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Greedy approximation with regard to
non-greedy bases

Vladimir Temlyakov ∗ Mingrui Yang † Peixin Ye ‡

Abstract

The main goal of this paper is to understand which properties of a basis are important
for certain direct and inverse theorems in nonlinear approximation. We study greedy
approximation with regard to bases with different properties. We consider bases that are
tensor products of univariate greedy bases. Some results known for unconditional bases
are extended to the case of quasi-greedy bases.

Keywords. Greedy algorithm, m-term approximation, Greedy basis, Quasi-greedy basis

1 Introduction

We study the efficiency of greedy algorithms for m-term nonlinear approximations with regard
to bases. Let X be an infinite-dimensional separable Banach space with a norm ‖ · ‖ := ‖ · ‖X

and let Ψ := {ψn}∞n=1 be a normalized basis for X (‖ψn‖ = 1, n ∈ N). All bases considered
in our paper are assumed to be normalized. For a given f ∈ X we define the best m-term
approximation with regard to Ψ as follows:

σm(f, Ψ)X := inf
bk,Λ

‖f −
∑

k∈Λ

bkψk‖X ,

where the inf is taken over coefficients bk and sets Λ of indices with cardinality |Λ| = m. There
is a natural algorithm of constructing an m-term approximant. For a given element f ∈ X we
consider the expansion

f =
∞∑

k=1

ck(f, Ψ)ψk.

We call a permutation ρ, ρ(j) = kj, j = 1, 2, ..., of the positive integers decreasing and write
ρ ∈ D(f) if

|ck1(f, Ψ)| ≥ |ck2(f, Ψ)| ≥ ... .
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In the case of strict inequalities here D(f) consists of only one permutation. We define the m-th
greedy approximant of f with regard to the basis Ψ corresponding to a permutation ρ ∈ D(f)
by formula

Gm(f) := Gm(f, Ψ) := GX
m(f, Ψ) := Gm(f, Ψ, ρ) :=

m∑
j=1

ckj
(f, Ψ)ψkj

.

This algorithm is known in the theory of nonlinear approximation under the name of Thresh-
olding Greedy Algorithm (TGA).

The best we can achieve with the algorithm Gm is

‖f −Gm(f, Ψ)‖X = σm(f, Ψ)X ,

or a little weaker
‖f −Gm(f, Ψ)‖X ≤ Cσm(f, Ψ)X (1.1)

for all f ∈ X with a constant C independent of f and m. Bases satisfying (1.1) are of
special interest in nonlinear approximation. The following concept of a greedy basis has been
introduced in [6].
Definition We call a basis Ψ a greedy basis if for every f ∈ X there exists a permutation
ρ ∈ D(f) such that

‖f −Gm(f, Ψ)‖ ≤ Cσm(f, Ψ)X

with a constant C independent of f and m.

It is clear that an orthonormal basis is a greedy basis of a Hilbert space. It was proved in
[12] that the Haar basis Hp is a greedy basis of Lp([0, 1)), 1 < p < ∞.

We recall the definition of the Haar basis. Denote the univariate Haar system by H :=
{HI}I , where I are dyadic intervals of the form I = [(j−1)2−n, j2−n), j = 1, . . . , 2n; n = 0, 1, . . .
and I = [0, 1] with

H[0,1](x) = 1 for x ∈ [0, 1) ,

H[(j−1)2−n,j2−n) =





2n/2, x ∈ [(j − 1)2−n, (j − 1/2)2−n)
−2n/2, x ∈ [(j − 1/2)2−n, j2−n)
0, otherwise.

We denote by Hp the Haar basis H renormalized in Lp([0, 1)). We define the multivariate Haar
basis Hd

p := Hp × · · · × Hp as the tensor product of the univariate Haar bases. It consists of
functions

HI,p(x) =
d∏

j=1

HIj ,p(xj), I = I1 × · · · × Id, x = (x1, . . . , xd).

The main goal of this paper is to understand which properties of a basis are important
for certain direct and inverse theorems in nonlinear approximation. The problem of direct
and inverse theorems in nonlinear approximation has a rich history (see [2], [16]). We refer
the reader for a detailed historical discussion to [16], pp. 288–293. The general direction of
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previous results can be briefly expressed in the following way. 1. Establish a result for the Hp.
2. Establish a similar result for a greedy basis. 3. Establish a similar result for a quasi-greedy
basis with special properties. 4. Establish a result for the multivariate Haar basis. 5. Establish
a similar result for a basis that is a tensor product of d univariate bases. Results of Section 2
of this paper fall into the group 5. We refer the reader to Section 2 for a detailed discussion
of known results from groups 1 - 4. In Section 2 we extend results known for the Haar basis
Hd

p onto the case Ψd = Ψ× · · · × Ψ with Ψ a greedy basis. We note that it is known that Hd
p

is not a greedy basis of Lp([0, 1]d) if p 6= 2. However, it is known that Hd
p is an unconditional

basis of Lp([0, 1]d), 1 < p < ∞. In Section 2 we discuss some properties of a basis that are
important for direct and inverse theorems. We prove equivalence of these properties under the
assumption that the basis is quasi-greedy (this assumption is weaker than the unconditionality
assumption).

A typical problem from approximation theory is to find a decay of errors of an approxi-
mation method for a given function class. In Section 3 we apply results of Section 2 to study
errors of greedy approximation for some smoothness classes. In Section 4 we discuss greedy
approximation with regard to a quasi-greedy basis in a Hilbert space or in the Lp space. We
observe that a special structure of Hilbert spaces allows us to obtain the following inequality
for any f ∈ H

‖f −Gλm(f, Ψ)‖H ≤ C(λ)σm(f, Ψ)H , λ > 1, (1.2)

for a quasi-greedy basis Ψ. We note that if Gλm can be replaced by Gm in (1.2) then Ψ is a
greedy basis. It is known ([17], p. 301) that for a separable, infinite dimensional Hilbert space
H there exists a quasi-greedy basis that is not an unconditional basis. Therefore, by [6] this
basis is not a greedy basis. Thus, one cannot replace the restriction λ > 1 by λ ≥ 1 in (1.2).
We present a related discussion in Section 4. In Section 4 we also consider quasi-greedy bases
of the Lp space, 1 < p < ∞. We prove the following inequality for each f ∈ Lp

‖f −Gm(f, Ψ)‖Lp ≤ C(p)m|1/2−1/p|σm(f, Ψ)Lp .

This inequality was known (see [17]) in the case of unconditional bases Ψ.
Let us agree to denote by C various positive absolute constants and by C with arguments

or indices (C(q, p), Cr and so on) positive numbers which depend on the arguments indicated.
For two nonnegative sequences a = {an}∞n=1 and b = {bn}∞n=1 the relation (order inequality)
an ¿ bn means that there is a number C(a, b) such that an ≤ C(a, b)bn for all n; and the
relation an ³ bn means an ¿ bn and bn ¿ an.

2 Some direct and inverse theorems

The direct theorems of approximation theory provide bounds of approximation error (in our
case σm(f, Ψ)) in terms of smoothness properties of a function f . These theorems are also
known under the name of Jackson-type inequalities. The inverse theorems of approximation
theory (also known as Bernstein-type inequalities) provide some smoothness properties of a
function f from the sequence of approximation errors (in our case {σm(f, Ψ)}).
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In the case, when we study best m-term approximation with regard to bases that are Lp-
equivalent to the Haar basis Hp, the theory of Jackson and Bernstein inequalities has been
developed in [1]. It was used in [1] for a description of approximation spaces defined in terms
of {σm(f, Ψ)}.

It was pointed out in [13] that in the special case of bases that are Lp-equivalent to the
Haar basis there exists a simple direct way to describe the approximation spaces defined in
terms of {σm(f, Ψ)}. Further investigations in [5] and [7] showed that the above direct way
of description of approximation spaces can be extended to some more general bases. In this
section we continue these investigations.

We begin with the greedy bases in Lp([0, 1]d). In the case d = 1 the Haar basis is a greedy
basis for Lp, 1 < p < ∞. The following characterization theorem has been established in [13]
(for the case p = 2 see [10], [3]). We will use the notation

an(f, p) := |ckn(f,Hd
p)|

for the decreasing rearrangement of the coefficients of f .

Theorem 2.1 Let d = 1, 1 < p < ∞ and 0 < q < ∞. Then, for any positive r we have the
equivalence relation

∞∑
m=1

σm(f,H)q
pm

rq−1 < ∞⇐⇒
∞∑

n=1

an(f, p)qnrq−1+q/p < ∞.

Let us recall the definition of the Lorentz spaces of sequences and the definition of spaces
which provide finer (logarithmic) scale. Let for a sequence {xk}∞k=1 a sequence {xρ(k)}∞k=1 be a
decreasing rearrangement

|xρ(1)| ≥ |xρ(2)| ≥ . . . .

For r > 0, 0 < q < ∞ denote

`r
q := {{xk}∞k=1 :

∞∑

k=1

|xρ(k)|qkrq−1 < ∞}

or, equivalently,

`r
q := {{xk}∞k=1 :

∞∑
s=0

|xρ(2s)|q2rqs < ∞}.

For r > 0, b ∈ R, 0 < q < ∞ define

`r,b
q := {{xk}∞k=1 :

∞∑
s=1

(|xρ(2s)|2rssb
)q

< ∞}.

It is clear that `r,0
q = `r

q.
The proof of Theorem 2.1 was based on the following two lemmas.
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Lemma 2.2 For any two positive integers N < M we have

aM(f, p) ≤ C(p)σN(f,H)p(M −N)−1/p.

Lemma 2.3 For any sequence m0 < m1 < . . . of nonnegative integers we have

σms(f,H)p ≤ C(p)
∞∑
i=s

ami
(f, p)(mi+1 −mi)

1/p.

The following multivariate analogues of the above lemmas have been proved in [5].

Lemma 2.4 For any two positive integers N < M we have

aM(f, p) ≤ C(p, d)σN(f,Hd)p(M −N)−1/p, 2 ≤ p < ∞;

aM(f, p) ≤ C(p, d)σN(f,Hd)p(M −N)−1/p(log M)h(p,d), 1 < p ≤ 2

with h(p, d) := (d− 1)|1/2− 1/p|.

Lemma 2.5 For any sequence m0 < m1 < . . . of nonnegative integers we have

σms(f,Hd)p ≤ C(p, d)
∞∑
i=s

ami
(f, p)(mi+1 −mi)

1/p(log mi+1)
h(p,d), 2 ≤ p < ∞;

σms(f,Hd)p ≤ C(p, d)
∞∑
i=s

ami
(f, p)(mi+1 −mi)

1/p, 1 < p ≤ 2.

It was pointed out in [5] that by using Lemmas 2.4 and 2.5 one can establish the following
embedding theorem in the same way as Theorem 2.1 was deduced from Lemmas 2.2 and 2.3 in
[13].

Theorem 2.6 Let 1 < p < ∞. Denote

σ(f)p := {σm(f,Hd)p}∞m=1 and a(f, p) := {an(f, p)}∞n=1.

Then we have the implications:

σ(f)p ∈ `r,b
q ⇒ a(f, p) ∈ `r+1/p,b

q , 2 ≤ p < ∞;

σ(f)p ∈ `r,b
q ⇒ a(f, p) ∈ `r+1/p,b−h(p,d)

q , 1 < p ≤ 2;

a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,b−h(p,d)

q , 2 ≤ p < ∞;

a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,b

q , 1 < p ≤ 2.

In this section we will establish an analogue of Theorem 2.6 for a basis Ψd that is a tensor
product of d greedy bases Ψ.
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Theorem 2.7 Let 1 < p < ∞ and let Ψ be a normalized greedy basis for Lp and Ψd :=
Ψ × · · · × Ψ. Denote as above σ(f)p := {σm(f, Ψd)p}∞m=1 and a(f, p) := {an(f, p)}∞n=1, where
an(f, p) := |ckn(f, Ψd)|. Then we have the implications:

σ(f)p ∈ `r,b
q ⇒ a(f, p) ∈ `r+1/p,b

q , 2 ≤ p < ∞;

σ(f)p ∈ `r,b
q ⇒ a(f, p) ∈ `r+1/p,b−h(p,d)

q , 1 < p ≤ 2;

a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,b−h(p,d)

q , 2 ≤ p < ∞;

a(f, p) ∈ `r+1/p,b
q ⇒ σ(f)p ∈ `r,b

q , 1 < p ≤ 2.

The proof of this theorem is similar to the proof of Theorem 2.6. We point out the key
difference in the proofs. The proof of Theorem 2.6 was based on the following known result for
the multivariate Haar system.

Theorem A. Let 1 < p < ∞. Then for any Λ, |Λ| = m, we have

C1
p,dm

1/p min
I∈Λ

|cI | ≤
∥∥∥∥∥
∑
I∈Λ

cIHI,p

∥∥∥∥∥
p

≤ C2
p,dm

1/p(log m)h(p,d) max
I∈Λ

|cI |, 2 ≤ p < ∞;

C3
p,dm

1/p(log m)−h(p,d) min
I∈Λ

|cI | ≤
∥∥∥∥∥
∑
I∈Λ

cIHI,p

∥∥∥∥∥
p

≤ C4
p,dm

1/p max
I∈Λ

|cI |, 1 < p ≤ 2.

Theorem A for d = 1, 1 < p < ∞ has been proved in [12]. In the case d = 2, 4/3 ≤ p ≤ 4,
it has been proved in [13]. Theorem A in the general case has been proved in [17]. It is known
([14]) that the extra logarithmic in m factors in Theorem A are sharp.

Let Ψ be a normalized basis for Lp([0, 1)). For the space Lp([0, 1)d) we define Ψd :=
Ψ × · · · × Ψ(d times); ψn(x) := ψn1(x1) · · ·ψnd

(xd), x = (x1, . . . , xd), n = (n1, . . . , nd). The
following theorem has been proved in [8].

Theorem B. Let 1 < p < ∞ and let Ψ be a greedy basis for Lp([0, 1)). Then for any Λ,
|Λ| = m, we have

C5
p,dm

1/p min
n∈Λ

|cn| ≤
∥∥∥∥∥
∑
n∈Λ

cnψn

∥∥∥∥∥
p

≤ C6
p,dm

1/p(log m)h(p,d) max
n∈Λ

|cn|, 2 ≤ p < ∞;

C7
p,dm

1/p(log m)−h(p,d) min
n∈Λ

|cn| ≤
∥∥∥∥∥
∑
n∈Λ

cnψn

∥∥∥∥∥
p

≤ C8
p,dm

1/p max
n∈Λ

|cn|, 1 < p ≤ 2.

It is clear that Theorem B is a full generalization of Theorem A to the case of tensor product
of greedy bases. This allows us to use Theorem B in the proof of Theorem 2.7 in the same way
as Theorem A was used in the proof of Theorem 2.6. In order to illustrate how Theorem B can
be used we give a sketch of the proof of the following theorem.
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Theorem 2.8 Let 1 < p < ∞ and let Ψ be a greedy basis for Lp([0, 1)). The following relations
hold for Ψd = Ψ× · · · ×Ψ

σm(f)p ¿ (m + 1)−r(log(m + 1))−b ⇒

an(f, p) ¿ n−r−1/p(log(n + 1))−b, 2 ≤ p < ∞;

an(f, p) ¿ n−r−1/p(log(n + 1))−b ⇒
σm(f)p ¿ (m + 1)−r(log(m + 1))−b+h(p,d), 2 ≤ p < ∞.

σm(f)p ¿ (m + 1)−r(log(m + 1))−b ⇒
an(f, p) ¿ n−r−1/p(log(n + 1))−b+h(p,d), 1 < p ≤ 2;

an(f, p) ¿ n−r−1/p(log(n + 1))−b ⇒
σm(f)p ¿ (m + 1)−r(log(m + 1))−b, 1 < p ≤ 2.

Proof: Theorem 2.8 follows from the following analogues of Lemmas 2.4 and 2.5. 2

Lemma 2.9 Let 1 < p < ∞ and let Ψ be a normalized greedy basis for Lp and Ψd := Ψ×· · ·×Ψ.
For any two positive integers N < M we have

aM(f, p) ≤ C(p, d)σN(f, Ψd)p(M −N)−1/p, 2 ≤ p < ∞;

aM(f, p) ≤ C(p, d)σN(f, Ψd)p(M −N)−1/p(log M)h(p,d), 1 < p ≤ 2 (2.3)

with h(p, d) := (d− 1)|1/2− 1/p|.

Lemma 2.10 Let 1 < p < ∞ and let Ψ be a normalized greedy basis for Lp and Ψd :=
Ψ× · · · ×Ψ. For any sequence m0 < m1 < . . . of nonnegative integers we have

σms(f, Ψd)p ≤ C(p, d)
∞∑
i=s

ami
(f, p)(mi+1 −mi)

1/p(log mi+1)
h(p,d), 2 ≤ p < ∞; (2.4)

σms(f, Ψd)p ≤ C(p, d)
∞∑
i=s

ami
(f, p)(mi+1 −mi)

1/p, 1 < p ≤ 2.

The proofs are similar in both cases 1 < p ≤ 2 and 2 ≤ p < ∞. We will give a proof in the
case 2 ≤ p < ∞. Lemma 2.10 follows directly from Theorem B.

To prove Lemma 2.9, for given f =
∑

n cnψn,p, let ΛN and {un,n ∈ ΛN} be the set of
indices with #ΛN = N and coefficients such that

∥∥∥∥∥f −
∑

n∈ΛN

unψn,p

∥∥∥∥∥
p

≤ 2σN(f, Ψd)p.
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Moreover, let GM = {n1, . . . ,nM}, where {nk} are defined as ak(f, p) = |cnk
(f, Ψd)|. By

unconditionality of Ψd we have

∥∥∥∥∥f −
∑

n∈ΛN

cnψn,p

∥∥∥∥∥
p

≤ C

∥∥∥∥∥f −
∑

n∈ΛN

unψn,p

∥∥∥∥∥
p

≤ 2CσN(f, Ψd)p

and ∥∥∥∥∥∥
∑

n∈GM\ΛN

cnψn,p

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥f −
∑

n∈ΛN

cnψn,p

∥∥∥∥∥
p

.

As #(GM \ ΛN) ≥ M −N , Lemma 2.9 follows now from Theorem B.

Remark 2.11 In Theorems 2.1, 2.6, 2.7, and 2.8 the best m-term approximation σm(f)p can
be replaced by the m-term greedy approximation ‖f −Gm(f)‖p.

Statement of the above remark is obvious in one direction, when we bound {an(f, p)} from
conditions on {σm(f)p}. In the other direction it follows from the proofs of those theorems.

The inequalities of the type of (2.3) and (2.4) play an important role in the above investi-
gations. We now present some necessary and sufficient conditions for having inequalities (2.3)
and (2.4) for a basis Ψ. We will prove some results under weaker conditions on Ψ than the
above assumption that Ψ is a tensor product of d greedy bases. We begin with the case of
quasi-greedy basis.

In [6] the concept of quasi-greedy basis was introduced.
Definition The basis Ψ is called quasi-greedy if there exists some constant C such that for all
f ∈ X,

sup
m
‖Gm(f, Ψ)‖ ≤ C‖f‖.

Subsequently, Wojtaszczyk [17] proved that these are precisely the bases for which the TGA
merely converges, i.e.,

lim
n→∞

Gn(f) = f.

It will be convenient to define the quasi-greedy constant K to be the least constant such
that

‖Gm(f)‖ ≤ K‖f‖ and ‖f −Gm(f)‖ ≤ K‖f‖, f ∈ X.

We will need the following known lemma (see, for instance, [16], p. 269).

Lemma 2.12 Suppose Ψ is a quasi-greedy basis with a quasi-greedy constant K. Then, for any
real numbers aj and any finite set of indices P , we have

(4K2)−1 min
j∈P

|aj|‖
∑
j∈P

ψj‖ ≤ ‖
∑
j∈P

ajψj‖ ≤ 2K max
j∈P

|aj|‖
∑
j∈P

ψj‖.
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We will use the notation
ak(f) := |cnk

(f, Ψ)|
for the decreasing rearrangement of the coefficients of f . We will also introduce the m-th greedy
remainder

Hm(f) := f −Gm(f).

Theorem 2.13 Let Ψ be a quasi-greedy basis of Banach space X. Then for a > 0 and b ∈ R,
the following three statements are equivalent.

i) For any sequence m0 < m1 < ... of non-negative integers we have

σms(f, Ψ)X ¿
∞∑
i=s

ami
(f)(mi+1 −mi)

a(log(mi+1 + 1))b.

ii) For any finite set Λ of indices
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥
X

¿ |Λ|a(log(|Λ|+ 1))b.

iii) For any sequence m0 < m1 < ... of non-negative integers we have

‖Hms(f, Ψ)‖ ¿
∞∑
i=s

ami
(f)(mi+1 −mi)

a(log(mi+1 + 1))b.

Proof: For f =
∑

k∈Λ ψk, we set m0 = 0, m1 = |Λ|. Then σ0(f, Ψ) = ‖f‖ and ii) follows directly
from i).

Next we prove ii) ⇒ iii). Let X∗ denote the dual space of X. By Hahn-Banach theorem
there exists a F ∈ X∗ such that

F

(∑

k∈Λ

ckψk

)
=

∥∥∥∥∥
∑

k∈Λ

ckψk

∥∥∥∥∥

and ‖F‖ = 1. Note that

F

(∑

k∈Λ

ckψk

)
=

∑

k∈Λ

ckF (ψk) ≤
∑

k∈Λ

|ck||F (ψk)|.

We write |F (ψk)| as εkF (ψk), where εk = 1 or −1. Then we have

∑

k∈Λ

|ck||F (ψk)| ≤ max
k∈Λ

|ck|F
(∑

k∈Λ

εkψk

)
≤ max

k∈Λ
|ck|

∥∥∥∥∥
∑

k∈Λ

εkψk

∥∥∥∥∥ .

Then by Lemma 2.12 we obtain
∥∥∥∥∥
∑

k∈Λ

ckψk

∥∥∥∥∥
X

≤ 2K max
k∈Λ

|ck|
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ .
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Based on this inequality it is easy to derive iii) from ii). Note that iii) ⇒ i) is trivial. We
complete the proof of Theorem 2.13. 2

Theorem 2.14 Let Ψ be an unconditional basis of Banach space X. Then for a > 0 and
b ∈ R, the following three statements are equivalent.

i) For any finite set Λ of indices
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ ≥ c|Λ|a(log |Λ|)−b.

ii) For any two positive integers N < M we have

aM(f) ¿ σN(f)(M −N)−a(log(M −N))b.

iii) For any two positive integers N < M we have

aM(f) ¿ ‖HN(f)‖(M −N)−a(log(M −N))b.

Proof: We first prove i) ⇒ ii). For given f =
∑

k ckψk, let ΛN and {uk, k ∈ ΛN} be the set of
indices with |ΛN | = N and coefficients such that

∥∥∥∥∥f −
∑

k∈ΛN

ukψk

∥∥∥∥∥ ≤ 2σN(f, Ψ).

Moreover, let GM = {k1, . . . , kM}, and an(f) = |ckn(f, Ψ)|. By unconditionality of Ψ we have
∥∥∥∥∥f −

∑

k∈ΛN

ckψk

∥∥∥∥∥ ≤ C

∥∥∥∥∥f −
∑

k∈ΛN

ukψk

∥∥∥∥∥ ≤ 2CσN(f, Ψ)

and ∥∥∥∥∥∥
∑

k∈GM\ΛN

ckψk

∥∥∥∥∥∥
≤ C

∥∥∥∥∥f −
∑

k∈ΛN

ckψk

∥∥∥∥∥ .

Any unconditional basis is a quasi-greedy basis. Therefore, by Lemma 2.12 we get

aM(f)

∥∥∥∥∥∥
∑

k∈GM\ΛN

ψk

∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥
∑

k∈GM\ΛN

ckψk

∥∥∥∥∥∥
.

As |GM \ ΛN | ≥ M −N , ii) follows now from i).
Clearly ii) implies iii).
Next, we show that iii) implies i). For any finite set Λ of indices, let N = 1 and M = |Λ| + 1.
Take any index n /∈ Λ and define f :=

∑
k∈Λ ψk + 2ψn. Then by iii), we have

1 ¿
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ |Λ|
−a(log |Λ|)b.

Thus we get the desired result. 2
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Proposition 2.15 Let Ψ be a quasi-greedy basis of Banach space X. Then for a > 0 and
b ∈ R, the following two statements are equivalent.

i) For any finite set Λ of indices
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ ≥ c|Λ|a(log |Λ|)−b.

ii) For any two positive integers N < M we have

aM(f) ¿ ‖HN(f)‖(M −N)−a(log(M −N))b.

Proof: It is clear that ii) implies i) from the proof of Theorem 2.14. The other direction can be
easily derived by Lemma 2.12. So we complete the proof. 2

3 Some results on approximation of classes

In this section we demonstrate how results of Section 2 can be applied in studying greedy
approximation of smoothness classes. We consider here the following classes. For r > 0 we
define

F r(Ψ) := F r
∞(Ψ) := {f : |cnk

(f, Ψ)| ≤ k−r, k = 1, 2, . . .}.
Similar to Section 2 we define Ψd := Ψ× . . .×Ψ(d times) as a tensor product of univariate bases
Ψ. It is known (see [15]) that the tensor product structure of multivariate wavelet bases makes
them universal for approximation of anisotropic smoothness classes with different anisotropy.
Theorem 2.8 and Remark 2.11 imply the following theorem.

Theorem 3.1 Let Ψ be a greedy basis of Lp([0, 1]).
Then for 2 ≤ p < ∞, r > 1

p
,

sup
f∈F r(Ψd)

‖f −Gm(f, Ψd)‖p ¿ m1/p−r(log m)h(p,d),

where h(p, d) = (d− 1)(1
2
− 1

p
).

For 1 < p ≤ 2, r > 1
p
, one has

sup
f∈F r(Ψd)

‖f −Gm(f, Ψd)‖p ¿ m1/p−r.

We want to point out that the bounds in Theorem 3.1 are sharp. Let us consider the tensor
product of Haar basis. We define

σm(F, Ψ)X := sup
f∈F

σm(f, Ψ)X ,

and
Gm(F, Ψ)X := sup

f∈F
‖f −Gm(f, Ψ)‖X .

11



Theorem 3.2 Let Ψd
p = Hd

p be the tensor product of Haar basis.
Then for 2 < p < ∞, r > 1

p
,

σm(F r,Hd
p)p ³ Gm(F r,Hd

p)p ³ m1/p−r(log m)h(p,d);

for 1 < p ≤ 2, r > 1
p
, we have

σm(F r,Hd
p)p ³ Gm(F r,Hd

p)p ³ m1/p−r.

Proof: The upper bounds follow from Theorem 3.1. We only need to prove the lower bounds.
To prove lower bounds we need the following lemma.

Lemma 3.3 Let Λ(n) := {I : |I| = 2−n}. For k ≥ [|Λ(n)|/2] + 1 consider two sets of indices
Λ1 ⊂ Λ(n) with |Λ1| = k, and Λ2, a set of k disjoint intervals I. Define for 1 < p < ∞

gi :=
∑
I∈Λi

HI,p, i = 1, 2.

Then
‖g1‖p ³ 2n/pn(d−1)/2, ‖g2‖p ³ 2n/pn(d−1)/p.

Proof: The estimate for g2 is trivial because of the assumption that intervals from Λ2 are
disjoint:

‖g2‖p =

(∑
I∈Λ2

‖HI,p‖p
p

)1/p

.

We prove the estimate for g1. By the Littlewood-Paley theorem

‖g1‖p ³
∥∥∥∥∥∥

(∑
I∈Λ1

H2
I,p

)1/2
∥∥∥∥∥∥

p

. (3.5)

As HI,p is normalized in Lp, we have ‖HI,p‖∞ = |I|−1/p = 2n/p. Denote for s = (s1, . . . , sd)

Js := {I ∈ Λ1 : I = I1 × · · · × Id, |Ij| = 2−sj , j = 1, . . . , d}, As := ∪I∈JsI.

Then we obtain from (3.5)

‖g1‖p ³ 2n/p

∥∥∥∥∥∥

(∑
s

χAs

)1/2
∥∥∥∥∥∥

p

. (3.6)

Using the following two inequalities

∑
s

χAs ≤ |{s : ‖s‖1 = n}|,
∫

[0,1]d

∑
s

χAsdx = k2−n ≥ c|{s : ‖s‖1 = n}|,

12



we get from (3.6)
‖g1‖p ³ 2n/pn(d−1)/2.

2

Now let us return to the proof of Theorem 3.2. We begin with the case 2 ≤ p < ∞. For a
given m find an n in such a way that it is a minimal natural number satisfying m < [|Λ(n)|/2],
where Λ(n) is defined in Lemma 3.3. Note that m ³ 2nnd−1 and n ³ log m. We consider the
function gm = m−rg1. It is clear that gm ∈ F r(Hd

p). For

f =
∞∑
I

cI(f,Hd
p)HI,p

we define the following expansional best m-term approximation of f

σ̃m(f) := inf
|Λ|=m

∥∥∥∥∥f −
∑
I∈Λ

cI(f,Hd
p)HI,p

∥∥∥∥∥ .

It follows from Lemma 3.3 that

σ̃m(gm)p ≥ c(log m)h(p,d)m1/p−r.

It is known that for an unconditional basis Ψ we have

σ̃m(f) ³ σm(f).

Therefore we complete the proof in the case 2 ≤ p < ∞. The case of 1 < p ≤ 2 can be proved
in a similar way by setting gm = m−rg2. 2

In Theorem 3.1 we assume that a basis Ψd has a special structure, namely, Ψd is a tensor
product of greedy bases. Also, Theorem 3.1 holds for a special Banach space Lp([0, 1]d), 1 <
p < ∞. We now discuss a question of under which other assumptions on a basis and a Banach
space we can obtain results similar to Theorem 3.1. We first recall the definition of bases which
are called unconditional for constant coefficients, cf. [17].
Definition A basis Ψ is called unconditional for constant coefficients (UCC) if there exist
constants C1 and C2 such that for each finite subset A ⊂ N and for each choice of signs εi = ±1
we have

C1

∥∥∥∥∥
∑
i∈A

ψi

∥∥∥∥∥ ≤
∥∥∥∥∥
∑
i∈A

εiψi

∥∥∥∥∥ ≤ C2

∥∥∥∥∥
∑
i∈A

ψi

∥∥∥∥∥ .

To formulate our results we need some of the basic concepts of the Banach space theory from

[9]. First, let us recall the definition of type and cotype. Let {εi} be a sequence of independent
Rademacher variables. We say that a Banach space X has type p if there exists a universal
constant C3 such that for fk ∈ X

(
Aveεk=±1

∥∥∥∥∥
n∑

k=1

εkfk

∥∥∥∥∥

p)1/p

≤ C3

(
n∑

k=1

‖fk‖p

)1/p

,
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and X is of cotype q if there exists a universal constant C4 such that for fk ∈ X

(
Aveεk=±1

∥∥∥∥∥
n∑

k=1

εkfk

∥∥∥∥∥

q)1/q

≥ C4

(
n∑

k=1

‖fk‖q

)1/q

.

Theorem 3.4 Let X be a Banach space with type 1 < p ≤ 2. If a basis Ψ of X is UCC, then
for r > 1/p

Gm(F r, Ψ) ¿ m1/p−r.

Proof: Since X has type p, we have

(
Aveε=±1

∥∥∥∥∥
∑

k∈Λ

εkψk

∥∥∥∥∥

p)1/p

≤ C

(∑

k∈Λ

‖ψk‖p

)1/p

¿ |Λ|1/p.

Our assumption that Ψ is UCC implies

∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ ³
(

Aveε=±1

∥∥∥∥∥
∑

k∈Λ

εkψk

∥∥∥∥∥

p)1/p

¿ |Λ|1/p.

We now need the following lemma.

Lemma 3.5 Assume that Ψ satisfies the Definition 3. Then for any finite subset A ⊂ N one
has ∥∥∥∥∥

∑

k∈A

ckψk

∥∥∥∥∥ ≤ C2 max
k∈A

|ck|
∥∥∥∥∥
∑

k∈A

ψk

∥∥∥∥∥ .

The proof of this lemma repeats the argument from the proof of Theorem 2.13.
So we obtain ∥∥∥∥∥

∑

k∈Λ

ckψk

∥∥∥∥∥ ¿ max
k∈Λ

|ck| · |Λ|1/p.

Therefore, for any f ∈ F r we get

‖f −Gm(f)‖ ≤
∞∑

s=0

∥∥∥∥∥
2s+1m∑

k=2sm+1

ck(f)ψk

∥∥∥∥∥ ¿
∞∑

s=0

(2sm)−r(2sm)1/p ³ m1/p−r.

2

Let us make some comparison of Theorem 3.1 with Theorem 3.4. It is known that Lp([0, 1]d),
1 ≤ p < ∞, has type min(2, p). It is also known that a greedy basis Ψ is an unconditional
basis and, therefore, Ψd is an unconditional basis for Lp([0, 1]d), 1 < p < ∞. Thus, in the case
1 < p ≤ 2, Theorem 3.1 follows from Theorem 3.4. In the case 2 < p < ∞ Theorem 3.1 gives
a better bound than Theorem 3.4.
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4 Greedy approximation with regard to quasi-greedy bases

We now proceed to a further discussion of quasi-greedy bases. In particular, Lemma 2.12
implies that a quasi-greedy basis is a UCC basis. We begin our discussion with the case of a
Hilbert space. It is easy to see that for a normalized basis Ψ

Aveεk=±1

〈∑

k∈Λ

εkψk,
∑

l∈Λ

εlψl

〉
= |Λ|.

Therefore, for a normalized UCC basis Ψ of a Hilbert space one has
∥∥∥∥∥
∑

k∈Λ

ψk

∥∥∥∥∥ ³ |Λ|1/2.

This means that a quasi-greedy basis of a Hilbert space is automatically a democratic basis,
which in general is defined as follows. Definition We recall that a basis {ψn}∞n=1 in a Banach
space X is called democratic if for any two finite sets of indices P and Q with the same
cardinality, we have ∥∥∥∥∥

∑
n∈P

ψn

∥∥∥∥∥ ≤ D

∥∥∥∥∥
∑
n∈Q

ψn

∥∥∥∥∥
with a constant D independent of P and Q. The above property of quasi-greedy bases

in Hilbert spaces was observed in [17]. In [4] it was proved that for any quasi-greedy and
democratic basis (almost greedy basis) Ψ of a Banach space X the following inequality holds
for any f ∈ X and λ > 1

‖f −Gλm(f, Ψ)‖ ≤ C(λ)σm(f, Ψ).

Concluding the above discussion, we can formulate the following theorem.

Theorem 4.1 Let Ψ be a normalized quasi-greedy basis of a Hilbert space H. Then, for any
f ∈ H and λ > 1

‖f −Gλm(f, Ψ)‖ ≤ C(λ)σm(f, Ψ).

We pointed out in the Introduction that it follows from the known results that we cannot let
λ to take value 1 in Theorem 4.1. It is mentioned in [17] that in this case (λ = 1) one has the
following inequality

‖f −Gm(f, Ψ)‖ ≤ C(log m)σm(f, Ψ).

We do not know if the above inequality is sharp in the sense that an extra factor log m cannot
be replaced by a slower growing factor. It follows from the above discussion that it cannot be
replaced by a constant.

We now proceed to a discussion of quasi-greedy bases in Lp spaces. The results that we
present extend the corresponding results for a Hilbert space from [17]. Following [17] we will
use the following notations here. For a sequence {ak} ∈ c0 we denote

|ak1 | ≥ |ak2| ≥ . . . , a∗n := |akn|.
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Theorem 4.2 Let {ψk}∞k=1 be a quasi-greedy basis of the Lp space, 1 < p < ∞. Then for each
f =

∑∞
k=1 akψk we have

C1(p) sup
n

n1/pa∗n ≤ ‖f‖p ≤ C2(p)
∞∑

n=1

n−1/2a∗n, 2 ≤ p < ∞;

C3(p) sup
n

n1/2a∗n ≤ ‖f‖p ≤ C4(p)
∞∑

n=1

n1/p−1a∗n, 1 < p ≤ 2.

Proof: Denote Ns := {n : a∗n ≥ 2−s} and Ns := |Ns|. The proofs in both cases 1 < p ≤ 2 and
2 ≤ p < ∞ are similar. We will give a proof only in the case 2 ≤ p < ∞. First, we prove the
upper bound for ‖f‖p. In this case we have

‖f‖p ≤ |ak1|+
∥∥∥∥∥∥
∑

s

∑

n∈Ns\Ns−1

aknψkn

∥∥∥∥∥∥
p

.

Using Lemma 2.12 we get

‖f‖p ≤ |ak1 |+ 4K
∑

s

2−s

∥∥∥∥∥∥
∑

n∈Ns\Ns−1

ψkn

∥∥∥∥∥∥
p

. (4.7)

The Lp space has type 2 for 2 ≤ p < ∞. Therefore,

∥∥∥∥∥∥
∑

n∈Ns\Ns−1

ψkn

∥∥∥∥∥∥
p

≤ C(p)N1/2
s , (4.8)

and

‖f‖ ≤ |a∗1|+ C(p)
∑

s

2−sN1/2
s ≤ |a∗1|+ C(p)

∑
s

2−s

Ns∑
n=1

n−1/2

≤ |a∗1|+ C(p)
∞∑

n=1

n−1/2a∗n ≤ C2(p)
∑
n=1

n−1/2a∗n.

Second, we prove the lower bound for the ‖f‖p. From the definition of quasi-greedy basis
we have for each n

‖f‖p ≥ K−1

∥∥∥∥∥
n∑

l=1

akl
ψkl

∥∥∥∥∥
p

. (4.9)

By Lemma 2.12 we get
∥∥∥∥∥

n∑

l=1

akl
ψkl

∥∥∥∥∥
p

≥ (4K2)−1|akn|
∥∥∥∥∥

n∑

l=1

ψkl

∥∥∥∥∥
p

. (4.10)
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The Lp space with 2 ≤ p < ∞ is of cotype p. Therefore,

∥∥∥∥∥
n∑

l=1

ψkl

∥∥∥∥∥
p

≥ C(p)n1/p. (4.11)

Combining (4.9) – (4.11) we obtain the required lower bound. 2

As a direct corollary of Theorem 4.2 we get the following inequality for any P and Q of
cardinality m ∥∥∥∥∥

∑

k∈P

ψk

∥∥∥∥∥
p

/

∥∥∥∥∥
∑

k∈Q

ψk

∥∥∥∥∥
p

≤ C(p)m|1/2−1/p|, 1 < p < ∞. (4.12)

It is well known (see [13], [17]) how inequalities like (4.12) can be used in estimating ‖f−Gm(f)‖
in terms of σm(f). In particular, (4.12) and Theorem 4 from [17] imply the following result.

Theorem 4.3 Let 1 < p < ∞ and let Ψ be a quasi-greedy basis of the Lp space. Then for each
f ∈ Lp we have

‖f −Gm(f, Ψ)‖p ≤ C(p)m|1/2−1/p|σm(f, Ψ).

We note (see [11]) that similar inequality holds for the trigonometric system that is not a
quasi-greedy basis for Lp, p 6= 2.
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