X ) ≤ c‖f‖L,
where for the last inequality we used that the operator SΨ : L→ `(X ) is bounded
according to our assumptions. Thus S : L→ `(X ) is bounded.

We now prove (c). Let first h = (hξ)ξ∈X be a compactly supported sequence of
complex numbers. By (2.4) we have θξ =

∑
η aξ,ηψη and hence

Th =
∑

ξ∈X
hξθξ =

∑

η∈X

(∑

ξ∈X
aξ,ηhξ

)
ψη.

Then by condition (b) of Ψ (see (2.3)) and the boundedness of AT on `(X ), we
obtain

‖Th‖L ≤ c
∥∥(∑

ξ∈X
aξ,ηhξ

)
η

∥∥
`(X )
≤ c‖AT ‖`(X )7→`(X )‖h‖`(X ) ≤ c‖h‖`(X ).

By condition (iv) on `(X ) compactly supported sequences are dense in `(X ), and
hence the operator T can be extended uniquely as a bounded operator from `(X )
to L. More precisely, from above and conditions (ii)-(iv) on `(X ) it follows that for
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any sequence h = (hξ)ξ∈X ∈ `(X ) and any ε > 0 there exists a finite set of indices
F ⊂ X such that for every index set F ′ ⊂ X \ F we have

∥∥ ∑

ξ∈F ′
hξθξ

∥∥
L
< ε.

This readily implies (see [17]) that the series
∑
ξ∈X hξθξ converges unconditionally

in L. Thus T is a well defined and bounded operator from `(X ) to L.
It remains to show that (2.14) is valid. We define a new operator U on L by

Uf :=
∑

ξ∈X
〈f, θ̃ξ〉θξ.

By (2.16) we have
(〈f, θ̃ξ〉

)
ξ∈X ∈ `(X ) for f ∈ L. Then from the boundedness of

the operator T it follows that the operator U is well defined and bounded on L.
On the other hand by (2.10), Uf = f for f ∈ H and hence for f ∈ S, but S is

dense in L. Therefore, Uf = f for f ∈ L, i.e. (2.14) holds true.
The identity T ◦S = I follows by (2.14), and (2.15) is an immediate consequence

of (b) and (c). �

2.3. Construction of frames for spaces of distributions.

2.3.1. Frames in Hilbert spaces: Background. Here we collect some basic facts from
the theory of frames (cf. [2],[11]). Let H with inner product 〈·, ·〉 be a separable
Hilbert space. A family Ψ := {ψξ : ξ ∈ X} ⊂ H, where X is a countable index set,
is called a frame for H if there exist constants A,B > 0 such that

(2.17) A‖f‖2H ≤
∑

ξ∈X
|〈f, ψξ〉|2 ≤ B‖f‖2H for f ∈ H.

It is not hard to see that the frame operator S : H 7→ H defined by

(2.18) Sf =
∑

ξ∈X
〈f, ψξ〉ψξ

is a bounded linear operator and AI ≤ S ≤ BI. Therefore, S is self-adjoint, S is
invertible, and B−1I ≤ S−1 ≤ A−1I. Also,

(2.19) S−1f =
∑

ξ∈X
〈f, S−1ψξ〉S−1ψξ in H.

The family S−1Ψ := {S−1ψξ}ξ∈X is a frame for H as well. Furthermore, for every
f ∈ H
(2.20) f = SS−1f =

∑

ξ∈X
〈f, S−1ψξ〉ψξ in H

and

(2.21) f =
∑

ξ∈X
〈f, ψξ〉S−1ψξ in H.

Thus Ψ and S−1Ψ provide (like Riesz bases) stable representations of all f ∈ H.
However, unlike a basis, Ψ may be redundant and (2.20) is not necessarily a
unique representation of f in terms of {ψξ}. A similar observation holds for S−1Ψ.
The frame Ψ is termed a tight frame if A = B in (2.17).
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2.3.2. The old frame. We adhere to the setting describe in §2.1. In particular, we
assume that S ⊂ H ⊂ S ′, L ⊂ S ′, and `(X ) are spaces as described in §2.1 with X
a countable index set. We also assume that for any f ∈ H
(2.22) f =

∑

ξ∈X
〈f, ψξ〉ψξ in H and ‖f‖H ∼ ‖(〈f, ψξ〉)‖`2(X ).

Therefore, Ψ := {ψξ : ξ ∈ X} ⊂ S is a tight frame for H.
More importantly, we assume also that Ψ is a frame for L in the following sense:

A1. For any f ∈ L
(2.23) f =

∑

ξ∈X
〈f, ψξ〉ψξ in L.

A2. For any f ∈ L, (〈f, ψξ〉)ξ ∈ `(X ), and

(2.24) c1‖f‖L ≤ ‖(〈f, ψξ〉)‖`(X ) ≤ c2‖f‖L.
Our aim is by using the idea of “small perturbation argument” to construct a

new system Θ := {θξ : ξ ∈ X} ⊂ S with some prescribed features, which is a frame
for L in the following sense:

Definition 2.5. We say that Θ := {θξ : ξ ∈ X} ⊂ H is a frame for the space L
with associated sequence space `(X ) if the following conditions are obeyed:

B1. There exist constants c1, c2 > 0 such that

(2.25) c1‖f‖L ≤ ‖(〈f, θξ〉)‖`(X ) ≤ c2‖f‖L for f ∈ L,
where 〈f, θξ〉 is defined by 〈f, θξ〉 :=

∑
η∈X 〈f, ψη〉〈ψη, θξ〉.

B2. The operator S : L 7→ L defined by

Sf =
∑

ξ∈X
〈f, θξ〉θξ

is bounded and invertible on L; S−1 is also bounded on L and

S−1f =
∑

ξ∈X
〈f, S−1θξ〉S−1θξ in L.

B3. There exist constants c3, c4 > 0 such that

(2.26) c3‖f‖L ≤ ‖(〈f, S−1θξ〉)‖`(X ) ≤ c4‖f‖L for f ∈ L,

where as above by definition 〈f, S−1θξ〉 :=
∑
η∈X 〈f, ψη〉〈ψη, S−1θξ〉.

B4. For any f ∈ L
(2.27) f =

∑

ξ∈X
〈f, S−1θξ〉θξ =

∑

ξ∈X
〈f, θξ〉S−1θξ in L.

We recall our standing convention that “in H” or “in L” means that the conver-
gence is unconditional in H or in L.

Observe that if L is a Hilbert space then properties B2-4 are byproducts of B1
(see §2.3.1). However, this is no longer true for more general spaces.
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2.3.3. Construction of a new frame. The key of our method for constructing a new
frame Θ := {θξ : ξ ∈ X} for L (as described above) is to build {θξ} with appropriate
localization and approximation properties with respect to the given tight frame Ψ.
The localization of Θ will be measured in terms of the size of the inner products
〈ψξ, ψη〉, 〈θη, ψξ〉, 〈ψξ, θη〉. More precisely, we construct {θξ} so that the operators
with matrices

(2.28)

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ〉,

are bounded on `2(X ) and `(X ). Notice that C = B∗ the adjoint of B. The approx-
imation property of Θ will be measured in terms of the size of the inner products
〈ψη, ψξ − θξ〉, 〈ψη − θη, ψξ〉. Namely, we construct {θξ} so that the operators with
matrices

(2.29)
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη, ψξ − θξ〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ〉,

are bounded on `2(X ) and `(X ) and, more importantly, for sufficiently small ε > 0

‖D‖`2(X )7→`2(X ) ≤ ε, ‖E‖`2(X ) 7→`2(X ) ≤ ε,(2.30)

‖D‖`(X )7→`(X ) ≤ ε, ‖E‖`(X ) 7→`(X ) ≤ ε.(2.31)

Notice that E = D∗.
Before we treat the case of general distribution spaces, we shall give sufficient

conditions which guarantee that the new system Θ is a frame for the Hilbert space
H itself.

Proposition 2.6. As above, let Ψ = {ψξ}ξ∈X be a frame for the Hilbert space
H such that (2.22) holds. Suppose Θ = {θξ}ξ∈X ⊂ H is constructed so that the
operators with matrices C and D defined in (2.28)-(2.29) are bounded on `2(X ) and
for a sufficiently small ε > 0

(2.32) ‖D‖`2(X )7→`2(X ) ≤ ε.
Then Θ is a frame for H, that is, there exist constants c1, c2 > 0 such that

(2.33) c1‖f‖H ≤ ‖(〈f, θξ〉)ξ‖`2(X ) ≤ c2‖f‖H , f ∈ H.
Proof. Note that f =

∑
η∈X 〈f, ψη〉ψη for f ∈ H and hence

(2.34)
‖(〈f, θξ〉)‖`2(X ) = ‖(

∑

η∈X
〈f, ψη〉〈ψη, θξ〉)ξ‖`2(X )

≤ ‖C‖`2(X )7→`2(X )‖(〈f, ψξ〉)‖`2(X ) ≤ c‖f‖H .
Thus the right-hand side estimate in (2.33) is established.

For the proof of the left-hand side of (2.33), we have using (2.17)

(2.35)
‖f‖H ≤ c‖(〈f, ψξ〉)‖`2(X )

≤ c{‖(〈f, ψξ − θξ〉)‖`2(X ) + ‖(〈f, θξ〉)‖`2(X )}.
Observe that

(2.36)
‖(〈f, ψξ − θξ〉)‖`2(X ) = ‖(

∑

η∈X
〈f, ψη〉〈ψη, ψξ − θξ〉)ξ‖`2(X )

≤ ‖D‖`2(X )7→`2(X )‖(〈f, ψξ〉)‖`2(X ) ≤ ε‖f‖H .
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From (2.35)-(2.36) we obtain for sufficiently small ε > 0 (ε < 1/c will do)

‖f‖H ≤ c

1− cε‖(〈f, θξ〉)‖`2(X ) ≤ c‖(〈f, θξ〉)‖`2(X ),

which confirms the left-hand side estimate in (2.33). �

We now come to the main result of this section.

Theorem 2.7. Let Ψ := {ψξ : ξ ∈ X} ⊂ S be the old frame for H and L as
described in §2.3.2. Suppose the system Θ := {θξ : ξ ∈ X} ⊂ H is constructed so
that the operators with matrices A, B, C, D, E from (2.28)-(2.29) are bounded on
`(X ) and C, D are bounded on `2(X ) as well. Then if for sufficiently small ε > 0
the matrices D, E obey (2.30)-(2.31), the sequence Θ is a frame for L in the sense
of Definition 2.5.

Most importantly, if f ∈ S ′, then f ∈ L if and only if (〈f, S−1θξ〉) ∈ `(X ), and
for f ∈ L
(2.37) f =

∑

ξ∈X
〈f, S−1θξ〉θξ in L and ‖f‖L ∼ ‖(〈f, S−1θξ〉)‖`(X ).

Proof. We first note that by Proposition 2.6 Θ is a frame for H.
We next prove that Θ obeys condition B1. From the definition of 〈f, θξ〉 (see

Definition 2.5), the boundedness of C, and (2.24) we infer

‖(〈f, θξ〉
)‖`(X ) =

∥∥∥
(∑

η∈X
〈f, ψη〉〈ψη, θξ〉

)∥∥∥
`(X )

(2.38)

≤ ‖C‖`(X )7→`(X )‖
(〈f, ψξ〉

)‖`(X ) ≤ c‖f‖L,
which confirms the right-hand side estimate in (2.25).

For the proof of the left-hand side of (2.25), we have by (2.24)

‖f‖L ≤ c‖
(〈f, ψξ〉

)‖`(X ) ≤ c‖
(〈f, ψξ − θξ〉

)‖`(X ) + c‖(〈f, θξ〉
)‖`(X )

and we next estimate the first term above using (2.31) and (2.24):

‖(〈f, ψξ − θξ〉
)‖`(X ) =

∥∥∥
(∑

η∈X
〈f, ψη〉〈ψη, ψξ − θξ〉

)∥∥∥
`(X )

≤ ‖D‖`(X )7→`(X )‖
(〈f, ψξ〉

)‖`(X ) ≤ c′ε‖f‖L.
Substituting this above, we get

‖f‖L ≤ c

1− cc′ε‖
(〈f, θξ〉

)‖`(X ),

yielding the left-hand side estimate in (2.25) if ε > 0 is sufficiently small, namely,
if ε < 1/cc′.

The following lemma will play a key role in the sequel.

Lemma 2.8. The operators Th :=
∑
ξ∈X hξθξ and V h :=

∑
ξ∈X hξψξ are well

defined and bounded as operators from `(X ) to L.

Proof. We shall only prove the boundedness of T ; the proof of the boundedness
of V is easier and will be omitted. Let h = (hξ)ξ∈X be a compactly supported
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sequence of complex numbers. Then using (2.24) and the boundedness of B, we
get

‖Th‖L ≤ c
∥∥(〈∑

ξ∈X
hξθξ, ψη

〉)
η

∥∥
`(X )

= c
∥∥(∑

ξ∈X
hξ〈θξ, ψη〉

)
η

∥∥
`(X )

≤ c‖B‖`(X )7→`(X )‖h‖`(X ) ≤ c‖h‖`(X ).

By condition (iv) on `(X ) compactly supported sequences are dense in `(X ) and,
therefore, the operator T can be uniquely extended to a bounded operator from
`(X ) to L. Furthermore, as in the proof of Theorem 2.4 it is easy to show that the
series

∑
ξ∈X hξψξ converges unconditionally in L. �

We now prove that Θ satisfies B2. By definition Sf =
∑
ξ∈X 〈f, θξ〉θξ, but

by (2.38) we have
(〈f, θξ〉

)
ξ∈X ∈ `(X ). Therefore, by Lemma 2.8 the operator

S : L→ L is bounded.
The space L is a quasi-Banach space, but nevertheless it is easily seen that if

‖I − S‖L7→L < 1, then S−1 exists and is bounded on L. In fact, S−1 can be
constructed by the Neumann series, i.e. S−1 =

∑∞
k=0(I − S)k. To prove that

‖I − S‖L7→L < 1 for sufficiently small ε, let us denote G = (gξ,η)ξ,η∈X , where
gξ,η := 〈(I − S)ψη, ψξ〉. Then, assuming that G is bounded on `(X ), we get

‖(I − S)f‖L ≤ c‖
(〈(I − S)f, ψξ〉

)‖`(X ) = c
∥∥∥
(∑

η∈X
〈f, ψη〉〈(I − S)ψη, ψξ〉

)∥∥∥
`(X )

≤ c‖G‖`(X )7→`(X )‖
(〈f, ψξ〉

)‖`(X ) ≤ c‖G‖`(X ) 7→`(X )‖f‖L.(2.39)

Here for the equality we used that the operator I − S is bounded on L. We next
estimate ‖G‖`(X ) 7→`(X ). Evidently, we have

〈Sψη, ψξ〉 =
∑

ω∈X
〈ψη, θω〉〈θω, ψξ〉 and 〈ψη, ψξ〉 =

∑

ω∈X
〈ψη, ψω〉〈ψω, ψξ〉

and hence

gξ,η = 〈ψη, ψξ〉 − 〈Sψη, ψξ〉
=
∑

ω∈X
〈ψη, ψω − θω〉〈ψω, ψξ〉+

∑

ω∈X
〈ψη, θω〉〈ψω − θω, ψξ〉

= (AD)ξ,η + (EC)ξ,η.

Thus G = AD+EC and by the boundedness of the respective operators and (2.31)

‖G‖`(X )7→`(X ) ≤ c(‖A‖`(X )7→`(X )‖D‖`(X )7→`(X ) + ‖E‖`(X )7→`(X )‖C‖`(X )7→`(X )) ≤ cε.
Substituting this in (2.39) we get ‖(I −S)f‖L ≤ c′′ε‖f‖L and hence for sufficiently
small ε we have ‖I − S‖L 7→L ≤ c′′ε < 1 (ε < 1/c′′ will do). Then the operator S−1

exists and is bounded on L.

For the rest of the proof of the theorem we need the following lemma:

Lemma 2.9. The operators with matrices

H :=
(〈ψη, S−1θξ〉

)
ξ,η∈X , H∗ :=

(〈S−1θξ, ψη〉
)
ξ,η∈X ,

J :=
(〈ψη, Sψξ〉

)
ξ,η∈X , J1 :=

(〈ψη, S−1ψξ〉
)
ξ,η∈X

are bounded on `(X ).
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Proof. We shall only prove the boundedness of H and H∗; the proof of the bound-
edness of J and J1 is simpler and will be omitted.

Let d = (dξ) be a compactly supported sequence and set f :=
∑
ξ∈X dξψξ. Then

(Hd)ξ =
∑

η∈X
dη〈ψη, S−1θξ〉 =

∑

η∈X
dη〈S−1ψη, θξ〉 = 〈

∑

η∈X
dηS

−1ψη, θξ〉

=
〈
S−1

(∑

η∈X
dηψη

)
, θξ
〉

= 〈S−1f, θξ〉 =
∑

ω∈X
〈S−1f, ψω〉〈ψω, θξ〉.

Here for the second equality we used that S−1 is self adjoint on H. Now, similarly
as before we get

‖Hd‖`(X ) ≤ ‖C‖`(X )7→`(X )‖
(〈S−1f, ψω〉

)‖`(X ) ≤ c‖S−1f‖L ≤ c‖f‖L ≤ c‖d‖`(X ).

Here for the last inequality we used Lemma 2.8.
Since compactly supported sequences are dense in `(X ) then the operator H can

be uniquely extended to a bounded operator on `(X ).
The proof of the boundedness of H∗ goes along similar lines. Given a compactly

supported sequence d = (dξ), we set g :=
∑
η∈X dηψη and then

(H∗d)ξ =
∑

η∈X
dη〈S−1θξ, ψη〉 =

∑

η∈X
dη〈θξ, S−1ψη〉 =

〈
θξ, S

−1
(∑

η∈X
dηψη

)〉
.

As above, using the boundedness of S−1 on L and B1, we obtain

‖H∗d‖`(X ) = ‖(〈S−1g, θξ〉
)‖`(X ) ≤ c‖S−1g‖L ≤ c‖g‖L ≤ c‖d‖`(X ) = c‖d‖`(X ).

Here for the first and last equalities we used condition (ii) on `(X ). Now the
boundedness of H∗ follows as above. �

Just as in (2.38) the boundedness on `(X ) of the operator with matrix H from
Lemma 2.9 implies

‖(〈f, S−1θξ〉
)‖`(X ) ≤ c‖f‖L for f ∈ L.

Furthermore, the boundedness on `(X ) of the operator with matrix H∗ defined in
Lemma 2.9 yields that the operator

Uh :=
∑

ξ∈X
hξS

−1θξ

is bounded as an operator from `(X ) to L (see the proof of Lemma 2.8). Combining
these two facts shows that the operator S−1

� defined by

(2.40) S−1
� f :=

∑

ξ∈X
〈f, S−1θξ〉S−1θξ

is well defined and bounded on L. On the other hand, by a well know property of
frames (see (2.19)) for any f ∈ H
(2.41) S−1f =

∑

ξ∈X
〈f, S−1θξ〉S−1θξ.

Since by assumption S ⊂ H is dense in L, this leads to S−1 = S−1
� on L. Therefore,

representation (2.41) of S−1 holds on L as well. This completes the proof of B2.

We need one more lemma.
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Lemma 2.10. For any f ∈ L
(2.42) 〈Sf, ψξ〉 = 〈f, Sψξ〉 and 〈S−1f, ψξ〉 = 〈f, S−1ψξ〉 for ξ ∈ X .
Proof. The proof relies on the fact that S and S−1 are self adjoint operators on H
and S ⊂ H ∩ L is dense in L.

We shall only prove the left-hand side identity in (2.42); the proof of the right-
hand side identity is the same. Let f ∈ L and choose a sequence fn ∈ S so that
‖f − fn‖L → 0. Using that 〈Sfn, ψξ〉 = 〈fn, Sψξ〉 as fn ∈ S, we get

(2.43) |〈Sf, ψξ〉 − 〈f, Sψξ〉| ≤ |〈S(f − fn), ψξ〉|+ |〈f − fn, Sψξ〉|.
By condition (i) on `(X ), (2.24), and the boundedness of S on L, it follows that

(2.44) |〈S(f −fn), ψξ〉| ≤ c‖(〈S(f −fn), ψξ〉)‖`(X ) ≤ c‖S(f −fn)‖L ≤ c‖f −fn‖L.
By definition 〈f−fn, Sψξ〉 =

∑
η∈X 〈f−fn, ψη〉〈ψη, Sψξ〉 and using again condition

(i) on `(X ) and Lemma 2.9, we get

|〈f − fn, Sψξ〉| ≤
∥∥(∑

η∈X
〈f − fn, ψη〉〈ψη, Sψξ〉

)∥∥
`(X )

≤ ‖J‖`(X )7→`(X )

∥∥(〈f − fn, ψη〉
)∥∥
`(X )
≤ c‖f − fn‖L

We use this and (2.44) in (2.43) to obtain

|〈Sf, ψξ〉 − 〈f, Sψξ〉| ≤ c‖f − fn‖L → 0,

which implies the left-hand side identity in (2.42). �

We are now prepared to prove that Θ obeys B3-4. Given f ∈ L, by definition
Sf =

∑
ξ∈X 〈f, θξ〉θξ and from f = SS−1f we arrive at

(2.45) f =
∑

ξ∈X
〈S−1f, θξ〉θξ =

∑

ξ∈X
〈f, S−1θξ〉θξ in L,

where we used Lemma 2.10. Thus the left-hand side identity in (2.27) holds.
Similarly f = S−1Sf and using (2.41) in L and Lemma 2.10, we get

f =
∑

ξ∈X
〈Sf, S−1θξ〉S−1θξ =

∑

ξ∈X
〈f, SS−1θξ〉S−1θξ =

∑

ξ∈X
〈f, θξ〉S−1θξ,

which gives the right-hand side identity in (2.27). Therefore, B3 holds.
Going further, we have by definition 〈f, S−1θξ〉 :=

∑
η∈X 〈f, ψη〉〈ψη, S−1θξ〉 and

using the boundedness of H (Lemma 2.9), we get

‖(〈f, S−1θξ〉
)‖`(X ) ≤ ‖H‖`(X )7→`(X )‖

(〈f, ψη〉
)‖`(X ) ≤ c‖f‖L,

which confirms the validity of the right-hand side estimate in (2.26).
In the other direction, by (2.45) 〈f, ψη〉 =

∑
ξ∈X 〈f, S−1θξ〉〈θξ, ψη〉 and hence

‖f‖L ≤ c‖(〈f, ψη〉)‖`(X ) = c
∥∥∥
(∑

ξ∈X
〈f, S−1θξ〉〈θξ, ψη〉

)
η

∥∥∥
`(X )

≤ c‖B‖`(X )7→`(X )

∥∥(〈f, S−1θξ〉
)∥∥
`(X )
≤ c
∥∥(〈f, S−1θξ〉

)∥∥
`(X )

.

Thus B3 is established.
Finally, observe that if f ∈ S ′ and (〈f, S−1θξ〉) ∈ `(X ), then by Lemma 2.8

F :=
∑
ξ∈X 〈f, S−1θξ〉θξ ∈ L. Since g =

∑
ξ∈X 〈g, S−1θξ〉θξ for g ∈ H and S ⊂ H∩L

is dense in L, then F = f . The proof of Theorem 2.7 is complete. �
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3. New bases for modulation spaces

Here, we employ our scheme from §2.2 to the construction of bases for the mod-
ulation spaces Mp,q

m . We shall build upon the Wilson basis which is a basis for the
modulation spaces.

3.1. Modulation spaces: Background. We first introduce some standard nota-
tion. The translation and modulation operators of a function f on Rn are defined
by

(3.1) Tyf(x) := f(x− y) and Mwf(x) := e2πiw·xf(x), x, y, w ∈ Rn.
By duality Ty and Mw extend to the space of tempered distribution S ′ .

For g ∈ L2(Rn), the short-time Fourier transform of a function f ∈ L2(Rn) with
respect to g is defined by

(3.2) Vgf(x,w) := 〈f,MwTxg〉 :=
∫

Rn
f(t)g(t− x)e−2πit·wdt.

The definition of Vgf extends to distributions f ∈ S ′ as long as g ∈ S the class of
rapidly decreasing test functions.

Definition 3.1. Let vs(x,w) := (1 + |x|+ |w|)s, s > 0, and suppose that m ≥ 0 is
a weight function on R2n obeying

(3.3) m(x1 + x2, w1 + w2) ≤ cvs(x1, w1)m(x2, w2).

Assume 1 ≤ p, q ≤ ∞ and g ∈ S, g 6≡ 0. The modulation space Mp,q
m = Mp,q

m (Rn)
is defined as the set of all f ∈ S ′ such that

(3.4) ‖f‖Mp,q
m

:=
(∫

Rn

(∫

Rn
|Vgf(x,w)|pm(x,w)p dx

)q/p
dw
)1/q

<∞

with the standard modification when p =∞ or q =∞.

Observe that Mp,q
m is a Banach space and its definition is independent of the

particular selection of the window function g ∈ S. For the theory of modulation
spaces, we refer the reader to [8].

3.2. Wilson bases. For any window function g on R and constants α, β > 0, the
countable collection

G(g, α, β) := {MβlTαkg : k, l ∈ Z}
is called a Gabor system.

Definition 3.2. Given a window function ψ, assume G(ψ, 1
2 , 1) ⊂ L2(R). Then

the Wilson system W(ψ) is defined by

W(ψ) := {ψk,j : k ∈ Z, j ∈ N0},
where ψk,0 := Tkψ, k ∈ Z, and

ψk,j := 2−1/2T k
2

(
Mj + (−1)k+jM−j

)
ψ, (k, j) ∈ Z× N.

Daubechies, Jaffard and Journé [1] have constructed an exponentially decaying
window function ψ (|ψ(x)| ≤ ce−γ|x|, |ψ̂(ξ)| ≤ ce−γ|ξ|) such that W(ψ) is an or-
thonormal basis for L2(R). In what follows, we shall assume that W(ψ) is the
exponentially localized Wilson basis from [1].
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Using tensor products one easily constructs an orthonormal basis for L2(Rn).
Namely, for k = (k1, . . . , kn) ∈ Zn and j = (j1, . . . , jn) ∈ Nn0 , set

ψk,j(x1, . . . , xn) :=
n∏

i=1

ψki,ji(xi).

Then the multivariate Wilson system, defined by

(3.5) W(ψ) := {ψk,j : k ∈ Zn, j ∈ Nn0},
is apparently an orthonormal basis for L2(Rn).

For later use, we observe that for k ∈ Zn, j ∈ Nn0 ,

(3.6)

ψk,j(x1, . . . , xn) = aj

n∏

i=1

T ki
2

(
Mji + (−1)ki+jiM−ji

)
ψ(xi)

= aj
∑

δj∈{−1,1}

n∏

i=1

(−1)ki+jiT ki
2
Mδijiψ(xi)

= aj
∑

δ∈{−1,1}n
δk+jT k

2
Mδjψ

∗(x),

where ψ∗(x) := ψ(x1) · · ·ψ(xn), δj := (δ1j1, . . . , δnjn), and 0 ≤ aj ≤ 1.
As is shown in [4], the Wilson basis is also an unconditional basis for the modu-

lation spaces. Moreover, the membership of a tempered distribution f in Mp,q
m can

be characterized completely by the size of the coefficients 〈f, ψk,j〉, (k, j) ∈ Zn×Nn0 .
The associated sequence space

`p,qm := `p,qm (Zn × Nn0 )

is defined as the set of all sequences h = (hk,j)(k,j)∈Zn×Nn0 such that

‖h‖`p,qm :=
(∑

j∈Nn0

[∑

k∈Zn
|hk,j |pm(k/2, j)p

]q/p)1/p
<∞

with the usual modification when p = ∞ or q = ∞. Note that `p,qm is a Banach
space.

The characterization of modulation spaces via the Wilson basis reads as follows.

Theorem 3.3. [4] Let 1 ≤ p, q ≤ ∞ and suppose that W(ψ) is the Wilson basis,
described above. Then there exist constants c1, c2 > 0 such that for every f ∈Mp,q

m

c1‖f‖Mp,q
m
≤ ‖(〈f, ψk,j〉)k,j‖`p,qm ≤ c2‖f‖Mp,q

m
.

Moreover,

f =
∑

(k,j)∈Zn×Nn0
〈f, ψk,j〉ψk,j ,

where the series converges unconditionally in the Mp,q
m -norm if p, q <∞ and weak*

in M∞,∞1/vs otherwise.

We refer the reader to [4], [8] for a detailed account of Wilson bases.
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3.3. Construction of new bases. Let ψ∗ (see (3.6)) be the exponentially local-
ized function which generates the Wilson basis W(ψ) := {ψkj : k ∈ Zn, j ∈ Nd0}.
Given s > 0, fix an integer M > 2n + s. Evidently, there exists a constant c∗ > 0
such that

(3.7) |∂αψ∗(x)| ≤ c∗

(1 + |x|)M , |α| ≤M,

where as usual ∂α := ( ∂
∂x1

)α1 · · · ( ∂
∂x1

)αn and |α| := α1 + · · ·+ αn.
For “small” ε > 0 (to be determined later on), we construct a function θ of some

desired form or properties satisfying

(3.8) |∂αψ∗(x)− ∂αθ(x)| ≤ ε

(1 + |x|)M , x ∈ Rn, |α| ≤M.

In analogy to (3.6), we set

(3.9) θk,j(x) := aj
∑

δ∈{−1,1}n
δk+jMδjT k

2
θ(x)

and define the new system Θ by

(3.10) Θ := {θk,j : k ∈ Zn, j ∈ Nn0}.
The main result in this section reads as follows.

Theorem 3.4. (a) For a sufficiently small ε the system Θ (with dual Θ̃ := {θ̃k,j})
is a Riesz basis for L2(Rn).

(b) For perhaps a different sufficiently small ε > 0 the system Θ (with dual Θ̃)
is a unconditional basis for Mp,q

m , 1 ≤ p, q <∞. In particular, for every f ∈Mp,q
m

f =
∑

(k,j)∈Zn×Nn0
〈f, θ̃k,j〉θk,j ,

where the convergence is unconditional in the Mp,q
m -norm and

c1‖f‖Mp,q
m
≤ ‖(〈f, θ̃k,j〉)kj‖`p,qm ≤ c2‖f‖Mp,q

m
.

Before proving the theorem, we digress briefly and discuss the construction of
functions θ which satisfy (3.8). Such constructions have been given in [13], where
additionally θ has a number of vanishing moments which makes the construction
more complex. To avoid unnecessary repetition we refer the reader to [13]. In par-
ticular, in [13] it is showed that if φ is sufficiently smooth and

|∂αφ(x)| ≤ c(1 + |x|)−M ′ , |α| ≤ N ′,
for sufficiently large M ′ and N ′, then using a finite linear combination of shifts and
dilates of φ one can construct θ that satisfies (3.8). For instance, for any ε > 0
there can be constructed a function θ satisfying (3.8) which is a linear combination
of finitely many shifts of φ(·) := e−γ|·|

2
or φ(·) := (1 + γ| · |2)−N with N, γ > 0

sufficiently large, or θ can be a compactly supported piecewise polynomial (spline)
on Rn. See also the relevant discussion in §4.4 below about the construction of
compactly supported C∞ function of the same type with vanishing moments.

Proof of Theorem 3.4. We shall utilize the scheme for constructing bases from §2.2
and, more precisely, Theorem 2.4 with H := L2(Rn), L := Mp,q

m , and `(X ) := `p,qm
where X := Zn × Nn0 . Denote

(3.11) A := (a(k,j),(l,m))(k,j),(l,m)∈Zn×Nn0 with a(k,j),(l,m) := 〈θk,j , ψl,m〉, and
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(3.12) D := (d(k,j),(l,m))(k,j),(l,m)∈Zn×Nn0 , d(k,j),(l,m) := 〈ψk,j − θk,j , ψl,m〉.
Following Theorem 2.4 we need to show that the operators with matrices A and
AT are bounded on `2 := `2(Zn × Nn0 ) and on `p,qm , and also that

‖D‖`2 7→`2 < 1, ‖DT ‖`2 7→`2 < 1,(3.13)

‖D‖`p,qm 7→`p,qm < 1, ‖DT ‖`p,qm 7→`p,qm < 1.(3.14)

To this end we need some preparation. We shall use the next lemma to estimate
the inner products 〈θk,j , ψl,m〉, 〈ψk,j − θk,j , ψl,m〉.
Lemma 3.5. Suppose that f, g are defined on Rn and for x ∈ Rn and α ∈ Nn0 with
|α| ≤M we have

(3.15) |∂αf(x)|, |∂αg(x)| ≤ c∗

(1 + |x|)M and |∂αf(x)− ∂αg(x)| ≤ ε

(1 + |x|)M .

Then for all x,w ∈ Rn,

(3.16) |Vg(f − g)(x,w)| ≤ c′ε
(1 + |x|+ |w|)M ,

where c′ > 0 is independent of ε.

Proof. Conditions (3.15) with α = (0, . . . , 0) readily imply

(3.17)
|Vg(f − g)(x,w)| =

∣∣∣
∫

Rn
(f(t)− g(t))g(t− x)e−2πiw·t dt

∣∣∣

≤ c∗ε
∫

Rn

dt

(1 + |t|)M (1 + |t− x|)M ≤
cε

(1 + |x|)M .

On the other hand, using Parseval’s identity, we have

(3.18)

|Vg(f − g)(x,w)| =
∣∣∣
∫

Rn
(f − g)∧(ξ)

(
g(t− x)e2πiw·t)∧(ξ) dξ

∣∣∣

=
∣∣∣
∫

Rn
(f̂(ξ)− ĝ(ξ))e−2πi(ξ−w)·xĝ(ξ − w) dξ

∣∣∣

≤
∫

Rn
|ĝ(ξ)||ĝ(ξ + w)− f̂(ξ + w)| dξ.

Here f̂(ξ) :=
∫
R f(x)e−2πix·ξdx. By the fact that (1 + |ξ|)M ≤ c

∑
|α|≤M |ξα| and

(3.15) we infer

(1 + |ξ|)M |ĝ(ξ)− f̂(ξ)| ≤ c
∑

|α|≤M
|ξα(ĝ(ξ)− f̂(ξ))|

≤ c
∑

|α|≤M
|∂̂αg(ξ)− ∂̂αf(ξ)| ≤ c

∑

|α|≤M

∫

Rn
|∂αg(t)− ∂αf(t)| dt

≤ cε
∫

Rn

1
(1 + |t|)M dt ≤ cε.

Therefore, |ĝ(ξ) − f̂(ξ)| ≤ cε
(1+|ξ|)M . Exactly in the same way, |ĝ(ξ)| ≤ c

(1+|ξ|)M .
Combining these two estimate with (3.18), we obtain for x,w ∈ Rn

|Vg(f − g)(x,w)| ≤ cε
∫

Rn

1
(1 + |ξ|)M (1 + |ξ + w|)M dξ ≤ cε

(1 + |w|)M .

This estimate and (3.17) apparently yield (3.16). �
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We can now estimate the inner products under question.

Lemma 3.6. For all (k, j), (l,m) ∈ Zn × Nn0 we have

(3.19) |〈θk,j , ψl,m〉| ≤ c

(1 + |k − l|+ |j −m|)M
and

(3.20) |〈ψk,j − θk,j , ψl,m〉| ≤ cε

(1 + |k − l|+ |j −m|)M ,

where c > 0 is independent of ε.

Proof. We shall only prove (3.20); the proof of (3.19) is the same. It is easy to see
that

〈MzTyf,MwTxg〉 = e−2πiw·yVgf(x− y, w − z), x, y, w, z ∈ Rn.
Then by (3.6) and (3.9) it follows that

|〈ψk,j − θk,j , ψl,m〉| =
∣∣ajam

∑

δ1,δ2∈{−1,1}n
δk+j
1 δl+m2

〈
Mδ1jT k2

(ψ∗ − θ),Mδ2mT l
2
ψ∗
〉∣∣

≤
∑

δ1,δ2∈{−1,1}n
|Vψ∗(ψ∗ − θ)(l/2− k/2, δ2m− δ1j)|

and applying Lemma 3.5 we obtain

|〈ψk,j − θk,j , ψl,m〉| ≤ cε

(1 + |k − l|+ |j −m|)M +
cε

(1 + |k − l|+ |j +m|)M
≤ cε

(1 + |k − l|+ |j −m|)M ,

where for the last inequality we used that |j +m| ≥ |j −m| if j,m ∈ Nn0 . �

We are now in a position to estimate the norms of A, AT , D, DT on `p,qm and
`2. To this end we shall use the following inequality (see [8]): If b = (bk,j) ∈ `1,1vs
and h = (hk,j) ∈ `p,qm , then

(3.21) ‖b ∗ h‖`p,qm ≤ c‖b‖`1,1vs ‖h‖`p,qm ,

where the discrete convolution b ∗ h is defined as usual by

(b ∗ h)k,j =
∑

l,m

bk−l,j−mhl,m.

To prove the boundedness of A on `p,qm , we observe that from (3.19) we have

|a(k,j),(l,m)| ≤ cbk−l,j−m for (k, j), (l,m) ∈ Zn × Nn0 ,
where bk,j := 1

(1+|k|+|j|)M . Hence, for any sequence h = (hk,j)

|(Ah)k,j | =
∣∣∑

l,m

a(k,j),(l,m)hl,m
∣∣ ≤ c

∑

l,m

bk−l,j−m|hl,m| = c(b ∗ |h|)k,j .

But, it is easy to see that ‖(bk,j)‖`1,1vs ≤ c <∞ since M > 2n+ s. Consequently, by
(3.21) we have for h = (hk,j) ∈ `p,qm

‖Ah‖`p,qm ≤ c‖b‖`1,1vs ‖h‖`p,qm ≤ c‖h‖`p,qm
and hence ‖A‖`p,qm 7→`p,qm ≤ c < ∞. To proof the boundedness of A on `2 is easier.
We omit the details.
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Exactly as above, we get
‖D‖`p,qm 7→`p,qm ≤ cε,

where the constant c > 0 is independent of ε. Hence, for sufficiently small ε >
0 we have ‖D‖`p,qm 7→`p,qm < 1. By the same token, for sufficiently small ε > 0
‖DT ‖`p,qm 7→`p,qm < 1, ‖D‖`2 7→`2 < 1, and ‖DT ‖`2 7→`2 < 1. In turn, these inequalities
lead to the boudedness of A−1 and (A−1)T on `p,qm and `2. Finally, we invoke
Theorem 2.4 to complete the proof of Theorem 3.4. �

4. Frames with elements supported on shrinking caps on the sphere

In this section we utilize the scheme from §2.3 to the construction of frames for
Triebel-Lizorkin (F) and Besov (B) spaces on the unit sphere Sn in Rn+1 (n > 1)
of the form {θξ}ξ∈X , where X = ∪∞j=0Xj is a multilevel index set of points on Sn

and for ξ ∈ Xj the frame element θξ is supported on a spherical cap of radius ∼ 2−j

centered at ξ. The F- and B- spaces on the sphere are introduced and explored in
[20] as a natural progression of the Littlewood-Paley theory on Sn. These spaces are
also characterized in [20] via frames with elements of nearly exponential localization,
called “needlets”. We next give a short account of the development in [20], which
we shall build upon.

In contrast to §3 it will be convenient in this section to define the Fourier trans-
form f̂ of a function f on R by f̂(ξ) :=

∫
R f(y)e−iξydy.

4.1. Spaces of distribution on the sphere: Background. Denote by Hν the
space of all spherical harmonics of order ν on Sn. As is well known the kernel of
the orthogonal projector onto Hν is given by

(4.1) Pν(ξ · η) =
ν + λ

λωn
P (λ)
ν (ξ · η), λ = λn :=

n− 1
2

,

where ωn is the hypersurface area of Sn and P (λ)
ν is the Gegenbauer polynomial of

degree ν normalized with P (λ)
ν (1) =

(
ν+2λ−1

ν

)
; ξ ·η is the inner product of ξ, η ∈ Sn.

Let S := C∞(Sn) be the space of all test functions on Sn and S ′ := S ′(Sn) be its
dual, the space of all distributions on Sn. The action of f ∈ S ′ on φ ∈ S is denoted
by 〈f, φ〉 := f(φ).

For functions Φ ∈ L∞[−1, 1] and f ∈ L1(Sn) the nonstandard convolution Φ ∗ f
is defined by

Φ ∗ f(ξ) :=
∫

Sn
Φ(ξ · σ)f(σ) dσ,

where the integration is over Sn, and it extends by duality from S to S ′.
To define the Triebel-Lizorkin and Besov spaces on the sphere, one first intro-

duces a sequence of functions {Φj} of the form

(4.2) Φ0 := P0 and Φj :=
∞∑
ν=0

â
( ν

2j−1

)
Pν , j ≥ 1,

with â obeying the conditions:

â ∈ C∞[0,∞), supp â ⊂ [1/2, 2],(4.3)

|â(t)| > c > 0 if t ∈ [3/5, 5/3].(4.4)

Hence, Φj , j = 0, 1, . . . , are band limited.
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Definition 4.1. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. The Triebel-Lizorkin
space F sqp := F sqp (Sn) is defined as the set of all f ∈ S ′ such that

(4.5) ‖f‖F sqp :=
∥∥∥
( ∞∑

j=0

(2sj |Φj ∗ f(·)|)q
)1/q∥∥∥

Lp(Sn)
<∞,

where the `q-norm is replaced by the sup-norm if q =∞.

We note that as in the classical case on Rn by varying the indexes s, p, q one can
recover most of the classical spaces on Sn, e.g. F 02

p = Lp(Sn) if 1 < p <∞.

Definition 4.2. Let s ∈ R and 0 < p, q ≤ ∞. The Besov space Bsqp := Bsqp (Sn), is
defined as the set of all f ∈ S ′ such that

(4.6) ‖f‖Bsqp :=
( ∞∑

j=0

(
2sj‖Φj ∗ f‖Lp(Sn)

)q)1/q

<∞

with the usual modification when q =∞.

Remark. Observe that the above definitions of Triebel-Lizorkin and Besov spaces
are independent of the specific selection of â. For more details, see [20].

We refer the reader to [21] and [27] as general references for Triebel-Lizorkin and
Besov spaces.

4.2. Frame on Sn (Needlets). In this part we slightly defer from [20]. Let â
satisfy the conditions

(4.7)

(i) â ∈ C∞[0,∞), â ≥ 0, supp â ⊂ [1/2, 2],

(ii) â(t) > c > 0, if t ∈ [3/5, 5/3],

(iii) â2(t) + â2(2t) = 1, if t ∈ [1/2, 1]

and hence,

(4.8)
∞∑

j=0

â2(2−jt) = 1, t ∈ [1,∞).

We select j0 ≥ −2 so that 2j0+1 ≤ λ < 2j0+2 (λ := n−1
2 ) and define the kernels

{Ψj} by Ψj0 := P0 and

(4.9) Ψj :=
∞∑
ν=0

â
(ν + λ

2j
)

Pν , j > j0.

A Calderón type reproducing formula follows from (4.8)-(4.9): For any f ∈ S ′

(4.10) f =
∞∑

j=j0

Ψj ∗Ψj ∗ f in S ′.

As in [20] (see also [19]) there exist a set Xj ⊂ Sn (j ≥ j0) and weights {cξ}ξ∈Xj
such that the cubature formula

(4.11)
∫

Sn
f(σ)dσ ∼

∑

ξ∈Xj
cξf(ξ)

is exact for all spherical polynomials of degree ≤ 2j+1. Here, in addition, cξ ∼ 2−jn

and the points in Xj are almost uniformly distributed, i.e. there exist constants
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c2 > c1 > 0 such that Bξ(c12−j) ∩ Bη(c12−j) = ∅ whenever ξ 6= η, ξ, η ∈ Xj , and
Sn = ∪ξ∈XjBξ(c22−j), where Bξ(r) := {η ∈ Sn : d(η, ξ) < r} with d(η, ξ) being the
geodesic distance between η, ξ on Sn.

The jth level needlets are defined by

(4.12) ψξ(x) := c
1/2
ξ Ψj(ξ · x), ξ ∈ Xj ,

and the whole needlet system by

(4.13) Ψ := {ψξ}ξ∈X , where X := ∪∞j=j0Xj .
Here equal points from different levels Xj are regarded as distinct points of the
index set X .

By discretization of (4.10) using cubature formula (4.11) one arrives at the rep-
resentation formula: For any f ∈ S ′

(4.14) f =
∑

ξ∈X
〈f, ψξ〉ψξ in S ′.

The same representation holds in Lp for functions f ∈ Lp(Sn) as well.
The key feature of the functions ψξ, ξ ∈ X , is their superb localization: For any

M > 0 there exists a constant cM > 0 such that

(4.15) |ψξ(x)| ≤ cM 2jn/2

(1 + 2jd(ξ, x))M
, x ∈ Sn,

where as mentioned above d(ξ, η) := arccos(ξ · η).
We next define the sequence spaces fsqp and bsqp associated to X , where for ξ ∈ Xj ,

Gξ denotes the spherical cap Bξ(c22−j), introduced above.

Definition 4.3. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then fsqp := fsqp (X ) is
defined as the space of all complex-valued sequences h := (hξ)ξ∈X such that

(4.16) ‖h‖fsqp :=
∥∥∥
(∑

ξ∈X

[|Gξ|−s/n−1/2|hξ|1Gξ(·)
]q)1/q∥∥∥

Lp
<∞

with the usual modification for q =∞. Here |Gξ| is the measure of Gξ and 1Gξ is
the characteristic function of Gξ.

Definition 4.4. Let s ∈ R, 0 < p, q ≤ ∞. Then bsqp := bsqp (X ) is defined as the
space of all complex-valued sequences h := (hξ)ξ∈X such that

(4.17) ‖h‖bsqp :=
( ∞∑
m=0

[
2j(s+n/2−n/p)

( ∑

ξ∈Xm
|hξ|p

)1/p]q)1/q

<∞

with the usual modification when p =∞ or q =∞.

Observe that f02
2 = b02

2 = `2(X ) with equivalent norms.
The main result here asserts that Ψ is a frame for Triebel-Lizorkin and Besov

spaces on the sphere in the sense of the following theorem.

Theorem 4.5. [20] Let s ∈ R and 0 < p, q <∞.
(a) If f ∈ S ′, then f ∈ F sqp if and only if (〈f, ψξ〉)ξ∈X ∈ fsqp . Furthermore, for

any f ∈ F sqp
(4.18) f =

∑

ξ∈X
〈f, ψξ〉ψξ and ‖f‖F sqp ∼ ‖(〈f, ψξ〉)‖fsqp .
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(b) If f ∈ S ′, then f ∈ Bsqp if and only if (〈f, ψξ〉)ξ∈X ∈ bsqp . Furthermore, for
any f ∈ Bsqp
(4.19) f =

∑

ξ∈X
〈f, ψξ〉ψξ and ‖f‖Bsqp ∼ ‖(〈f, ψξ〉)‖Bsqp .

The convergence in (4.18) and (4.19) is unconditional in F sqp and Bsqp , respectively.

Remark 4.6. A word of clarification is needed here. First, the result of The-
orem 4.5 above is stated and proved in [20] for a pair of dual frames {ϕξ} and
{ψξ}. Here we need it in the case when ϕξ = ψξ. Second, in [20] it is only stated
that the series in (4.18)-(4.19) converge in S ′, but it is allowed to have p = ∞ or
q = ∞. It is easy to see that when p, q < ∞ the boundedness of the operator
Tψh :=

∑
ξ∈X hξψξ as an operator from fsqp to F sqp or from bsqp to Bsqp , proved in

[20], implies that the series in (4.18) or (4.19) converge unconditionally in F sqp or
Bsqp , respectively. However, this is no longer true if p =∞ or q =∞ since S is not
dense in F sqp and Bsqp in this case.

4.3. Construction of new frames. Our construction of frames for the Triebel-
Lizorkin and Besov spaces on the sphere relies on the general approach from The-
orem 2.7.

Suppose â is the function from the definition of needlets in (4.7) and let us
denote again by â its even extension to R, i.e. â(−t) = â(t). The inverse Fourier
transform a of â is then real valued, even, and belongs to the Schwartz class S of
rapidly decaying functions on R. For given M > 1, an integer N ≥ 1, and ε > 0,
we construct an even function b ∈ C∞(R) obeying the following conditions:

(4.20)

(i) supp b ⊂ [−R,R] for some R > 0,

(ii) |a(r)(t)− b(r)(t)| ≤ ε(1 + |t|)−M for 0 ≤ r ≤ N + n− 1,

(iii)
∫

R
trb(t) dt = 0 for 0 ≤ r ≤ N + n− 2.

Note that the Fourier transform b̂ of b is even and belongs to S. A scheme for
constructing this sort of functions b will be given below.

Just as in the construction of needlets we shall use X = ∪∞j=j0Xj (see (4.13)) as
an index set as well as a set of localization points for the new elements. For each
ξ ∈ Xj (j ≥ j0) we define the function θξ on the sphere by

(4.21) θξ(x) := c
1/2
ξ

∞∑
ν=0

b̂
(ν + λ

2j
)

Pν(ξ · x), λ := (n− 1)/2,

and then Θ := {θξ}ξ∈X is our new system on Sn.
With the next theorems we show that for appropriately selected parameters M ,

N , and ε, Θ is a frame for the F- and B- spaces with the claimed support property.
Let J := n/min{1, p, q} in the case of F-spaces and J := n/min{1, p} for

B-spaces.

Theorem 4.7. Suppose s ∈ R, 0 < p, q <∞ and let Θ := {θξ}ξ∈X be constructed
as above with b satisfying (4.20), where M > J and N > max{s,J − n − s, 1}.
Then for sufficiently small ε > 0 the system Θ is a frame for the spaces L2(Sn),
F sqp , and Bsqp in the sense of Definition 2.5. In particular, we have:
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(a) The operator

(4.22) Sf :=
∑

ξ∈X
〈f, θξ〉θξ,

where 〈f, θξ〉 :=
∑
η∈X 〈f, ψη〉〈ψη, θξ〉, is bounded and invertible on L2(Sn), F sqp ,

Bsqp , and S−1 is also bounded on L2(Sn), F sqp , Bsqp , and

(4.23) S−1f =
∑

ξ∈X
〈f, S−1θξ〉S−1θξ.

(b) If f ∈ S ′, then f ∈ F sqp if and only if (〈f, S−1θξ〉) ∈ fsqp , and for f ∈ F sqp
(4.24) f =

∑

ξ∈X
〈f, S−1θξ〉θξ and ‖f‖F sqp ∼ ‖(〈f, S−1θξ〉)‖fsqp .

(c) If f ∈ S ′, then f ∈ Bsqp if and only if (〈f, S−1θξ〉) ∈ bsqp , and for f ∈ Bsqp
(4.25) f =

∑

ξ∈X
〈f, S−1θξ〉θξ and ‖f‖Bsqp ∼ ‖(〈f, S−1θξ〉)‖bsqp .

The convergence in (4.22)-(4.25) is unconditional in the respective space L2, F sqp ,
or Bsqp . Above, (b) and (c) also hold with the roles of θξ and S−1θξ interchanged.

Moreover, for any ξ ∈ Xj, j ≥ j0, the element θξ is supported on the spherical
cap Bξ(R2−j), where R > 0 is the constant from (4.20).

Several remarks are in order:
(a) Atomic decompositions are available for various spaces and in particular for

Triebel-Lizorkin and Besov spaces on Rn (see [6]). Theorem 4.7 provides atomic
decompositions for Triebel-Lizorkin and Besov spaces on Sn. These atomic decom-
positions have the advantage that they involve atoms from a fixed sequence Θ, while
in general the atoms in the atomic decompositions may vary with the distributions.

(b) Note that the function b ∈ C∞ from our construction is not necessarily
compactly supported. As long as b satisfies conditions (ii)-(iii) in (4.20) it will
induce a frame for the F- and B-spaces on Sn. In addition to this the nature of b
or b̂ can be prescribed, e.g. b or b̂ can be a low degree rational function or a linear
combination of a small number of dilations and shifts of the Gaussian e−t

2
.

(c) We would like to point out that the elements of Θ are essentially rotations
and spectral dilations of a single function supported on a cap on the sphere and
hence bear some resemblance with compactly supported wavelets.

We start with the construction of a function b obeying (4.20). Then we shall
carry out the proof of Theorem 4.7 in several steps. The gist of the proof will be
the interplay between the spherical harmonics and the classical Fourier transform
related by the Dirichlet-Mehler representation of Gegenbauer polynomials.

4.4. Construction of b. A first step in constructing the frame {θξ} is the con-
struction of a function b satisfying conditions (4.20), which we give in the next
theorem. As will be seen this construction allows to prescribe the nature of b or b̂.

Theorem 4.8. For given M > 0, N ≥ 1, and ε > 0, here exists an even real valued
function b ∈ C∞ which satisfies conditions (4.20).
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Proof. The construction of a function b with the claimed properties follows the
same lines as in the proof of Theorem 4.1 in [13]. Therefore, we shall only outline
the main steps in this construction.

We pick an even function φ ∈ C∞such that suppφ ⊂ [−1, 1] and
∫
R φ = 1. Write

φk(t) := kφ(kt) and denote by Φk the set of all finite linear combinations of shifts
of φk, i.e. functions g of the form g(t) =

∑
j ajφk(t+ bj), where the sum is finite.

We first show that for every ε > 0 and an even (or odd) function h ∈ C∞ there
exist k > 0 (sufficiently large) and an even (or odd) function g ∈ Φk such that

(4.26) |h(r)(t)− g(r)(t)| ≤ ε(1 + |t|)M , t ∈ R, r = 0, 1, . . . , N0,

where N0 := N + n− 1. Indeed, define gk := h ∗ φk. Since
∫
R φk = 1, then

h(r)(t)− g(r)
k (t) =

∫

R
[h(r)(t)− h(r)(t− y)]φk(y)dy

and taking k sufficiently large one easily shows that

(4.27) |h(r)(t)− g(r)
k (t)| ≤ (ε/2)(1 + |t|)−M , t ∈ R, r = 0, 1, . . . , N0.

Notice that gk is even (odd) if h is even (odd).
To discretize the approximant gk we first observe that since h ∈ S, there exists

R > 0 such that

(4.28) |h(r)(t)| ≤ ε(1 + |t|)−M , |t| ≥ R, r = 0, 1, . . . , N0.

Now, we choose sufficiently large S > 0 so that J := SR is an integer and consider
the points tj := j−1/2

S , j = 1, . . . , J , and tj := j+1/2
S , j = −1, . . . ,−J . We define

g(t) := S−1
∑

−J≤j≤J,j 6=0

h(tj)φk(t− tj),

which can be viewed as a Riemann sum for the integral
∫ R
R
h(y)φk(t− y)dy. Notice

that gk(t) =
∫
R h(y)φk(t− y)dy. As in the proof of Theorem 4.1 in [13], one easily

shows, using (4.27)-(4.28), that for sufficiently large S this function satisfies (4.26).
In addition to this, evidently g is even (odd) if h is even (odd) and g ∈ Φk.

Our second step is to utilize the result of the first step to construct the desired
function b. Consider the shift operator Tδf(t) := f(t + δ). Then the sth centered
difference is defined by ∆s

δf := (Tδ − T−δ)sf and it is easy to see that its Fourier
transform satisfies (∆s

δf)∧(ξ) = (2i sin δξ)sf̂(ξ).
We choose s := N0 and 0 < δ ≤ 1/s, and define the function h from the identity

ĥ(ξ) := â(ξ)
(2i sin δξ)s . Since â(ξ) = 0 for ξ ∈ [−1/2, 1/2], then ĥ ∈ S and hence h ∈ S.

Further, since â is even, then ĥ and h are even (odd) if s is even (odd). Moreover,
by the construction a = ∆s

δh. We now use the result of the first step to construct
a function g ∈ Φk such that g satisfies (4.26) with h from above.

After this preparation, we define b := ∆s
δg and claim that b has the desired

properties. Indeed, note that a(r) − b(r) = ∆s
δ(h

(r) − g(r)) and by (4.26) we infer

(4.29) |a(r)(t)− b(r)(t)| ≤ ε2s+M (1 + |t|)−M , r = 0, 1, . . . , N0.

On the other hand∫

R
trb(t)dt =

∫

R
tr∆s

δg(t)dt = (−1)s
∫

R
g(t)∆s

δt
rdt = 0, r = 0, 1, . . . , s− 1.
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Also, note that b := ∆s
δg is even if g and s are both odd or even and evidently

b ∈ Φk and hence b is compactly supported. We finally observe that since ε is
independent of M and s the factor ε2s+M in (4.29) can be replaced by ε. �

4.5. Almost diagonal matrices. To show that the new system Θ := {θξ : ξ ∈ X}
is a frame for Triebel-Lizorkin and Besov spaces we shall use Theorem 2.7 with
L := F sqp (Sn) or Bsqp (Sn) and `(X ) := fsqp (X ) or bsqp (X ), respectively. Then L2(Sn)
is the natural selection of an associated Hilbert space. By Theorem 2.7 it readily
follows that Θ is a frame for F sqp (or Bsqp ) if the operators with matrices

(4.30)

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ〉
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη, ψξ − θξ〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ〉,

are bounded on fsqp (or bsqp ), and ‖D‖fsqp 7→fsqp ≤ ε, ‖E‖fsqp 7→fsqp ≤ ε (respectively,
‖D‖bsqp 7→bsqp ≤ ε, ‖E‖bsqp 7→bsqp ≤ ε) for sufficiently small ε.

In analogy with the classical case on Rn (see [6]), we shall show the boundedness
of the above operators by using the machinery of the almost diagonal operators.

It will be convenient to us to denote

(4.31) `(ξ) := 2−j for ξ ∈ Xj , j ≥ j0.
Evidently, `(ξ) is a constant multiple of the radius of the cap Gξ.

Definition 4.9. Let A be a linear operator acting on fsqp (X ) or bsqp (X ) with asso-
ciated matrix (aξη)ξ,η∈X . We say that A is almost diagonal if there exists δ > 0
such that

sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

<∞,

where

ωδ(ξ, η) :=
(
`(ξ)
`(η)

)s(
1 +

d(ξ, η)
max{`(ξ), `(η)}

)−J−δ

× min
{(

`(ξ)
`(η)

)(n+δ)/2

,

(
`(η)
`(ξ)

)(n+δ)/2+(J−n)}
,

with J := n/min{1, p, q} for fsqp and J := n/min{1, p} for bsqp .

The almost diagonal operators are bounded on fsqp and bsqp . More precisely, with
the notation

(4.32) ‖A‖δ := sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

the following result holds:

Theorem 4.10. Suppose s ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ (0 < p ≤ ∞ in the
case of b-spaces) and let ‖A‖δ <∞ (in the sense of Definition 4.9) for some δ > 0.
Then there exists a constant c > 0 such that for any sequence h := {hξ}ξ∈X ∈ fsqp
(4.33) ‖Ah‖fsqp ≤ c‖A‖δ‖h‖fsqp ,
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and for any sequence h := {hξ}ξ∈X ∈ bsqp
(4.34) ‖Ah‖bsqp ≤ c‖A‖δ‖h‖bsqp .

The proof of this theorem is quite similar to the proof of Theorem 3.3 in [6]. For
completeness we give it in the appendix.

The above theorem indicates that to prove that Θ is a frame for F sqp (or Bsqp ) it
suffices to show that the operators with matrices A, B, C, D, and E, defined in
(4.30) , are almost diagonal and

(4.35) ‖D‖δ ≤ ε, ‖E‖δ ≤ ε
for a fixed δ > 0 and sufficiently small ε > 0.

4.6. Representation and localization of kernels. Estimation of supp θξ.
Kernels of the form

(4.36) ΛN (ξ · η) :=
∑

ν≥0

ĝ
(ν + λ

N

)
Pν(ξ · η), ξ, η ∈ Sn, N ≥ 1,

will play an important role in the proof of Theorem 4.7. Here as everywhere else
Pν and λ are from (4.1).

Lemma 4.11. For an even function ĝ ∈ S the kernel ΛN from above has the
representation

(4.37) ΛN (cosα) =
cn

(sinα)n−2

∫ π

α

(cosα− cosϕ)λ−1KN (ϕ)dϕ, 0 ≤ α ≤ π,

where

(4.38) KN (α) = (π/2)N
∑

ν∈Z
(−1)ν(n−1)Rn

( d

dα

)
g(N(α+ 2πν))

with

(4.39) Rn(z) :=
bn−1

2 c∏
r=1

(−z2 − (λ− r)2)×
{ −z sinλπ, n even

cosλπ, n odd

and cn > 0 depends only on n.

This lemma is in essence contained in [19], see Proposition 3.2. For completeness
we give its proof in the appendix.

We next give an estimate of the localization of the kernels ΛN from (4.36) pro-
vided g and its derivatives are well localized.

Lemma 4.12. If g ∈ Cn−1(R) is even and

(4.40) |g(m)(t)| ≤ A

(1 + |t|)M , t ∈ R, 0 ≤ m ≤ n− 1,

for some constants M > 1 and A > 0, then

(4.41) |ΛN (cosα)| ≤ cANn

(1 +Nα)M
, 0 ≤ α ≤ π,

where c > 0 depends only on M and n.



BASES AND FRAMES FOR SPACES OF DISTRIBUTIONS 27

Proof. We use (4.40) and that Rn(z) from (4.39) is a polynomial of degree n− 1 to
obtain

|KN (α)| ≤ cAN
∑

ν∈Z

Nn−1

(1 +N |α+ 2πν|)M ≤
cANn

(1 +Nα)M
.

Now, precisely as in [19, §3.4] one shows that the above estimate used in (4.37)
yields (4.41). We skip the details. �

Lemma 4.13. For every ξ ∈ Xj, j ≥ j0, θξ is supported on the spherical cap of
radius R2−j centered at ξ, where R is from (4.20), (i).

Proof. Let ξ ∈ Xj , j ≥ j0. Then by the definition of θξ in (4.21) along with
Lemma 4.11, we have

(4.42) θξ(x) =
cn

(sinφ)n−2

∫ π

φ

(cosφ− cosϕ)λ−1Kj(ϕ)dϕ, ξ · x =: cosφ,

where

Kj(ϕ) := (π/2)c1/2ξ 2j
∑

ν∈Z
(−1)ν(n−1)Rn

( d

dϕ

)
b(2j(ϕ+ 2πν)).

By construction supp b ⊂ [−R,R] and, hence, suppKj ⊂ [−R2−j , R2−j ] whenever
R2−j < π. This and (4.42) apparently lead to supp θξ ⊂ Bξ(R2−j). The case when
R2−j ≥ π is trivial. �

4.7. Estimation of inner products. We shall need an estimate on the localiza-
tion of the convolution of two well localized functions. In the following, for a given
function g on R we denote gj(t) := 2jg(2jt).

Lemma 4.14. Suppose the functions g ∈ CN (R) and h ∈ C(R) satisfy the condi-
tions:

|g(r)(t)| ≤ A1

(1 + |t|)M1
, 0 ≤ r ≤ N, |h(t)| ≤ A2

(1 + |t|)M2
,

and ∫

R
trh(t)dt = 0 for 0 ≤ r ≤ N − 1,

where N ≥ 1, M2 ≥M1, M2 > N + 1, and A1, A2 > 0. Then for k ≥ j

|gj ∗ hk(t)| ≤ cA1A22−(k−j)N 2j

(1 + 2j |t|)M1
,

where c > 0 depends only on M1, M2, and N .

The proof of this lemma is almost identical to the proof of Lemma B.1 in [6] and
will be omitted. The only difference is in the normalization of the functions.

We now come to the main lemma which will enable us to estimate the inner
products involved in (4.30). For simplicity, in the following we assume that g, h ∈ S.
Then their Fourier transforms ĝ, ĥ ∈ S as well, with S being the Schwartz class.
For ξ ∈ Xj , j ≥ j0, and η ∈ Xk, k ≥ j0, we define

(4.43) Gξ(x) := c
1/2
ξ

∞∑
ν=0

ĝ
(ν + λ

2j
)

Pν(ξ·x), Hη(x) := c1/2η

∞∑
ν=0

ĥ
(ν + λ

2k
)

Pν(η·x),

where cξ, cη are from (4.11).
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Lemma 4.15. Suppose g, h ∈ S are both even and real valued,

(4.44) |g(m)(t)| ≤ A1

(1 + |t|)M and |h(m)(t)| ≤ A2

(1 + |t|)M , 0 ≤ m ≤ N+n−1,

and

(4.45)
∫

R
trg(t)dt =

∫

R
trh(t)dt = 0, 0 ≤ m ≤ N + n− 2,

where N > 1 and M > N + 1. Then for ξ ∈ Xj and η ∈ Xk

(4.46) |〈Gξ,Hη〉| ≤ cA1A22−|k−j|(N+n/2)
(

1 + 2min{j,k}d(ξ, η)
)−M

where c > 0 depends only on N , M , and n.

Proof. Assume that k ≥ j and let ξ · η =: cosα, 0 ≤ α ≤ π. Then using that∫

Sn
Pν(ξ · x)P`(ξ · x)dx = δν,`Pν(ξ · η),

cξ ∼ 2−jn if ξ ∈ Xj , and cη ∼ 2−kn if η ∈ Xk, we have

〈Gξ,Hη〉 ∼ 2−(k+j)n2

∞∑
ν=0

ĝ
(ν + λ

2j
)
ĥ
(ν + λ

2k
)

Pν(ξ · η).

It is easy to see that

ĝ
(ν + λ

2j
)
ĥ
(ν + λ

2k
)

= (gj ∗ hk)∧(ν + λ) = (g ∗ hk−j)∧
(ν + λ

2j
)
.

On the other hand,
(g ∗ hk−j)(m)(t) = (g(m) ∗ hk−j)(t)

and therefore, by Lemma 4.14,

|(g ∗ hk−j)(m)(t)| ≤ cA1A22−(k−j)N

(1 + |t|)M , 0 ≤ m ≤ n− 1.

We now invoke Lemma 4.12 to obtain

|〈Gξ,Hη〉| ≤ cA1A22−(k+j)n2 2−(k−j)N 2jn

(1 + 2jα)M
≤ cA1A2

2−(k−j)(N+n
2 )

(1 + 2jα)M
. �

Proof of Theorem 4.7. Evidently, Theorem 4.7 will follow by Theorem 2.7, applied
with H := L2(Sn), L := F sqp and `(X ) := fsqp (or L := Bsqp and `(X ) := bsqp ), and
Ψ the frame from Theorem 4.5, if we prove that the matrices defined in (4.30) are
almost diagonal and ‖D‖δ < ε , ‖E‖δ < ε for some δ > 0 and sufficiently small ε
(see (2.31)).

Here, we only give the argument regarding the estimate ‖D‖δ < ε; the proof of
the estimate ‖E‖δ < ε is the same. By the definition of the needlet ψξ for ξ ∈ Xj
(j ≥ j0) we have

ψξ(x) := c
1/2
ξ

∞∑
ν=0

â
(ν + λ

2j
)

Pν(ξ · x).

Since â ∈ C∞ is compactly supported and â(t) = 0 for t ∈ [−1/2, 1/2], there exists
a constant A1 > 0 such that

|a(r)(t)| ≤ A1(1 + |t|)−M , 0 ≤ r ≤ N + n− 1, and
∫

R
tra(t)dt = 0, r ≥ 0.
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On the other hand, from the definition of θξ in (4.21) it follows that

ψη(x)− θη(x) = c1/2η

∞∑
ν=0

(a− b)∧
(ν + λ

2k
)

Pν(η · x), η ∈ Xk,

and from the construction of b we have

|(a− b)(r)(t)| ≤ ε(1 + |t|)−M , 0 ≤ r ≤ N + n− 1, and∫

R
tr(a− b)(t)dt = 0, 0 ≤ r ≤ N + n− 2.

We now apply Lemma 4.15 with g = a and h := a− b to obtain

|〈ψξ, ψη − θη〉| ≤ cA1εmin
{
`(ξ)
`(η)

,
`(η)
`(ξ)

}N+n
2
(

1 +
d(ξ, η)

max{`(ξ), `(η)}
)−M

and since M > J and N > max{s,J − n− s}, we get ‖D‖δ < cA1ε. However, ε is
independent of c, A1, M , and N , therefore, cA1ε above can be replaced by ε. �

5. Appendix

Proof of Theorem 4.10. We need the maximal operator on Sn. Denote by G the set
of all spherical caps on Sn, i.e. G ∈ G if G is of the form: G := {x ∈ Sn : d(x, η) < ρ}
with η ∈ Sn and ρ > 0. The maximal operator Mt (t > 0) is defined by

Mtf(x) := sup
G∈G: x∈G

(
1
|G|

∫

G

|f(ω)|t dω
)1/t

, x ∈ Sn.

We shall use the Fefferman-Stein vector-valued maximal inequality (see [26]): If
0 < p <∞, 0 < q ≤ ∞, and 0 < t < min{p, q}, then for any sequence of functions
f1, f2, . . . on Sn

(5.1)
∥∥∥
( ∞∑

j=1

[Mtfj(·)]q
)1/q∥∥∥

Lp
≤ c
∥∥∥
( ∞∑

j=1

|fj(·)|q
)1/q∥∥∥

Lp

where c = c(p, q, t, n).
The next lemma will also be needed.

Lemma 5.1. Let 0 < t ≤ 1 and M > d/t. For any sequence of complex numbers
{hη}η∈Xm , m ≥ 0, we have for x ∈ Gξ, ξ ∈ X ,

∑

η∈Xm
|hη|

(
1 +

d(ξ, η)
max{`(ξ), `(η)}

)−M
≤ cmax

{( `(ξ)
`(η)

) d
t

, 1
}
Mt

( ∑

η∈Xm
|hη|1η

)
(x).

When `(ξ) ≤ `(η), this lemma is Lemma 4.8 in [20]. The proof in the case
`(ξ) > `(η) is similar and will be omited (see also Remark A.3 in [6]).

We shall only prove estimate (4.33). The proof of (4.34) is similar and we omit it.
Let A be an almost diagonal operator on fsqp with associated matrix (aξη)ξ,η∈X and
let h ∈ fsqp . Then (Ah)ξ =

∑
η∈X aξηhη, where the series converges absolutely (see

proof below). Then

‖Ah‖fsqp :=
∥∥∥
(∑

ξ∈X

[|Gξ|−s/n−1/2|(Ah)ξ|1Gξ
]q)1/q∥∥∥

Lp

≤ c
∥∥∥
(∑

ξ∈X

[
`(ξ)−s−n/2

∑

η∈X
|aξη||hη|1Gξ

]q)1/q∥∥∥
Lp
≤ c(Σ1 + Σ2),
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where

Σ1 :=
∥∥∥
(∑

ξ∈X

[
`(ξ)−s−n/2

∑

`(η)≤`(ξ)
|aξη||hη|1Gξ

]q)1/q∥∥∥
Lp

and

Σ2 :=
∥∥∥
(∑

ξ∈X

[
`(ξ)−s−n/2

∑

`(η)>`(ξ)

|aξη||hη|1Gξ
]q)1/q∥∥∥

Lp
.

Since ‖A‖δ <∞ , we have whenever `(η) ≤ `(ξ)

|aξη| ≤ c‖A‖δ
(
`(η)
`(ξ)

)J−s−n/2+δ/2(
1 +

d(ξ, η)
`(ξ)

)−J−δ
.

Choose 0 < t < min{1, p, q} so that J − d/t + δ/2 > 0. Let λξ := `(ξ)−s−n/21Gξ .
Then we have

Σ1

‖A‖δ ≤ c
∥∥∥
(∑

ξ∈X

( ∑

`(η)≤`(ξ)

(`(η)
`(ξ)

)J−s−n2 + δ
2
(

1 +
d(ξ, η)
`(ξ)

)−J−δ
|hη|λξ

)q) 1
q
∥∥∥
Lp

= c
∥∥∥
(∑

j≥0

∑

ξ∈Xj

(∑

m≥j
2(j−m)(J−s−n2 + δ

2 )
∑

η∈Xm

(
1 + 2jd(ξ, η)

)−J−δ|hη|λξ
)q) 1

q
∥∥∥
Lp
.

We now apply Lemma 5.1 and the maximal inequality (5.1) to obtain

Σ1

‖A‖δ ≤ c
∥∥∥
(∑

j≥0

∑

ξ∈Xj

(∑

m≥j
2(j−m)(J−s−n2 + δ

2−nt )Mt

( ∑

η∈Xm
|hη|χη

)
λξ

)q) 1
q
∥∥∥
Lp

≤ c
∥∥∥
(∑

j≥0

(∑

m≥j
2(j−m)(J−nt + δ

2 )Mt

( ∑

η∈Xm
|hη|λη

))q) 1
q
∥∥∥
Lp

≤ c
∥∥∥
(∑

j≥0

(
Mt

(∑

ξ∈Xj
|hξ|λξ

))q) 1
q
∥∥∥
Lp
≤ c‖h‖fsqp .

If `(η) > `(ξ), then

|aξη| ≤ c‖A‖δ
(
`(ξ)
`(η)

)s+d/2+δ/2(
1 +

d(ξ, η)
`(η)

)−J−δ

and hence

Σ2

‖A‖δ ≤ c
∥∥∥
(∑

ξ∈X

( ∑

`(η)>`(ξ)

( `(ξ)
`(η)

)s+n
2 + δ

2
(

1 +
d(ξ, η)
`(η)

)−J−δ
|hη|λξ

)q) 1
q
∥∥∥
Lp

= c
∥∥∥
(∑

j≥0

∑

ξ∈Xn

(∑

m<j

2(m−j)(s+n
2 + δ

2 )
∑

η∈Xm

(
1 + 2md(ξ, η)

)−J−δ|hη|λξ
)q) 1

q
∥∥∥
Lp
.



BASES AND FRAMES FOR SPACES OF DISTRIBUTIONS 31

Employing again Lemma 5.1 and the maximal inequality (5.1) we obtain

Σ2

‖A‖δ ≤ c
∥∥∥
(∑

j≥0

∑

ξ∈Xj

(∑

m<j

2(m−j)(s+n
2 + δ

2 )Mt

( ∑

η∈Xm
|hη|χη

)
λξ

)q) 1
q
∥∥∥
Lp

≤ c
∥∥∥
(∑

j≥0

(∑

m<j

2(m−j)(δ/2)Mt

( ∑

η∈Xm
|hη|λη

))q) 1
q
∥∥∥
Lp

≤ c
∥∥∥
(∑

j≥0

(
Mt(

∑

ξ∈Xj
|hξ|λξ

)
(x)
)q) 1

q
∥∥∥
Lp
≤ c‖h‖fsqp .

The above estimates for Σ1 and Σ2 yield (4.33). �

Proof of Lemma 4.11. Recall first the Dirichlet-Mehler integral representation
of Gegenbauer polynomials [3, p. 177]:

P (λ)
ν (cosα) =

2λΓ(λ+ 1
2 )Γ(ν + 2λ)(sinα)1−2λ

√
πν!Γ(λ)Γ(2λ)

∫ π

α

cos
(
(ν + λ)ϕ− λπ)

(cosα− cosϕ)1−λ dϕ.

On account of (4.1), then (4.37) holds with

KN (α) =
∞∑
ν=0

ĝ
(ν + λ

N

) (ν + λ)(ν + n− 2)!
ν!

×
{

sinλπ sin(ν + λ)α, n even
cosλπ cos(ν + λ)α, n odd.

Evidently, (ν+λ)(ν+n−2)!
ν! = (ν + λ)(ν + n− 2) . . . (ν + 1) and a little algebra shows

that

(ν + λ)(ν + n− 2)!
ν!

=
bn−1

2 c∏
r=1

(
(ν + λ)2 − (λ− r)2

)×
{
ν + λ, n even
1, n odd.

Let now Qn(z) be the degree n− 1 polynomial

Qn(z) :=
bn−1

2 c∏
r=1

(
z2 − (λ− r)2

)×
{
z sinλπ, n even
cosλπ, n odd.

Then

KN (α) =
∞∑
ν=0

ĝ
(ν + λ

N

)
Qn(ν + λ)×

{
sin(ν + λ)α, n even
cos(ν + λ)α, n odd.

Note that Qn(−z) = (−1)n−1Qn(z) and Qn has zeros ±(λ − r), r = 1, . . . , bn−1
2 c.

The critical step now is that since ĝ is even and because of the symmetry and zeros
of Qn

(5.2) KN (α) = (1/2)
∑

ν∈Z
ĝ
(ν + λ

N

)
Qn(ν + λ)×

{
sin(ν + λ)α, n even
cos(ν + λ)α, n odd.

Let

Rn(z) :=
bn−1

2 c∏
r=1

(−z2 − (λ− r)2
)×

{ −z sinλπ, n even
cosλπ, n odd
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which is a polynomial of degree n− 1 (related to Qn). Then (5.2) can be rewritten
in the form

KN (α) = (1/2)Rn
( d

dα

)∑

ν∈Z
ĝ
(ν + λ

N

)
cos(ν + λ)α(5.3)

= (1/4)Rn
( d

dα

)∑

ν∈Z
ĝ
(ν + λ

N

)
e(ν+λ)α.

Here we again used that the part of the sum in (5.2) with indices −(n− 1) < ν < 0
is void.

Recall the Poisson summation formula:
∑

ν∈Z
f(2πν) = (2π)−1

∑

ν∈Z
f̂(ν), where f̂(ξ) :=

∫

R
f(y)e−iξydy,

and set f̂(ξ) := ĝ( ξ+λN )ei(ξ+λ)t. Then f(y) = Ne−iλya (N(y + t)) and (5.3) along
with the summation formula give

KN (α) = (π/2)NRn
( d

dα

)∑

ν∈Z
e−2πiνλg (N(α+ 2πν)) ,

which implies (4.38). �
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