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“COMPACTLY” SUPPORTED FRAMES FOR SPACES OF
DISTRIBUTIONS ON THE BALL

GEORGE KYRIAZIS AND PENCHO PETRUSHEV

Abstract. Frames are constructed on the unit ball Bd in Rd consisting of
smooth functions with small shrinking supports. The new frames are designed
so that they can be used for decomposition of weighted Triebel Lizorkin and
Besov spaces on Bd with weight wµ(x) := (1 − |x|2)µ−1/2, µ half integer,
µ ≥ 0.

1. Introduction

Bases and frames for spaces of functions or distributions are valuable for various
theoretical and practical reasons. In this article we focus on the problem for con-
struction of multiscale frames on the unit ball Bd in Rd consisting of C∞ functions
with small supports which shrink at higher scales. More precisely, our purpose is to
construct a frame of the form {θξ}ξ∈X , where X = ∪jXj is a multilevel index set
(Xj ⊂ Bd), and each jth level frame element θξ (ξ ∈ Xj) is supported on B(ξ, c2−j)
the ball centered at ξ ∈ Bd of radius c2−j with respect to the distance

(1.1) d(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
on Bd.

Here 〈·, ·〉 and |·| are the Euclidean inner product and norm on Rd, and hence this is
just the geodesic distance between the lifted images of x, y ∈ Bd to the upper unit
hemisphere in Rd+1. In fact, the set Xj consisting of the “centers” of the jth level
frame elements will be a c2−j-net on Bd. The frame {θξ}ξ∈X to be constructed is
reminiscent of compactly supported wavelets on R.

The quality of this tool will be guaranteed by the fact that, as will be shown,
{θξ}ξ∈X can be used for decomposition of weighted Triebel Lizorkin and Besov
spaces on Bd with weight

(1.2) wµ(x) := (1− |x|2)µ−1/2,

where µ ≥ 0 is a half integer (2µ is integer).
The construction of {θξ}ξ∈X will rely on the general scheme for construction of

frames from [3] and the frames (called needlets) for weighted Triebel Lizorkin and
Besov spaces on Bd developed in [4, 7]. The overall undertaking hinges on weighted
orthogonal polynomials on the ball and related techniques. The gist of our method
is in connecting orthogonal polynomials on the ball to the trigonometric system
through (i) representation of the orthogonal polynomial projectors by Gegenbauer
polynomials (see (2.1)) and (ii) the connection of Gegenbauer polynomials with the
trigonometric system via the Dirichlet-Mehler formula (see Lemma 3.4 and (4.5)).
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2 GEORGE KYRIAZIS AND PENCHO PETRUSHEV

Observe that a similar construction of frames on the sphere has already been
developed in [3]. The inhomogeneity of the current setting on the ball, however,
requires more sophisticated tools and techniques than in the case of the sphere.
It is an open problem to establish the results of this article in the case when 2µ is
not integer.

The paper is organized as follows: In §2 we give all needed prerequisites, which
include (i) the weighted Triebel Lizorkin and Besov spaces and frames (needlets) on
Bd developed in [7, 4] and (ii) a description of the general method for construction
of frames from [3]. In §3 we present the construction of the new frames with small
supports and our main results. Section 4 is an appendix, where we give the proofs
of some results from §3.

Some useful notation: Lp = Lp(wµ) will stand for the weighted space Lp(Bd, wµ).
We shall denote by B(ξ, r) the ball centered at ξ ∈ Bd of radius r > 0 with respect to
the distance d(·, ·) in (1.1), i.e. B(ξ, r) = {x ∈ Bd : d(x, ξ) < r}. For a measurable
set E ⊂ Bd we shall denote |E| :=

∫
E

wµ(x) dx, 1E will be the characteristic
function of E, and 1̃ := |E|−1/21E . Positive constants will be denoted by c, c1,
c2, . . . and they will be allowed to vary at every occurrence; a ∼ b will mean
c1 ≤ b/a ≤ c2.

2. Background material

In this section we summarize the main results on weighted Triebel Lizorkin and
Besov spaces on Bd and frames (needlets) from [7, 4] and review the general method
for construction of frames from [3].

2.1. Weighted Triebel Lizorkin and Besov spaces on Bd. We let Πn denote
the space of all algebraic polynomials of degree n in d variables and let Vn be
the subspace consisting of all polynomials in Πn which are orthogonal to lower
degree polynomials in L2(wµ). It is shown in [9] that the orthogonal projector
Projn : L2(wµ) 7→ Vn can be written as

(2.1) (Projn f)(x) =
∫

Bd

f(y)Pn(x, y)wµ(y)dy,

where for µ > 0 the kernel Pn(x, y) has the representation
(2.2)

Pn(x, y) = bµ
db

µ− 1
2

1

n + λ

λ

∫ 1

−1

Cλ
n

(
〈x, y〉+ u

√
1− |x|2

√
1− |y|2

)
(1− u2)µ−1du.

Here Cλ
n is the n-th degree Gegenbauer polynomial, λ := µ+ d−1

2 , and the constants

bµ
d , b

µ− 1
2

1 are defined by (bγ
d)−1 :=

∫
Bd(1 − |x|2)γ−1/2dx. For a representation of

Pn(x, y) in the limiting case µ = 0, see (4.2) in [7].
It is straightforward to see that [7, Lemma 5.3] for r < c, ξ ∈ Bd,

(2.3) |B(ξ, r)| :=
∫

B(ξ,r)

wµ(x) dx ∼ rd(r +
√

1− |ξ|2)2µ ∼ rd(r + d(ξ, ∂Bd))2µ,

where ∂Bd is the boundary of Bd, i.e. the unit sphere in Rd.
Weighted Triebel-Lizorkin (F -spaces) and Besov spaces (B-spaces) on Bd are

naturally defined via orthogonal polynomial decompositions [4]. To be specific, we
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let D denote the set of test functions on Bd consisting of all C∞ complex valued
functions on Bd such that

(2.4) ‖φ‖W k∞ :=
∑

|α|≤k

‖∂αφ‖L∞ < ∞ for k = 0, 1, . . . .

The topology in D is defined by these norms and as is shown in [4] it can be
equivalently defined by the semi-norms

(2.5) Nk(φ) := sup
n≥0

(n + 1)k‖Projn φ‖L2 , k = 0, 1, . . . .

The space D′ = D′(Bd) of distributions on Bd is defined as the set of all continuous
linear functionals on D. The pairing of f ∈ D′ and φ ∈ D will be denoted by
〈f, φ〉 := f(φ) and as is shown in [4] it is consistent with the inner product 〈f, g〉 :=∫

Bd f(x)g(x)wµ(x)dx in L2(wµ).
If f ∈ D′ and Φ : Bd ×Bd 7→ C is such that Φ(x, ·) ∈ D for all x ∈ Bd, then we

let (Φ∗f)(x) := 〈f, Φ(x, ·)〉, where on the right f acts on Φ(x, y) as a function of y.
Let

Φ0(x, y) := P0(x, y) and Φj(x, y) :=
∞∑

ν=0

â
( ν

2j−1

)
Pν(x, y), j ≥ 1,

where Pν(·, ·) is from (2.2) and â satisfies the conditions

(i) â ∈ C∞[0,∞), supp â ⊂ [1/2, 2],

(ii) |â(t)| > c > 0 if t ∈ [3/5, 5/3].
(2.6)

Definition 2.1. Let s, ρ ∈ R, 0 < p < ∞, 0 < q ≤ ∞. The Tribel-Lizorkin space
F sρ

pq is defined as the set of all f ∈ D′ such that

(2.7) ‖f‖F sρ
pq

:=
∥∥∥
( ∞∑

j=0

(2(s−ρ)j |B(·, 2−j)|−ρ/d|Φj ∗ f(·)|)q

)1/q∥∥∥
Lp

< ∞,

Definition 2.2. Let s, ρ ∈ R, 0 < p, q ≤ ∞. The Besov space Bsρ
pq is defined as the

set of all f ∈ D′ such that

(2.8) ‖f‖Bsρ
pq

:=
( ∞∑

j=0

(
2(s−ρ)j‖|B(·, 2−j)|−ρ/d|Φj ∗ f(·)|‖Lp

)q)1/q

.

There is a change of notation in the above definitions compared to [4], which we
think makes them more transparent, namely, in [4] the quantities |B(·, 2−j)| above

are replaced by 2−jdWµ(2j ; ·), where Wµ(2j ; x) :=
(√

1− |x|2 + 2−j
)2µ

. By (2.3),

however, |B(·, 2−j)| ∼ 2−jdWµ(2j ; ·) and hence these are equivalent norms.
Note that as shown in [4] the above definitions of Triebel-Lizorkin and Besov

spaces are independent of the choice of â provided conditions (2.6) are satisfied.
Two types of weighted Triebel-Lizorkin and Besov spaces are of main interest:

F s0
pq , Bs0

pq and F ss
pq , Bss

pq. For instance, as is shown in [4] Besov spaces of the form
Bss

ττ are the natural spaces associated with nonlinear n-term approximation from
localized frames (needlets) in Lp(wµ), while the approximation spaces of linear
approximation from algebraic polynomials in Lp(wµ) are of the form Bs0

pq . The forth
parameter ρ above was introduced in [4] in order to unify these spaces and handle
them simultaneously. We refer the reader to [4] for more details on the subject.
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2.2. Frames (needlets) on Bd. In this part we describe the construction of
frames in [4], called needlets. These are smooth well localized but global func-
tions on Bd. We shall defer from [4] in two ways: (i) We shall deal here with a
single frame, which is a particular case of the construction in [4] where pairs of
dual frames are used, and (ii) In the definition of the frame here there will be an
insignificant shift in the indices. Let â satisfy the conditions

(2.9)

(i) â ∈ C∞[0,∞), â ≥ 0, supp â ⊂ [1/2, 2],

(ii) â(t) > c > 0, if t ∈ [3/5, 5/3],

(iii) â2(t) + â2(2t) = 1, if t ∈ [1/2, 1]

and hence,

(2.10)
∞∑

j=0

â2(2−jt) = 1, t ∈ [1,∞).

Choose j0 ≥ −1 so that 2j0 ≤ λ < 2j0+1. (Recall that λ := µ + d−1
2 ≥ 1/2 and λ is

half integer.) We define the kernels {Ψj} by

(2.11) Ψj :=
∞∑

ν=0

â
(ν + λ

2j

)
Pν , j ≥ j0,

where in the case λ = 1/2 we set Ψj0 := P0. From (2.10)-(2.11) it follows that for
any f ∈ D′

(2.12) f =
∞∑

j=j0

Ψj ∗Ψj ∗ f in D′.

This identity also holds in Lp(wµ) if f ∈ Lp(wµ), 1 ≤ p ≤ ∞. It is reminiscent of
the classical Calderon reproducing formula on Rd and is further descritized in [4]
(see also [7]) by using appropriate cubature formulas. In particular, as is shown in
[7] there exists a set Xj ⊂ Bd and weights {λξ}ξ∈Xj such that the cubature formula

(2.13)
∫

Bd

f(x)wµ(x)dx ∼
∑

ξ∈Xj

λξf(ξ)

is exact for all polynomials of degree ≤ 2j+2 in d variables. Furthermore, there is
a disjoint partition {Rξ}ξ∈Xj of Bd (∪ξ∈Xj Rξ = Bd) such that Rξ is “centered” at
ξ and the points in Xj are almost uniformly distributed, i.e. there exist constants
c∗, c¦ > 0 such that

(2.14) B(ξ, c∗2−j) ⊂ Rξ ⊂ B(ξ, c¦2−j), ξ ∈ Xj .

In addition,

(2.15) λξ ∼ |B(ξ, 2−j)|, ξ ∈ Xj ,

with constants of equivalence depending only on µ and d.
The jth level needlets are defined by

(2.16) ψξ(x) := λ
1/2
ξ Ψj(ξ, x), ξ ∈ Xj ,

and the entire needlet system by

(2.17) Ψ := {ψξ}ξ∈X , where X := ∪∞j=j0Xj .
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Here equal points from different levels Xj are regarded as distinct points of the
index set X .

The discretization of (2.12) by using cubature formulas (2.13) entails the follow-
ing representation result: For any f ∈ D′

(2.18) f =
∑

ξ∈X
〈f, ψξ〉ψξ in D′.

Also, it is easy to show [7] that Ψ is a tight frame for L2(wµ), i.e. for f ∈ L2(wµ)

(2.19) f =
∑

ξ∈X
〈f, ψξ〉ψξ in L2(wµ) and ‖f‖L2(wµ) = ‖(〈f, ψξ〉)‖`2(X ).

We next define the sequence spaces fsρ
pq and bsρ

pq associated with the spaces F sρ
pq

and Bsρ
pq , respectively.

Definition 2.3. Suppose s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then fsρ
pq is

defined as the space of all complex-valued sequences h := {hξ}ξ∈X such that

(2.20) ‖h‖fsρ
pq

:=
∥∥∥
( ∞∑

j=j0

2(s−ρ)jq
∑

ξ∈Xj

[|hξ||B(ξ, 2−j)|−ρ/d1̃Rξ
(·)]q

)1/q∥∥∥
Lp

< ∞

with the usual modification for q = ∞. Recall the notation 1̃Rξ
:= |Rξ|−1/21Rξ

with
1Rξ

being the characteristic function of Rξ.

Definition 2.4. Let s, ρ ∈ R and 0 < p, q ≤ ∞. Then bsρ
pq is defined as the space

of all complex-valued sequences h := {hξ}ξ∈X such that

(2.21) ‖h‖bsρ
pq

:=
( ∞∑

j=j0

2(s−ρ)jq
[ ∑

ξ∈Xj

(
|B(ξ, 2−j)|−ρ/d+1/p−1/2|hξ|

)p]q/p)1/q

is finite, with the usual modification for p = ∞ or q = ∞.

The main result in [4] asserts that Ψ is a frame for Triebel-Lizorkin and Besov
spaces on Bd in the sense of the following theorem.

Theorem 2.5. [4] Let s ∈ R and 0 < p, q < ∞.
(a) If f ∈ D′, then f ∈ F sρ

pq if and only if (〈f, ψξ〉)ξ∈X ∈ fsρ
pq . Moreover, if

f ∈ F sρ
pq , then

(2.22) f =
∑

ξ∈X
〈f, ψξ〉ψξ and ‖f‖F sρ

pq
∼ ‖(〈f, ψξ〉)‖fsρ

pq
.

(b) If f ∈ D′, then f ∈ Bsρ
pq if and only if (〈f, ψξ〉)ξ∈X ∈ bsρ

pq. Moreover, if
f ∈ Bsρ

pq , then

(2.23) f =
∑

ξ∈X
〈f, ψξ〉ψξ and ‖f‖Bsρ

pq
∼ ‖(〈f, ψξ〉)‖Bsρ

pq
.

The convergence in (2.22) and (2.23) is unconditional in F sρ
pq and Bsρ

pq , respectively.
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2.3. General scheme for construction of frames. Here we describe the method
for construction of frames developed in [3]. Assume that H is a separable complex
Hilbert space (of functions) and S ⊂ H is a linear subspace (of test functions)
furnished with a locally convex topology induced by a sequence of norms or semi-
norms. Let S ′ be the dual of S consisting of all continuous linear functionals on S
and assume that H ⊂ S ′.

Assume further that L ⊂ S ′ with norm ‖ · ‖L is a quasi-Banach space of distri-
butions, which is continuously embedded in S ′, S ⊂ H ∩ L and S is dense in H
and L.

We also assume that `(X ) with norm ‖ ·‖`(X ) is an associated to L quasi-Banach
space of complex-valued sequences with domain a countable index set X . Coupled
with a frame Ψ the sequence space `(X ) will be used for characterization of the
space L. In addition to being a quasi-norm we assume that ‖ · ‖`(X ) obeys the
conditions:

(i) For any sequence (hη)ξ∈X ∈ `(X ) one has ‖(hξ)‖`(X ) = ‖(|hξ|)‖`(X ) and
|hξ| ≤ c‖h‖`(X ) for ξ ∈ X .

(ii) If the sequences (hξ)ξ∈X , (gξ)ξ∈X ∈ `(X ) and |hξ| ≤ |gξ| for ξ ∈ X , then
‖(hξ)‖`(X ) ≤ c‖(gξ)‖`(X ).

(iii) Compactly supported sequences are dense in `(X ).
The existing (old) frame. Our next assumption is that Ψ := {ψξ}ξ∈X ⊂ S,

where X is a countable index set, is a frame for H, that is, for any f ∈ H

(2.24) f =
∑

ξ∈X
〈f, ψξ〉ψξ in H and ‖f‖H ∼ ‖(〈f, ψξ〉)‖`2(X ).

More importantly, we assume that Ψ is a frame for L in the following sense:
A1. For any f ∈ L

(2.25) f =
∑

ξ∈X
〈f, ψξ〉ψξ in L.

A2. For any f ∈ L, (〈f, ψξ〉)ξ ∈ `(X ), and

(2.26) c1‖f‖L ≤ ‖(〈f, ψξ〉)‖`(X ) ≤ c2‖f‖L.

The goal is by “small perturbation” of the elements of the existing frame Ψ to
construct a new system Θ := {θξ : ξ ∈ X} with some prescribed features, which is
a frame for L in the following sense:

Definition 2.6. We say that Θ := {θξ : ξ ∈ X} ⊂ H is a frame for the space L
with associated sequence space `(X ) if the following conditions are obeyed:

B1. There exist constants c1, c2 > 0 such that

(2.27) c1‖f‖L ≤ ‖(〈f, θξ〉)‖`(X ) ≤ c2‖f‖L for f ∈ L,

where 〈f, θξ〉 is defined by 〈f, θξ〉 :=
∑

η∈X 〈f, ψη〉〈ψη, θξ〉.
B2. The frame operator S : L 7→ L defined by

Sf =
∑

ξ∈X
〈f, θξ〉θξ

is bounded and invertible on L; S−1 is also bounded on L and

S−1f =
∑

ξ∈X
〈f, S−1θξ〉S−1θξ in L.
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B3. There exist constants c3, c4 > 0 such that

(2.28) c3‖f‖L ≤ ‖(〈f, S−1θξ〉)‖`(X ) ≤ c4‖f‖L for f ∈ L,

where as above by definition 〈f, S−1θξ〉 :=
∑

η∈X 〈f, ψη〉〈ψη, S−1θξ〉.
B4. For any f ∈ L

(2.29) f =
∑

ξ∈X
〈f, S−1θξ〉θξ =

∑

ξ∈X
〈f, θξ〉S−1θξ in L.

Above “in H” or “in L” means that the convergence is unconditional in H or
in L.

Construction of a new frame. The key idea of the method from [3] for
constructing a new frame Θ := {θξ : ξ ∈ X} for L (as described above) is to build
{θξ} with appropriate localization and approximation properties with respect to
the given tight frame Ψ. The localization of Θ is measured in terms of the size of
the inner products 〈ψξ, ψη〉, 〈θη, ψξ〉, 〈ψξ, θη〉. More precisely, we construct {θξ} so
that the operators with matrices

(2.30)

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ〉,

are bounded on `2(X ) and `(X ). The approximation property of Θ is measured
in terms of the size of the inner products 〈ψη, ψξ − θξ〉, 〈ψη − θη, ψξ〉. Namely, we
construct {θξ} so that the operators with matrices

(2.31)
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη, ψξ − θξ〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ〉,

are bounded on `2(X ) and `(X ) and for a sufficiently small ε > 0

‖D‖`2(X )7→`2(X ) ≤ ε, ‖E‖`2(X ) 7→`2(X ) ≤ ε,(2.32)

‖D‖`(X )7→`(X ) ≤ ε, ‖E‖`(X ) 7→`(X ) ≤ ε.(2.33)

Notice that C = B∗ the adjoint of B and E = D∗.
We shall utilize the following results from [3].

Theorem 2.7. Let Ψ := {ψξ : ξ ∈ X} ⊂ S be a frame for H and L as described
above. Suppose the system Θ := {θξ : ξ ∈ X} ⊂ H is constructed so that the
operators with matrices A, B, C, D, E from (2.30)-(2.31) are bounded on `(X )
and C, D are bounded on `2(X ) as well. Then if for a sufficiently small ε > 0 the
matrices D, E obey (2.32)-(2.33), the sequence Θ is a frame for L in the sense of
Definition 2.6.

Most importantly, if f ∈ S ′, then f ∈ L if and only if (〈f, S−1θξ〉) ∈ `(X ), and
for f ∈ L

(2.34) f =
∑

ξ∈X
〈f, S−1θξ〉θξ in L and ‖f‖L ∼ ‖(〈f, S−1θξ〉)‖`(X ).
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3. New frame with elements of small shrinking supports on Bd

In this section we present our construction of the desired new frame on the ball
and show that the new frame can be used for decomposition of weighted Triebel
Lizorkin and Besov spaces on Bd. For convenience we shall divide the proof of our
main result into several parts.

3.1. Construction of the new frame. To construct our new frame with elements
of small support on Bd will utilize the results form §2.3, where H := L2(Bd); S := D
and S ′ := D′ are the classes of test functions and distributions from §2.1, L := F sρ

pq

or L := Bsρ
pq , the F− or B− spaces from §2.1. The role of of the old frame will be

played by the needlet frame Ψ described in §2.2 and the sequence space `(X ) := fsρ
pq

or `(X ) := bsρ
pq, the f− or b− spaces from §2.1. It is readily seen that these spaces

and the frame Ψ satisfy all the requirements from §2.3.
As suggested by Theorem 2.7 the new frame Θ := {θξ}ξ∈X should be constructed

to be well “localized” and sufficiently “close” to the needlet system Ψ.
Combining (2.16) with (2.11) shows that the needlets {ψξ} have the representa-

tion

ψξ(x) := λ
1/2
ξ

∞∑
ν=0

â
(ν + λ

2j

)
Pν(ξ, x), ξ ∈ Xj , j > j0,

where â is from (2.9). Denote again by â the even extension of â to R, i.e. â(−t) =
â(t). We shall use the following definition of the Fourier transform f̂ of a function
f on R: f̂(ξ) :=

∫
R f(y)e−iξydy. Then the inverse Fourier transform a of â is real

valued, even, and belongs to the Schwartz class S of rapidly decaying C∞ functions
on R.

Recall our assumption that µ ≥ 0 and 2µ ∈ N0.
We shall construct the new frame Θ of the form Θ := {θξ}ξ∈X , where X :=

{Xj}j≥j0 is the index set of the needlet system Ψ and supp θξ ⊂ B(ξ, c2−j). We
proceed in two steps:

Step 1: Given M > 1, an integer N ≥ 1, and ε > 0, we construct g ∈ C∞(R)
so that g is even and obeys the following conditions:

(3.1)

(i) supp g ⊂ [−R, R] for some R > 0,

(ii) |a(r)(t)− g(r)(t)| ≤ ε(1 + |t|)−M for 0 ≤ r ≤ N + 2µ + d− 1,

(iii)
∫

R
trg(t) dt = 0 for 0 ≤ r ≤ N + 2µ + d− 2.

Note that the Fourier transform ĝ of g is even and belongs to S. A function g of
this sort has already been constructed and used for the development of frames on
the sphere in [3]. For the reader’s convenience we sketch the somewhat simplified
construction of g in comparison with [3] in the appendix.

Step 2: For any ξ ∈ Xj (j > j0) we define θξ by

(3.2) θξ(x) := λ
1/2
ξ

∞∑
ν=0

ĝ
(ν + λ

2j

)
Pν(ξ, x)

and set θξ := ψξ if ξ ∈ Xj0 . Then Θ := {θξ}ξ∈X is our new system on Bd.
With the next theorem we show that for appropriately selected parameters M ,

N , and ε the new system Θ has the claimed support property and is a frame for
the F- and B- spaces.
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In the following we shall use the notation J := (d+2µ)/ min{1, p, q} in the case
of F-spaces and J := (d + 2µ)/ min{1, p} for B-spaces.

Theorem 3.1. Suppose µ ∈ 2N0, s ∈ R, 0 < p, q < ∞ and let Θ := {θξ}ξ∈X be
the system constructed above, where

M > J + 2µ|ρ/d + 1/2| and N > max{s,J − d− s, 1}+ (4µ + 2d)|ρ/d + 1/2|.
Then for a sufficiently small ε > 0 the system Θ is a frame for the spaces L2(Bd),
F sρ

pq , and Bsρ
pq in the sense of Definition 2.6 with the above selection of the spaces

H, L, `(X ). In particular, we have
(a) The operator

(3.3) Sf :=
∑

ξ∈X
〈f, θξ〉θξ,

where 〈f, θξ〉 :=
∑

η∈X 〈f, ψη〉〈ψη, θξ〉, is bounded and invertible on L2(Bd), F sρ
pq ,

Bsρ
pq , and S−1 is also bounded on L2(Bd), F sρ

pq , Bsρ
pq , and

(3.4) S−1f =
∑

ξ∈X
〈f, S−1θξ〉S−1θξ.

(b) If f ∈ D′, then f ∈ F sρ
pq if and only if (〈f, S−1θξ〉) ∈ fsρ

pq , and for f ∈ F sρ
pq

(3.5) f =
∑

ξ∈X
〈f, S−1θξ〉θξ and ‖f‖F sρ

pq
∼ ‖(〈f, S−1θξ〉)‖fsρ

pq
.

(c) If f ∈ D′, then f ∈ Bsr
pq if and only if (〈f, S−1θξ〉) ∈ bsρ

pq, and for f ∈ Bsρ
pq

(3.6) f =
∑

ξ∈X
〈f, S−1θξ〉θξ and ‖f‖Bsr

pq
∼ ‖(〈f, S−1θξ〉)‖bsr

pq
.

The convergence in (3.3)-(3.6) is unconditional in the respective space L2, F sρ
pq , or

Bsρ
pq . Above, (b) and (c) also hold with the roles of θξ and S−1θξ interchanged.
Moreover, for any ξ ∈ Xj, j ≥ j0, the frame element θξ is supported on the ball

B(ξ, c∗2−j) ⊂ Bd, where c∗ = πR/2 with R > 0 the constant from (3.1).

3.2. Almost diagonal matrices. By Theorem 2.7 it readily follows that the new
system Θ := {θξ : ξ ∈ X} will be a frame for F sρ

pq (or Bsρ
pq) if the operators with

matrices

(3.7)

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ〉
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη, ψξ − θξ〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ〉,

are bounded on fsρ
pq (or bsρ

pq), and ‖D‖fsρ
pq 7→fsρ

pq
≤ ε, ‖E‖fsρ

pq 7→fsρ
pq
≤ ε (or we have

‖D‖bsρ
pq 7→bsρ

pq
≤ ε, ‖E‖bsρ

pq 7→bsρ
pq
≤ ε) for sufficiently small ε.

In analogy with the classical case on Rn (see [2]), we shall show the boundedness
of the above operators by using the machinery of the almost diagonal operators.

To avoid complicated indices we shall use the notation

(3.8) r(ξ) := 2−j if ξ ∈ Xj ,
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i.e. r(ξ) is the radius of B(ξ, 2−j), and

(3.9) Bξ := B(ξ, 2−j) if ξ ∈ Xj .

Definition 3.2. Let A be a linear operator acting on sequences of the form {hξ}ξ∈X
with associated matrix (aξη)ξ,η∈X . We say that A is almost diagonal if there exists
δ > 0 such that

sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

< ∞,

where

ωδ(ξ, η) :=
(

r(ξ)
r(η)

)s−ρ−d/2( |Bξ|
|Bη|

)ρ/d+1/2(
1 +

d(ξ, η)
max{r(ξ), r(η)}

)−J−δ

× min
{(

r(ξ)
r(η)

)(d+δ)/2

,

(
r(η)
r(ξ)

)(d+δ)/2+J−d}
,

with J := (d + 2µ)/ min{1, p, q} for fsρ
pq and J := (d + 2µ)/ min{1, p} for bsρ

pq.

We shall show that the almost diagonal operators are bounded on fsρ
pq and bsρ

pq.
More precisely, with the notation

(3.10) ‖A‖δ := sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

the following result holds:

Theorem 3.3. Suppose s ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ (0 < p ≤ ∞ in the
case of b-spaces) and let ‖A‖δ < ∞ (in the sense of Definition 3.2) for some δ > 0.
Then there exists a constant c > 0 such that for any sequence h := {hξ}ξ∈X ∈ fsr

pq

(3.11) ‖Ah‖fsρ
pq
≤ c‖A‖δ‖h‖fsρ

pq
,

and for any sequence h := {hξ}ξ∈X ∈ bsr
pq

(3.12) ‖Ah‖bsρ
pq
≤ c‖A‖δ‖h‖bsρ

pq
.

For the proof of this theorem we shall use the idea of the proof of Theorem 3.3
in [2]. We give it in the appendix.

3.3. Estimation of supp θξ and localization of kernels. We shall have to deal
with kernels of the form

(3.13) Λn(x, y) :=
∑

ν≥0

σ̂
(ν + λ

n

)
Pν(x, y),

where the function σ has a certain decay and smoothness properties. The explicit
representation of Pν(x, y) in (2.2) leads to

(3.14) Λn(x, y) = bµ
db

µ− 1
2

1

∫ 1

−1

Qn

(〈x, y〉+ u
√

1− |x|2
√

1− |y|2)(1− u2)µ−1du,

where

(3.15) Qn(x) :=
∑

ν≥0

σ̂
(ν + λ

n

)ν + λ

λ
Cλ

ν (x).
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Lemma 3.4. Let 2µ ∈ N0 and λ = µ + d−1
2 . Then for any even function σ ∈ S

the kernel Qn from above has the representation

(3.16) Qn(cos α) = c(sin α)1−2λ

∫ π

α

(cos α− cosϕ)λ−1Kn(ϕ)dϕ, 0 ≤ α ≤ π,

where

(3.17) Kn(α) = (π/2)n
∑

ν∈Z
(−1)ν(2µ+d−1)S

( d

dα

)
σ(n(α + 2πν))

with

(3.18) S(z) :=
bµ+ d−1

2 c∏
r=1

(−z2 − (λ− r)2)×
{ −z sinλπ, 2µ + d even

cosλπ, 2µ + d odd

and c > 0 depends only on d and µ.

This key lemma is quite similar to Proposition 3.2 in [5] and Lemma 3.11 in [3].
For the reader’s convenience we give its proof in the appendix.

We next use the above lemma to establish localization estimates, first, for Qn

from (3.15) and, second, for the kernels Λn from (3.13).

Lemma 3.5. If σ ∈ S (the Schwartz class) is even and

(3.19) |σ(m)(t)| ≤ A

(1 + |t|)M
, t ∈ R, 0 ≤ m ≤ 2µ + d− 1,

for some constants M > 1 and A > 0, then

(3.20) |Qn(cos α)| ≤ c1An2µ+d

(1 + nα)M
, 0 ≤ α ≤ π,

and

(3.21) |Λn(x, y)| ≤ c2A√
|B(x, n−1)|

√
|B(y, n−1)|(1 + nd(x, y))M

, x, y ∈ Bd.

Here c1, c2 > 0 depend only on M , µ, and d.

Proof. Representation (3.17) and the fact that S(z) from (3.18) is a polynomial of
degree 2µ + d− 1 readily imply

|Kn(α)| ≤ cAn
∑

ν∈Z

n2µ+d−1

(1 + n|α + 2πν|)M
≤ cAn2µ+d

(1 + nα)M
.

We use this in (3.16) precisely as in the proof of Lemma 2 in [6] to obtain (3.20).
Finally, we use (3.20) in (3.14) as in the proof of Theorem 4.2 in [7] to obtain (3.21).
We omit the details. ¤

Lemma 3.6. We have

(3.22) supp θξ ⊂ B(ξ, πR2−j−1) for ξ ∈ Xj, j > j0.

Proof. Here we shall use the kernels Qn from (3.15) and Λn from (3.13) with σ = g,
where g is from the definition of θξ in (3.2).

Assuming that ξ ∈ Xj , j > j0, we have by the definition of θξ in (3.2) and (2.2)

(3.23) θξ(x) = λ
1/2
ξ bµ

db
µ− 1

2
1

∫ 1

−1

Q2j

(〈x, ξ〉+ u
√

1− |x|2
√

1− |ξ|2)(1− u2)µ−1du,
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and by Lemma 3.4

Q2j (cos α) = c(sinα)1−2λ

∫ π

α

(cos α− cosϕ)λ−1K2j (ϕ)dϕ, 0 ≤ α ≤ π,

where

K2j (α) = (π/2)n
∑

ν∈Z
(−1)ν(2µ+d−1)S

( d

dα

)
g(2j(α + 2πν)).

By (3.1) we have supp g ⊂ [−R, R] that readily implies suppK2j ⊂ [−R2−j , R2−j ]
if R2−j < π. Therefore, Q2j (cos α) = 0 if α ≥ R/2j . We set t = cos α and use that
1− cos α = 2 sin2(α/2) ≤ α2/2 to obtain

(3.24) Q2j (t) = 0 if t ∈ [−1, 1] and 1− t ≥ R2/22j+1.

Denote briefly t := 〈x, ξ〉+ u
√

1− x2
√

1− y2. Then using (??) we get as in [7]

1− t = 1− 〈x, ξ〉 − u
√

1− x2
√

1− y2

= 1− 〈x, ξ〉 −
√

1− x2
√

1− y2 + (1− u)
√

1− x2
√

1− y2

≥ 1− 〈x, ξ〉 −
√

1− x2
√

1− y2 = 1− cos d(x, ξ) = 2 sin2 d(x, y)
2

≥ 2
π2

d(x, ξ)2.

From this and (3.24) it follows that Q2j (t) = 0 (with t from above) if d(x, ξ) ≥ πR
2j+1 .

Consequently, on account of (3.23), θξ(x) = 0 if d(x, ξ) ≥ πR2−j−1, which proofs
(3.22) in this case. The case when R2−j ≥ π is trivial. ¤

3.4. Estimation of inner products. For the proof of our main result - Theo-
rem 3.1 we need to study the localization properties of inner products 〈Uξ, Vη〉,
where

(3.25) Uξ(x) := λ
1/2
ξ

∞∑
ν=0

û
(ν + λ

2j

)
Pν(x, ξ), Vη(x) := λ1/2

η

∞∑
ν=0

v̂
(ν + λ

2k

)
Pν(x, η).

For a given function u on R we denote uj(t) := 2ju(2jt). We start with a well
know lemma:

Lemma 3.7. Suppose the functions u ∈ CN (R) and v ∈ C(R) satisfy the condi-
tions:

|u(r)(t)| ≤ A1

(1 + |t|)M1
, 0 ≤ r ≤ N, |v(t)| ≤ A2

(1 + |t|)M2
,

and ∫

R
trv(t)dt = 0 for 0 ≤ r ≤ N − 1,

where N ≥ 1, M2 ≥ M1 > 1, M2 > N + 1, and A1, A2 > 0. Then for k ≥ j

|uj ∗ vk(t)| ≤ cA1A22−(k−j)N 2j

(1 + 2j |t|)M1
,

where c > 0 depends only on M1, M2, and N .

This lemma is quite similar to Lemma B.1 in [2]. We omit its proof.
We now turn to the estimation of inner products of functions Uξ, Vη as above.
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Lemma 3.8. Suppose u, v ∈ S are both even and real valued,

(3.26) |u(m)(t)| ≤ A1

(1 + |t|)M
and |v(m)(t)| ≤ A2

(1 + |t|)M
, 0 ≤ m ≤ N+2µ+d−1,

and

(3.27)
∫

R
tru(t)dt =

∫

R
trv(t)dt = 0, 0 ≤ m ≤ N − 1,

where N > 1 and M > N + 1. Then for ξ ∈ Xj and η ∈ Xk

(3.28) |〈Uξ, Vη〉| ≤ cA1A22−|k−j|(N+d/2)
(
1 + 2min{k,j}d(ξ, η)

)−M
.

Proof. Because of the symmetry in (3.28) we may assume that k ≥ j. Since Pn(·, ·)
is the kernel of the orthogonal projector Projn : L2(wµ) 7→ Vn we have∫

Bd

Pm(x, ξ)P`(x, η)wµ(x)dx = δm,`Pm(ξ, η).

Using this and the fact that λξ ∼ |B(ξ, 2−j)| for ξ ∈ Xj we obtain for ξ ∈ Xj and
η ∈ Xk

〈Uξ, Vη〉 ∼ |B(ξ, 2−j)|1/2|B(η, 2−k)|1/2
∞∑

ν=0

û
(ν + λ

2j

)
v̂
(ν + λ

2k

)
Pν(ξ, η).

It is readily seen that

û
(ν + λ

2j

)
v̂
(ν + λ

2k

)
= (uj ∗ vk)∧(ν + λ) = (u ∗ vk−j)∧

(ν + λ

2j

)
.

Evidently,
(u ∗ vk−j)(m)(t) = (u(m) ∗ vk−j)(t)

and therefore, by Lemma 3.7,

|(u ∗ vk−j)(m)(t)| ≤ cA1A22−(k−j)N

(1 + |t|)M
, 0 ≤ m ≤ 2µ + d− 1.

Observe that since u, v are even, then u∗vk−j is also even. We now use Lemma 3.5
to obtain

|〈Uξ, Vη〉| ≤ cA1A2
|B(η, 2−k)|1/2

|B(η, 2−j)|1/2

2−(k−j)N

(1 + 2j d(ξ, η))M

≤ cA1A22−(k−j)(N+d/2)(1 + 2j d(ξ, η))−M ,

where in the last inequality we used that |B(η, 2−k)| ≤ c2−(k−j)d|B(η, 2−j)|. ¤
We shall need the following useful inequality:

Lemma 3.9. For any x, y ∈ Bd, j, k ≥ 0, and γ ∈ R we have

(3.29) |B(x, 2−j)|γ ≤ c|B(y, 2−k)|γ(
1 + 2min{j,k} d(x, y)

)2µ|γ|2|j−k|(4µ+d)|γ|,

where the constant c > 0 is independent of x, y, j, k.

Proof. The following simple estimate is established in [7] (see estimate (4.23) in
[7]):

(3.30) Wµ(n;x) ≤ 2µWµ(n; y)(1 + nd(x, y))2µ, x, y ∈ Bd, n ≥ 1,

where Wµ(n; x) :=
(√

1− |x|2 + n−1
)2µ

. On the other hand, by (2.3) we have

Wµ(n;x) ∼ nd|B(x, n−1)|. Using this and (3.30) one routinely derives (3.29). ¤
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3.5. Completion of the proof of Theorem 3.1. Note that Theorem 3.1 follows
by Theorem 2.7 if the matrices defined in (3.7) are almost diagonal and ‖D‖δ < ε,
‖E‖δ < ε for some δ > 0 and sufficiently small ε.

We shall only prove that ‖E‖δ < ε. The proof of ‖D‖δ < ε is the same. By the
definition of the needlets {ψξ} we have

ψξ(x) := λ
1/2
ξ

∞∑
ν=0

â
(ν + λ

2j

)
Pν(ξ, x), ξ ∈ Xj ,

and by the definition of θξ in (3.2) it follows that

ψη(x)− θη(x) = λ1/2
η

∞∑
ν=0

(a− g)∧
(ν + λ

2k

)
Pν(η, x), η ∈ Xk.

The function â has already been extended as an even function on R in §3.1. Then
by (2.9) it readily follows that there exists a constant A1 > 0 such that

|a(r)(t)| ≤ A1(1+|t|)−M , 0 ≤ r ≤ N +2µ+d−1, and
∫

R
tra(t)dt = 0, r ≥ 0.

On the other hand, by construction g is even,

|(a− g)(r)(t)| ≤ ε(1 + |t|)−M , 0 ≤ r ≤ N + 2µ + d− 1, and∫

R
tr(a− g)(t)dt = 0, 0 ≤ r ≤ N − 1.

We now apply Lemma 3.8 with u = a and v = a− g to obtain

|〈ψη − θη, ψξ〉| ≤ cA1εmin
{

r(ξ)
r(η)

,
r(η)
r(ξ)

}N+ d
2
(

1 +
d(ξ, η)

max{r(ξ), r(η)}
)−M

We claim that since M > J+2µ|ρ/d+1/2| and N > J−d−s+(4µ+2d)|ρ/d+1/2|
(3.31) |eξ,η| := |〈ψη − θη, ψξ〉| ≤ cA1εωδ(ξ, η)

and hence ‖E‖δ < cA1ε. However, ε is independent of c, A1, M , and N . Therefore,
cA1ε above can be replaced by ε.

For the proof of (3.31) consider the case when r(ξ) ≥ r(η), i.e. ξ ∈ Xj , η ∈ Xk

and k ≥ j. From Lemma 3.9 we get
( |B(ξ, 2−j)|
|B(η, 2−k)|

)ρ/d+1/2

≥ c
(
1 + 2min{j,k} d(x, y)

)−2µ|ρ/d+1/2|2−|j−k|(4µ+d)|ρ/d+1/2|

and hence, for sufficiently small δ > 0,

|eξ,η| ≤ cA1ε2−|j−k|(N+d/2)(1 + 2jd(ξ, η))−M

≤ cA1ε

( |B(ξ, 2−j)|
|B(η, 2−k)|

)ρ/d+1/2 2−|j−k|(N+d/2−(4µ+d)|ρ/d+1/2|)

(1 + 2jd(ξ, η))M−2µ|ρ/d+1/2|

≤ cA1εωδ(ξ, η),

where in the last inequality we used that by assumption M > J + 2µ|ρ/d + 1/2|
and N > J − d− s + (4µ + 2d)|ρ/d + 1/2|.

The proof of (3.31) in the case r(ξ) < r(η) is the same and will be omit it. ¤
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4. Appendix

4.1. Construction of the function g from §3.1. Here we sketch the construc-
tion of the function g in Step 1 of the development of the new frame Θ = {θξ}ξ∈X
in §3.1. The construction will be carried out in two steps.

One first shows that for any ε > 0, M > 0, a positive integer N and an even
function h in the Schwartz class S on R there is an even compactly supported
function ϕ ∈ C∞ such that

(4.1) |h(r)(t)− ϕ(r)(t)| ≤ ε(1 + |t|)M , t ∈ R, r = 0, 1, . . . , N.

To this end, choose an even function φ ∈ C∞ such that supp φ ⊂ [−1, 1] and∫
R φ = 1 and define ϕk := h ∗ φk, where φk(t) := kφ(kt). Evidently

h(r)(t)− ϕ
(r)
k (t) =

∫

R
[h(r)(t)− h(r)(t− y)]φk(y)dy.

It is easy to see that for sufficiently large k > 0 the function ϕ := ϕk will satisfy
(4.1) with ε replaced by ε/2 on the right and hence for sufficiently large L > 0 the
function ϕ(t) :=

∫ L

L
h(y)φk(t− y)dy is even, compactly supported, ϕ ∈ C∞ and ϕ

satisfies (4.1).
The second step uses the result of the first step. Consider the shift operator

Tδf(t) := f(t + δ). Then ∆s
δf := (Tδ − T−δ)sf is the sth centered difference of

f and (∆s
δf)∧(ξ) = (2i sin δξ)sf̂(ξ) is its Fourier transform. Choose s := 2N and

0 < δ ≤ 1/s, and define the function h from the identity ĥ(ξ) := â(ξ)
(2i sin δξ)s , where

â is from (2.9). Since â(ξ) = 0 for ξ ∈ [−1/2, 1/2], then ĥ ∈ S and hence h ∈ S.
Further, ĥ and h are even since â and s are even. Moreover, by the construction
a = ∆s

δh. Now one uses the result of the first step to construct an even compactly
supported C∞ function ϕ which satisfies (4.1) with h from above.

After this preparation, g is defined by g := ∆s
δϕ. We claim that g has the desired

properties. Indeed, evidently a(r) − g(r) = ∆s
δ(h

(r) − ϕ(r)) and by (4.1)

|a(r)(t)− g(r)(t)| ≤ ε2s+M (1 + |t|)−M , r = 0, 1, . . . , N,

and also
∫

R
trg(t)dt =

∫

R
tr∆s

δϕ(t)dt = (−1)s

∫

R
ϕ(t)∆s

δt
rdt = 0, r = 0, 1, . . . , s− 1.

By choosing ε and N appropriately this completes the construction.

4.2. Proof of Theorem 3.3. We shall need the maximal operator Mt (t > 0)
defined by

(4.2) Mtf(x) := sup
B3x

(
1
|B|

∫

B

|f(y)|twµ(y) dy

)1/t

, x ∈ Bd,

where the sup is over all balls (with respect to d(·, ·)) B ⊂ Bd containing x.
By (2.3) it follows that |B(x, 2r)| ≤ c|B(x, r)| for x ∈ Bd and r > 0, which

means that |E| := ∫
E

wµ(x) dx is a doubling measure on Bd. Therefore, the general
theory of maximal operators applies and the Fefferman-Stein vector-valued maximal
inequality holds (see [8]): If 0 < p < ∞, 0 < q ≤ ∞, and 0 < t < min{p, q} then for
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any sequence of functions {fν}ν on Bd

(4.3)
∥∥∥
( ∞∑

ν=1

|Mtfν(·)|q
)1/q∥∥∥

Lp
≤ c

∥∥∥
( ∞∑

ν=1

|fν(·)|q
)1/q∥∥∥

Lp
.

We shall need the following lemma:

Lemma 4.1. Let 0 < t ≤ 1 and M > (d+2µ)/t. Then for any sequence of complex
numbers {hη}η∈Xm

, m ≥ j0, we have for x ∈ Rξ, ξ ∈ X ,

∑

η∈Xm

|hη|
(

1+
d(ξ, η)

max{r(ξ), r(η)}
)−M

≤ c max
{

2(m−j)(d+2µ)/t, 1
}

Mt

( ∑

η∈Xm

|hη|1Rη

)
(x).

Proof. Consider the case r(ξ) ≥ r(η). The proof in the case r(ξ) < r(η) is similar
and will be omitted. Fix ξ ∈ Xj (j ≤ m) and set Ω0 := {η ∈ Xm : d(η, ξ) ≤ c¦2−j}
and

Ων := {η ∈ Xm : c¦2ν−1 < 2
j

d(η, ξ) ≤ c¦2ν}, ν ≥ 1,

where c¦ is the constant from (2.14). For ν ≥ 0 we set

Bν := B(ξ, c¦2−m(1 + 2ν−j+m)).

Evidently Rη ⊂ Bν if η ∈ Ων .
By (2.3) we have |B(x, r)| ∼ rd(r + d(r, ∂Bd)) and by (2.14) |Rη| ∼ |B(η, 2−m)|

for η ∈ Xm. Observe also that

d(ξ, ∂Bd) ≤ d(ξ, η) + d(η, ∂Bd) ≤ c¦2ν−j + d(η, ∂Bd), η ∈ Ων .

Using the above we get for η ∈ Ων

(4.4)
|Bν |
|Rη| ≤ c2(ν−j+m)d

(2−m(1 + 2ν−j+m) + d(ξ, ∂Bd)
2−m + d(η, ∂Bd)

)2µ

≤ c2(ν−j+m)(d+2µ).

Since 0 < t ≤ 1 we have∑

η∈Xm

|hη|
(
1 + 2jd(ξ, η)

)−M ≤
∑

ν≥0

2−νM
∑

η∈Ων

|hη| ≤
∑

ν≥0

2−νM
( ∑

η∈Ων

|hη|t
)1/t

.

We now use this and (4.4) to obtain for x ∈ Rξ

∑

η∈Ων

|hη|t =
∫

Bd

( ∑

η∈Ων

|hη||Rη|−1/t1Rη (y)
)t

wµ(y) dy

=
1
|Bν |

∫

Bd

( ∑

η∈Ων

|hη|
( |Bν |
|Rη|

)1/t

1Rη (y)
)t

wµ(y) dy

≤ c2(ν−j+m)(d+2µ) 1
|Bν |

∫

Bd

( ∑

η∈Ων

|hη|1Rη (y)
)t

wµ(y) dy

≤ c2(ν−j+m)(d+2µ)
[
Mt

( ∑

η∈Xm

|hη|1Rη

)
(x)

]t

.

Therefore, since M > (d + 2µ)/t we get for x ∈ Rξ∑

η∈Xm

|hη|
(
1 + 2jd(ξ, η)

)−M ≤
∑

ν≥0

c2−νM2(ν−j+m)(d+2µ)/tMt

( ∑

η∈Xm

|hη|1Rη

)
(x)

≤ c2(m−j)(d+2µ)/tMt

( ∑

η∈Xm

|hη|1Rη

)
(x),
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which completes the proof. ¤

We now proceed with the proof of estimate (3.11). The proof of (3.12) is similar
and will be omitted. Let A be an almost diagonal operator on fsρ

pq in the sense of
Definition 3.2 with associated matrix (aξη)ξ,η∈X and let h ∈ fsρ

pq . Then we have
(Ah)ξ =

∑
η∈X aξηhη, where the series converges absolutely (see proof below).

Using this in the definition of fsρ
pq , we have

‖Ah‖fsρ
pq

:=
∥∥∥
( ∑

ξ∈X

[
r(ξ)−(s−ρ)|Bξ|−ρ/d|(Ah)ξ|1̃Rξ

(·)]q
)1/q∥∥∥

Lp

≤ c
∥∥∥
( ∑

ξ∈X

[
r(ξ)−(s−ρ)|Bξ|−ρ/d

∑

η∈X
|aξη||hη|1̃Rξ

(·)]q
)1/q∥∥∥

Lp
≤ c(Σ1 + Σ2),

where

Σ1 :=
∥∥∥
( ∑

ξ∈X

[
r(ξ)−s+ρ|Bξ|−ρ/d

∑

r(η)≤r(ξ)

|aξη||hη|1̃Rξ
(·)]q

)1/q∥∥∥
Lp

and

Σ2 :=
∥∥∥
( ∑

ξ∈X

[
r(ξ)−s+ρ|Bξ|−ρ/d

∑

r(η)>r(ξ)

|aξη||hη|1̃Rξ
(·)]q

)1/q∥∥∥
Lp

.

To estimate Σ1 we shall use that ‖A‖δ < ∞. Thus whenever r(η) ≤ r(ξ)

|aξη| ≤ c‖A‖δ

(
r(η)
r(ξ)

)J−s+ρ+δ/2( |Bξ|
|Bη|

)ρ/d+1/2(
1 +

d(ξ, η)
r(ξ)

)−J−δ

.

Set λξ := r(ξ)−s+ρ|Bξ|−ρ/d−1/21Rξ
(·) and choose 0 < t < min{1, p, q} so that

J + δ
2 − (d + 2µ)/t) > 0. Then we have

Σ1

‖A‖δ
≤ c

∥∥∥
( ∑

ξ∈X

[ ∑

r(η)≤r(ξ)

(r(η)
r(ξ)

)J−s+ρ+ δ
2
( |Bξ|
|Bη|

)ρ/d+1/2

×
(
1 +

d(ξ, η)
r(ξ)

)−J−δ

|hη|λξ(·)
]q) 1

q
∥∥∥

Lp

= c
∥∥∥
( ∑

j≥j0

∑

ξ∈Xj

[ ∑

m≥j

2(j−m)(J−s+ρ+ δ
2 )

∑

η∈Xm

( |Bξ|
|Bη|

)ρ/d+1/2

× |hη|
(
1 + 2jd(ξ, η)

)−J−δ
λξ(·)

]q) 1
q
∥∥∥

Lp
.
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We now apply Lemma 4.1 and the maximal inequality (4.3) to obtain

Σ1

‖A‖δ
≤ c

∥∥∥
( ∑

j≥j0

∑

ξ∈Xj

[ ∑

m≥j

2(j−m)(J−s+ρ+ δ
2−(d+2µ)/t)

×Mt

( ∑

η∈Xm

( |Bξ|
|Bη|

)ρ/d+1/2

|hη|1Rη

)
(·)λξ(·)

]q) 1
q
∥∥∥

Lp

≤ c
∥∥∥
(∑

j≥j0

[ ∑

m≥j

2(j−m)(J+ δ
2−(d+2µ)/t))Mt

( ∑

η∈Xm

|hη|λη

)]q) 1
q
∥∥∥

Lp

≤ c
∥∥∥
( ∑

j≥j0

(
Mt

( ∑

ξ∈Xj

|hξ|λξ

))q) 1
q
∥∥∥

Lp
≤ c‖h‖fsρ

pq
.

To estimate Σ2 we again use that ‖A‖δ < ∞. Then if r(η) > r(ξ) we have

|aξη| ≤ c‖A‖δ

(
r(ξ)
r(η)

)s−ρ+δ/2( |Bξ|
|Bη|

)ρ/d+1/2(
1 +

d(ξ, η)
r(η)

)−J−δ

.

Therefore, setting again λξ := r(ξ)−s+ρ|Bξ|−ρ/d−1/21Rξ
(·) we have

Σ2

‖A‖δ
≤ c

∥∥∥
( ∑

ξ∈X

[ ∑

r(η)>r(ξ)

( r(ξ)
r(η)

)s−ρ+ δ
2
( |Bξ|
|Bη|

)ρ/d+1/2

×
(
1 +

d(ξ, η)
r(η)

)−J−δ

|hη|λξ(·)
]q) 1

q
∥∥∥

Lp

= c
∥∥∥
(∑

j≥j0

∑

ξ∈Xj

[ ∑

m<j

2(m−j)(s−ρ+ δ
2 )

∑

η∈Xm

( |Bξ|
|Bη|

)ρ/d+1/2

× |hη|
(
1 + 2md(ξ, η)

)−J−δ
λξ(·)

]q) 1
q
∥∥∥

Lp
.

Employing again Lemma 4.1 and the maximal inequality (4.3) we obtain

Σ2

‖A‖δ
≤ c

∥∥∥
( ∑

j≥j0

∑

ξ∈Xj

[ ∑

m<j

2(m−j)(s−ρ+ δ
2 )

×Mt

( ∑

η∈Xm

( |Bξ|
|Bη|

)ρ/d+1/2

|hη|1Rη

)
λξ(·)

]q) 1
q
∥∥∥

Lp

≤ c
∥∥∥
(∑

j≥j0

[ ∑

m<j

2(m−j)(δ/2)Mt

( ∑

η∈Xm

|hη|λη

)]q) 1
q
∥∥∥

Lp

≤ c
∥∥∥
( ∑

j≥j0

[
Mt

( ∑

ξ∈Xj

|hξ|λξ

)]q) 1
q
∥∥∥

Lp
≤ c‖h‖fsρ

pq
.

The above estimates for Σ1 and Σ2 imply (3.11). ¤

4.3. Proof of Lemma 3.4. We shall need the Dirichlet-Mehler integral represen-
tation of Gegenbauer polynomials [1, p. 177]

(4.5) Cλ
ν (cos α) =

2λΓ(λ + 1
2 )Γ(ν + 2λ)√

πν!Γ(λ)Γ(2λ)(sin α)2λ−1

∫ π

α

cos
(
(ν + λ)ϕ− λπ

)

(cos α− cosϕ)1−λ
dϕ.
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This and (3.15) imply that (3.16) holds with

Kn(α) =
∞∑

ν=0

σ̂
(ν + λ

n

) (ν + λ)(ν + 2µ + d− 2)!
ν!

×
{

sin λπ sin(ν + λ)α, 2µ + d even
cosλπ cos(ν + λ)α, 2µ + d odd.

Since (ν+λ)(ν+2µ+d−2)!
ν! = (ν + λ)(ν + 2µ + d− 2) . . . (ν + 1) we have

(ν + λ)(ν + 2µ + d− 2)!
ν!

=
bµ+ d−1

2 c∏
r=1

(
(ν + λ)2 − (λ− r)2

)×
{

ν + λ, 2µ + d even
1, 2µ + d odd,

and setting

F (z) :=
bµ+ d−1

2 c∏
r=1

(
z2 − (λ− r)2

)×
{

z sin λπ, 2µ + d even
cos λπ, 2µ + d odd.

we arrive at

Kn(α) =
∞∑

ν=0

σ̂
(ν + λ

n

)
F (ν + λ)×

{
sin(ν + λ)α, 2µ + d even
cos(ν + λ)α, 2µ + d odd.

It is readily seen that that F (−z) = (−1)2µ+d−1F (z) and F has zeros at the points
±(λ − r), r = 1, . . . , bµ + d−1

2 c. Most importantly, since σ̂ is even and because of
the symmetry and zeros of F

(4.6) Kn(α) = (1/2)
∑

ν∈Z
σ̂
(ν + λ

n

)
F (ν + λ)×

{
sin(ν + λ)α, 2µ + d even
cos(ν + λ)α, 2µ + d odd.

Set

S(z) :=
bµ+ d−1

2 c∏
r=1

(−z2 − (λ− r)2
)×

{ −z sin λπ, 2µ + d even
cosλπ, 2µ + d odd

which is a polynomial of degree 2µ + d − 1 (related to F ). Then (4.6) can be
rewritten in the form

(4.7)

Kn(α) = (1/2)S
( d

dα

) ∑

ν∈Z
σ̂
(ν + λ

n

)
cos(ν + λ)α

= (1/4)S
( d

dα

) ∑

ν∈Z
σ̂
(ν + λ

n

)
ei(ν+λ)α.

Now, set f̂(ξ) := σ̂( ξ+λ
n )ei(ξ+λ)α. It is easy to see that this is the Fourier transform

of f(y) = ne−iλyσ (n(y + α)). We now invoke the Poisson summation formula:
∑

ν∈Z
f(2πν) = (2π)−1

∑

ν∈Z
f̂(ν)

and put everything together in (4.7) to obtain

(4.8) Kn(α) = (π/2)nS
( d

dα

) ∑

ν∈Z
e−2πiνλσ (n(α + 2πν)) .

This implies (3.17). ¤
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