N
\
0:-0“
-
> =

]
N
4,
NN
5
@
i

)

m

&
v,

v‘
0“
=~,0,¢
(27
O
-
‘0

: [
’0
&
L]

K
N uw

®

)

M

PREPRINT SERIES

INTERDISCIPLINARY
MATHEMATICS
INSTITUTE

2010:08

Tree Approximation of the Long
Wave Radiation Parameterization
in the NCAR CAM Global
Climate Model

A. Belochitski, P. Binev, R. DeVore,
M. Fox-Rabinovitz, V. Krasnopolsky,
and P. Lamby

COLLEGE OF ARTS AND SCIENCES

UNIVERSITY OF SOUTH CAROLINA

Tree Approximation of the

Long Wave Radiation Parameterization
in the NCAR CAM Global Climate Model

Alexei Belochitski, Peter Binev, Ronald DeVore,
Michael Fox-Rabinovitz, Vladimir Krasnopolsky, and Philipp Lamby

November 8, 2010

Abstract

The computation of Global Climate Models (GCMs) presents significant numerical
challenges. This paper presents new algorithms based on sparse occupancy trees for
learning and emulating the long wave radiation parameterization in the in the NCAR
CAM climate model. This emulation occupies by far the most significant portion of
the computational time in the implementation of the model. From the mathematical
point of view this parameterization can be considered as a mapping R??° — R33 which
is to be learned from scattered data samples (x%,4%), i = 1,..., N. Hence, the problem
represents a typical application of high-dimensional statistical learning. The goal is
to develop learning schemes that are not only accurate and reliable but also compu-
tationally efficient and capable of adapting to time-varying environmental states. The
algorithms developed in this paper are compared with other approaches such as neural
networks, nearest neighbor methods, and regression trees as to how these various goals
are met.

1 Introduction

The main computational burden in general circulation models (GCMs) for high-quality
weather prediction and climate simulation is caused by the complexity of the physi-
cal processes that include, in particular, atmospheric radiation, turbulence, convec-
tion, clouds, large scale precipitation, constituency transport and chemical reactions.
These processes are modeled by parameterizations which are complex 1D subgrid-scale
schemes formulated using relevant first principles and observational data. The evalua-
tion of these parameterizations typically consumes 70% -90% of the overall CPU-time
in the GCM we consider in this work - the National Center of Atmospheric Research
(NCAR) Community Atmospheric Model (CAM).

To overcome this computational “bottleneck”, it has been proposed to employ sta-
tistical learning methods like neural networks in order to accelerate the evaluation of
the parameterizations. This idea originates from [CFCC98|, where a battery of neural

networks has been used to approximate certain partial fluxes within long wave radi-
ation (LWR) parameterization of the European Center for Medium-Range Weather
Forecasts, explicitly exploiting the structure of that particular model.

Another more direct and more general approach is pursued in [KRCO05] where a
single neural network emulation is used to entirely replace the LWR parameterization
in the NCAR CAM as a whole. This parameterization takes a surface characteris-
tic and the discretizations of ten vertical profiles of local physical properties and gas
concentrations as input and returns a vertical profile of heating rates and seven heat
fluxes as output. Mathematically this parameterization can be considered as a mapping
f:R¥0 . R33 see Section 2.1. The basic idea of an emulation is, for any given input,
to get an approximation of the output variables by evaluating a learned approximation
(a fast process) instead of evaluating the original parameterization (which is a rather
complex numerical simulation in its own right). The approximating function is learned
from a set of training data points (x%,y%) for which the outputs y* = f(2¢) have been
computed by solving the original physical parameterization. The approximation should
be both accurate and easy to evaluate in order to provide a significant speed-up of the
GCM without significantly changing the prediction of a long-term climate simulation.

While artificial neural networks can be considered as the current state-of-the-art
black box methodology for a wide range of high-dimensional approximation problems,
and justifiably so, they may not necessarily be the best solution for this particular
application. The accuracy of neural network emulations depends on the number of
layers and hidden neurons employed. While it is known that neural networks are
universal approximators, i.e., they can approximate any continuous functions to any
predetermined accuracy (see for instance [Hor89] and [DOP97]), this is achieved only
by allowing the number of neurons to increase arbitrarily. However, the learning of the
network parameters (weights) requires the solution of a large, non-linear optimization
problem, which is very time-consuming, prone to deliver sub-optimal solutions and,
thus, severely limits the complexity of the network that one can afford to train.

This becomes a practical issue considering the following task: the approximation
is trained by a data set that consists of evaluations of the original parameterization
gained during a reference run of the climate model. The inputs of this training data
set, therefore, cover the physical states observed during a certain time period of climate
history. However, the domain in which the parameterization is to be evaluated may
change with time as in the case of climate change. In such situations the approximation
may be forced to extrapolate beyond its generalization ability, which may lead to large
errors. In this case it could become necessary to re-train the emulation in order to
adapt it to the new environment.

It would therefore be advantageous to have an alternative to neural networks that
would offer an easier training process and that would perhaps even be capable of
incremental learning. Additionally, if one could estimate the error of the approximation
for a certain input, one could use the original parameterization as a fall-back option
during a run of the GCM and immediately incorporate the new data into the emulation.
Actually, [KFRTBO0S8| addresses the problem of error estimation for a neural network
emulation, but the question of how to dynamically adapt the approximation is left
open.

In the present paper we search for an alternative to neural networks within the class
of non-parametric approximation methods. We cannot offer a full realization of the

program outlined above, but we restrict ourselves to basic design decisions and testing
whether such a program has any chance to be successfully implemented. In particular,
we discuss the features of two common statistical learning paradigms, (approximate)
nearest neighbors and regression trees, and present a new algorithm based on what
we call sparse occupancy trees, which aims to provide a very efficient nearest-neighbor
type algorithm capable of incremental learning. The development of the latter concept
was originally motivated by the present application and is comprehensively described
in [BDL10].

In order to motivate why we were actually trying to design new algorithms instead of
just using an off-the-shelf algorithm, we briefly describe the aforementioned techniques.
More information can be found in Section 3 and in standard textbooks like [HTF09).
Non-parametric learning methods typically try to partition the input space and then
use simple local models like piecewise constants to approximate the data. In the case
of nearest neighbor methods, the input space is implicitly partitioned by the way the
training data is distributed: the approximation is constant for query points that have
the same set of nearest neighbors. Unfortunately in high dimensions there are no fast
algorithms which could answer the question “what are the nearest neighbors to a given
query point x?”. Therefore one must be content with approximate answers to this
question that can be realized using so-called kd- or bd-trees. Here, assuming that all
the training data is available beforehand, the input domain is recursively partitioned
depending on the distribution of the input points.

Regression trees follow a more adaptive approach and also use the y-values in
order to define the domain partition. Here, starting with the entire input domain, the
cells in the partition are recursively subdivided such that the residual of the resulting
approximation is minimized in each step. Obviously, due to their recursive definition,
none of these techniques is available for incremental learning without modification: a
new data point could theoretically change the decision how to perform the first split
in the tree, which would require relearning the tree from the very beginning. Sparse
occupancy trees, on the other hand, encode the data in a format that is independent
of the distribution of the incoming data.

It must be noted here that no partitioning scheme can be expected to be suc-
cessful for arbitrary high-dimensional data. (The same could be said about neural
networks, although for other reasons.) For instance, if the data points were uniformly
distributed in a very high-dimensional space, the attempt to generate local approx-
imations like those described above would be doomed, because the average distance
between a query point and the best fitting data point might become large even for
huge training data sets. This is often referred to as the curse of dimensionality. One
usually makes the assumption that the data is actually distributed over some lower-
dimensional submanifold or is concentrated in a subset of small measure within the
whole input space. In our special case this assumption is justified because the input
data is group-wise strongly correlated. One purpose of this work is to quantify this
effect, and in Section 4.3 we give an estimate of the intrinsic dimensions of the data
set which shows that non-parametric approximation of the long wave radiation data
should indeed be feasible.

The main obstacle for the application of tree-based approximation schemes seems
to be implementing it in a highly parallel computer system, which is unavoidable
in the simulation of huge, complex systems like global climate. Non-parametric ap-

proximation methods are memory based, i.e., they need to store all the training data
permanently. This limits their practical use to shared memory systems, because on
distributed memory systems each core or processor can address only a limited amount
of data. The current implementation of the NCAR-CAM system however, seems to be
optimized for such distributed memory architectures and requires the emulation to be
stored on each individual processor. Nevertheless, as proof of concept, we performed
a 10-year climate simulation where the original parameterization was replaced by a
regression tree. We report on this numerical experiment in Section 5. The tree was
chosen as a compromise between accuracy and storage considerations and trained with
a rather limited amount of data. That means that one of the main advantages of
non-parametric learning, namely its ability to cope with large amounts of data, was
not really exploited. Despite that, we were able to achieve a rather promising result,
which indicates the potential usefulness of this approach in future projects.

2 General Considerations

In this section we provide the mathematical formulation of the approximation prob-
lem and introduce some basic notation used throughout the paper. Furthermore, we
make some very general remarks concerning the design of approximation schemes for
heterogeneous vector-valued functions.

2.1 Structure of the LWR Parameterization

The input vectors for the LWR parameterization include one surface characteristic
and ten profiles: atmospheric temperature; humidity; the concentrations of ozone,
CO2, N2O, and CHy; two chlorofluorocarbon mixing ratios; pressure; and cloudiness.
The profiles are discretized and presented by the values in 26 vertical layers of the
atmosphere. Some of the quantities are constant in certain layers and have therefore
been filtered out of the input vectors, effectively leaving 220 input parameters. The
output vectors consist of a profile of heating rates and seven radiation fluxes, altogether
33 values. Hence, the parameterization can be considered as a function

R220 ., 33

€T = ($j)j:1,...,220 — Y= (?Jl)l:l,...,33

In what follows, we denote the components of a vector with subscripts, while use
superscripts to indicate different data points in the set.

2.2 FError Statistics

The goal is to find an approximation that closely matches the original parameterization
when used in the GCM. Of course, one cannot afford to test this in the development
stage of an approximation, but one can test the quality of the approximation using
statistical means. The procedure is usually as follows: we generate two data sets. The
training data set X = {(2%,9"),i = 1,..., N} is used to train the parameters of the
approximation, for instance the weights of the neural net or the underlying partition
of the tree algorithm. Then the test data set is used to measure the bias and residual
mean square errors to achieve a statistical evaluation of the approximation accuracy.

4

We denote the test data set with X = {(&%,§),i = 1,... M}. Furthermore we indicate
an emulation of the original parameterization with f and its output f(z") by g'. Using

these conventions, the bias or systematic error of the approximation for the [-th layer
is defined by

1 Mo .
Bi= gy it - (1
i
and the total bias is b
1
B= lz; B (2)

where D is the number of output components. Since the heating rates and the heat
fluxes in the output vector are measured in different units, it hardly makes sense
to compute error measures for all 33 output components simultaneously; instead we
restrict ourselves to the heating rates, i.e., the first 26 components. In this case D
can be considered as the number of layers. The bias is actually not a measurement
of accuracy (it could be zero even for an arbitrarily inaccurate approximation), but a
good approximation with a large bias would be unacceptable, because one has to fear
that systematic deviations could accumulate in the GCM.

We measure accuracy using the root mean square error (RMSE). The RMSE of the
[-th output component is defined as

M

RMSE; = | 27 D (5)° — () ®)
i=1

and the total RMSE is

2.3 Neural Network Approximations

A natural benchmark for comparison with the present is the neural network emulation
described in [KRCO05]. This is a standard feed-forward neural net with one hidden layer
of neurons of the form

f(x) :a0+2aia(ﬂi-x+%) (5)

where o is the sigmoidal function o(z) = tanh(z), and the directions 3; € RY, weights
o; € R? and intercepts 7; € R are learned from the training data by least squares
fitting. In particular, we use as reference a network with m = 80 hidden neurons which
has been trained with 196,608 selected evaluations of the original parameterization from
a reference run of the NCAR-CAM simulating the climate for the years 1961-1962.

Meural Met, Layer Z6 Meural Metwork, Layer 9

0.0z

001 r

-001

-pozp

-0.03F

-0.04F

-0.05F

-0.06

-0.07
-007 -006 -00% -0.04 -003 -002 -07 0 0.0 0.0z

Figure 1: Layer Bias. Scatterplots of the neural network approximation for the layers [= 26
and [= 9. In each diagram the values of the original parameterization f; are plotted along
the horizontal axis, the approximated values f; along the vertical axis. The green line shows
the diagonal f, = f.

2.4 Monolithic Schemes vs. Batteries

Note, that the above representation can be described as a monolithic, vector-valued
approach. Another possible network design could have been

m
Ji =00+ > aijo(Bij-x+7i)) (6)
=1

with 3;; € R? and 7;; € R as above but a; ; € R. That is, one could have used a
battery of neural networks approximating each output component individually. This
would, of course, increase the training and evaluation costs, but would also be more
accurate. Actually, the vector-valued design potentially can become the source of bias.
In the training of the neural network, the total RMSE is used as the optimization
criterion. However, the variance of the output data is higher for the layers nearer to
the surface of the earth, hence the error is dominated by these layers and the neural
net is adapted mainly to them. In other layers, the errors might be relatively larger.
This is demonstrated in Figure 1 which shows scatterplots of the reference neural net
for the layers 9 and 26. One can clearly see that the approximation in layer 9 is biased.
One has to note however, that the scales in the two diagrams differ by almost a factor
of 30, i.e., the absolute error introduced by this bias is still very small. A possible
remedy for this is to normalize the outputs in the learning process according to their
variances. Then, all output components will have the same relative accuracy, possibly
at the cost of the total accuracy. This technique could also be applied to the tree-based
methods considered in the current paper.

Since we are interested in examining the potential of possible alternatives to the
current emulation design, we consider mainly, but not exclusively, component-wise ap-
proximationin the following. The disadvantages of component-wise approximations

are that they might become computationally more expensive and can potentially re-
turn unrealistic profiles, because they may not properly represent the correlations be-
tween components of the profile vector. These correlations are naturally represented
by vector-wise approximation.

3 Description of Algorithms

In order to keep this paper self-contained we give a concise description of the non-
parametric algorithms that we will consider in the following numerical experiments.
Thereby, we discuss the nearest neighbor and regression trees only very briefly, because
they are well established and comprehensively discussed in the literature. We give a
more comprehensive account of the sparse occupancy trees, because, as explained in the
introduction, they are new and have been developed specifically for this application.

3.1 (Approximate) Nearest Neighbors
3.1.1 Basic Concepts

The k-nearest neighbor method works as follows: one defines a metric ||- || on the input
space and given a query point x finds a permutation ¢ — 4, of the training data such
that

lz™ =] < [la® — 2| < ... < [la® — 2| < [|a" — 2]

for all p > k. Then, one averages the function values corresponding to these nearest
neighbors

flo)=> "y

to define an approximation of f(x). Unfortunately, it is well known that in very high
dimensions it is not possible to design fast algorithms that provide the permutation
sought. Instead one relaxes the search and is content with an algorithm that returns
points Z'» such that

|z —a| < (1 +¢)]a™ — z].

There are algorithms based on kd-trees or bd-trees that provide a fast answer to this
relaxed problem, if € is chosen large enough. An introduction to this topics can be
found in [Wen05].

3.1.2 Data Scaling

The central point in the above description is, of course, how to define the metric || -||
on the input space. This is a non-trivial task because the input vectors include several
physical quantities measured in different units and are varying over several orders of
magnitude. A trivial method to equilibrate the various input quantities is to compute
the maximum and minimum of each parameter in the training data set and to then
scale this each component of the input vector individually to the interval [0, 1]. Then,
one uses the standard Euclidian norm on [0,1]¢ to measure the distances. Another
self-evident idea is to scale the variables belonging to the same profile with the same
factors. Numerical experiments showed that the second type of scaling yields better

results. Therefore, we use this scaling in the following experiments. Adaptive nearest
neighbor methods try to learn a problem dependent metric from the data, but we have
not pursued this approach any further, because the data seems to be too sparse to
define local metrics reliably for this application.

3.2 Regression Trees
3.2.1 CART

The most basic algorithm for the generation of regression trees is the Classification
and Regression Tree (CART) algorithm intensively analyzed in [BFOS84]. It can be
summarized as follows: we initialize the partition P = {Q} where 2 = Hle[ai, b is
a hyper-rectangle that contains all the training points and d is the dimension of the
input space. Then, each hyper-rectangle in the partition that contains more than a
given number m of data points is recursively subdivided along a hyperplane x; = c,
where ¢ € {1,...,d} and ¢ € [a;, b;] is chosen such that the RMSE of the best piecewise
constant approximation on the refined partition is minimized. That is, the regression
function assumes the average value of all the points in a given hyper-rectangle of the
partition. This is a reasonably efficient algorithm that can be used for a wide range of
classification and regression problems. It also has the advantage that it is independent
of the scaling of the data.

3.2.2 Random Forests

The Random Forests algorithm by Breiman [Bre(1] averages the response of a given
number T of CART trees. Hereby, before each subdivision step in the generation
of the CART trees, the algorithm chooses a random subset of size P of the input
parameters (typically about one third of all input parameters) along which the cell is
allowed to be subdivided. This ensures that each single CART trees generates different
partitions of the domain. Usually the single CART trees in a Random Forest are not
pruned, i.e., one takes m = 1 in the CART-algorithm and deliberately overfits the
data. Nevertheless, Random Forest approximations are relatively smooth due to the
averaging process. Random Forests are generally considered to be one of the best
available black-box non-parametric regression methods.

3.3 Sparse Occupancy Trees

Sparse Occupancy Trees have been developed as an alternative for approximate nearest
neighbor methods (see [BDL10]) . They are designed to scale well in high dimensions
and to be readily available for online-learning.

3.3.1 Setting

The sparse occupancy algorithms try to exploit basic ideas from multiresolution anal-
ysis for high spatial dimension. The main underlying data structure of the multilevel
construction is the subdivision tree which is linked to a hierarchy of nested partitions.
That is, we assume that for each level I > 0 the sets P; = { ;, k € Z;} are partitions
of the input space (2 and each cell €;;, € P, is the disjoint union of cells on the next

finer level [4+ 1 :
Wg = U Qg1 -

TGIl?k

The hierarchy of partitions induces an infinite master tree 7%, whose root is 2 and
whose other nodes are the cells €); ;. Each node €, of this tree is connected by an
edge to its children €, where r € Z;.

Now let us assume that a training data set X = {(2%,3%),i = 1,..., N} is given.
An occupancy tree 7(X) is a finite subtree of 7* that contains only the nodes that
are occupied by at least one sample 2’ from the data set X. In high dimensions
occupancy trees are typically sparse, because there are many more cells than data
points. Furthermore, the points can be stored in a compact way. In the following two
subsections, we present two algorithms that make use of this data structure.

3.3.2 Piecewise Constant Approximation on Cube Subdivisions

A piecewise constant approximation based on an occupancy tree can be defined as
follows: given a query point x we average the values of points in the finest cell of the
occupancy tree containing the query point. This general idea, which works for any
subdivision geometry, is most easily realized for dyadic cube subdivision, because it
can be very easily encoded. Assuming that all data are scaled such that they fit into
the unit hypercube [0, 1]¢ the partitions are given by

d
PZZ{H[kiQI,(ki+1)2’], kie{o,...,2l—1}} .

i=1
For any point = = (z1,...,24) € [0,1]% we can write its components in binary repre-
sentation as
oo
T; = Z bik2_k .
k=1
Note that the finite sequence b;1, b;0,...,b; is a binary representation of the integer

k; of the level-l cell to which the data point belongs. Assuming that a maximum
refinement level L is chosen we compute the bitstream

(b117b217 .. 7bd17b127b227 .. '7bd27 cee 7b1Lab2L7 .. '7de)'

for each training and query point. The subsequences of d bits by, ..., by are called
characters. The bitstreams of the training points are sorted lexicographically. Then,
in order to determine which points one has to average to answer a query, one finds the
points whose bitstreams have the most number of leading characters in common with
the bitstream corresponding to the query point. This is essentially a binary search.
This algorithm is very fast and storage efficient, because it replaces the input data
with bitstreams. Furthermore, it is inherently suited to incremental learning: if one gets
a new data point, one computes its bitstream, sorts it into the list of already-existing
bitstreams, and then the next query can immediately be accepted. Conceptually this
code is related to nearest neighbor approximation because it only considers proximity
of the points in the input space, using the similarity of the bitstreams as metric.
Unfortunately, this recovery scheme is by far not as accurate as the nearest neighbor
scheme because of the tree structure. That is, for any two points z,2’ € X the

tree distance distr(x,2’) is the shortest path in the tree 7 (X) connecting the nodes
Qri(xz) > x and Qp g > o' Of course, whereas ||z — 2’|| may be arbitrarily small
for any fixed norm || - || on R?, the tree distance dist7(x,2’) could be 2L. The above
recovery scheme takes local averages of function values whose tree distance is small,
possibly omitting values for arguments that are geometrically very close. There are
several possible remedies. Since the recovery scheme is very fast, perhaps the simplest
one is to perform several different recoveries with respect to different shifts of the
coordinate system (chosen randomly) and then take the average of the outputs. For
example, in our implementation we scale the data to the interval [0.3,0.7], and then
shift the data with random vectors in [—0.3,0.3]%. Let fp(sc) denote the result of a
query at x with the data shifted by the vector p and X,(x) be the corresponding set
of training points in the leaf of the sparse occupancy tree containing x. Furthermore,
let R(x) be the set of shifts p for which the level of the evaluation is maximal. Then

_ 1 -
flz) = #(R(x))p;(:x) fp(ﬂf) . (7)

With a moderate number of random shifts, one can usually achieve an accuracy similar
to that of the nearest neighbor method.

3.3.3 Sparse Occupancy Trees Using Simplices

Overcoming the tree-distance problem motivates another approach that constructs
piecewise linear approximations on simplex subdivisions. In the following description
we leave out the technical details, which can be found in [BDL10]. We base the
approximation on a hierarchy of partitions generated by dyadic simplex subdivision.
That is, each simplex S in the partition P, on level [is subdivided into 2¢ simplices
(its children) on level [+ 1.

For this purpose we use a scheme described in [Tra97] which is based on recursive
binary subdivision. In each binary subdivision step one edge of the current simplex
is chosen and subdivided at its midpoint. To be more precise let us denote with
(xo,x1,...,24)g a simplex that arises from a simplex in the dyadic tree by g binary
subdivisions. Then this simplex is divided into the two subsimplices

xo + xq

(m07 2 7x17"'7xgaxg+17'--7xd71)g+1
and
To + Tq
(l‘d, 2 71:17"’7xguxd—17"-)xg+l)g+l
where the sequences (z441,...,24-1) and (z1,...,z4) should be read as void for g =
d —1 and g = 0, respectively, and the sequence x4_1,...,2441 features decreasing
indices.

Given z, we denote by S;(z) the simplex at level [which contains x and given any
simplex S, we denote its set of vertices by V(S). If v is a vertex of a level-/ simplex in
the master tree, then S;(v) denotes the set all level-I simplices that share v as a corner
point. We also define V; to be the set of all vertices at level [of occupied cells.

In the training stage we compute the values

yi1(v) = Average{y’ : 2 € S;(v)}

10

for each vertex of a simplex on level [in the occupancy tree. In the evaluation stage, if
we are given an input x, we first determine the maximum level [such that V(S;(z)) N
V; # () and then we compute

f(:v) . ZUGV(Sl(r))ﬁVZ 7(Si(z), v, 2)y(v)
D vev(siz)m T(S1@), v,2)

(8)

where 7(5, v, x) is the barycentric weight of the point x with respect to the vertex v of
the simplex S.

To summarize: the value of the query point is found by interpolating vertex values
of the simplex containing it. Hence, the query response becomes an average of all
training points in the neighborhood of the query coordinates, even including the points
in simplices that are far away in tree distance. Again, note that this algorithm is suited
for incremental learning: if one gets a new sample, one just computes its place in the
occupancy tree and adds its value to all adjacent vertices. Any query after that can
immediately use the new information.

4 Numerical Experiments

In this section we present the results of three groups of numerical experiments. In the
first two subsection, the sets of training data and test data each contain 196,608 data
samples collected during a reference climate simulation for the years 1961-1962 using
the original parameterization. In the first subsection we compare the regression trees
with the benchmark neural network approximation. Note that this comparison tends
to overestimate the advantages of the neural network. First of all, it does not reflect
the training time, which is about a week for the neural network, but only between a
few seconds and less than a few hours for the tree-based methods. Second, whereas the
neural network would profit only slightly from taking more training data (its accuracy
is basically limited by the number of neurons), the non-parametric methods benefits
significantly from allowing more data, and limiting the training data size is artificial
and unnecessary. Nevertheless, we perform the comparison in this form, because it’s
the same training data we will use for the experiment in Section 5 where we have
to comply with memory limitations. As it turns out, nearest neighbor methods and
sparse occupancy trees do not deliver competitive accuracy, if applied naively, but
their performance can be enhanced by dimension reduction. We demonstrate this in
some experiments presented in subsection 4.2. Finally, the last experiment presented
in section 4.3 gives some insight into the internal structure of the data. Here, we try
to obtain an estimate of the intrinsic dimension of the input data.

4.1 Comparison of Approximation Errors

In Figure 2 we see the RMSE profiles (left) and the bias profiles (right) for the following
methods:

1. The benchmark neural network emulation (see Section 2.3, blue line).

2. The approximate nearest neighbor approximation (ANN, with k =5, ¢ = 1, red
line), where we used the profile-wise input scaling.

3. A single vector-valued regression tree (CARTV, m = 5, cyan line).

11

4. One regression tree for each output component individually (CARTC, m = 5,
magenta line).

5. a vector-valued Random Forest approximation (RFV, T' = 20, P = 80, green
line), and

6. an approximation where we compute a Random Forest (RFC, T' = 20, P = 80,
black line) for each component individually.

In Table 1 we also give the total RMSEs and bias for all these methods.

25

0 0.005 001 0015 0.02 0.025
RMSE()

Figure 2: Comparison of neural network, approximate nearest neighbor, and several regres-
sion tree emulations. Left: layer-wise root mean square errors. Right: layer-wise absolute
values of Bias.

Some major observations to be taken from this Figure and Table can be summarized
as follows:

1. Nearest Neighbors do not deliver competitive accuracy, if applied directly to the
220-dimensional input data. It is however surprising that the vector-valued CART
does not yield a better result, even though it generates an adaptive partition of
the input domain. One needs to use ensembles of regression trees to achieve good
approximation accuracy.

2. It is possible to improve on the neural network emulation with moderate compu-
tational effort. The generation of regression trees is cheap, so even the generation
of the 520 trees for RFC(20,80) takes only a few hours (7h on a single 2.2 Ghz

12

| Method | RMSE (J/kg/s) | Bias (J/ks/s) |
Neural Net 3.94836 - 107 3.11643 - 107

ANN 7.26535 - 1073 2.70421 -107°
CARTV 8.17753 - 1073 1.27022 - 107°
CARTC 5.54573 - 1073 1.26559 - 107°

RFV(20,80) | 4.75692- 1073 6.08371-107°
RFC(20,80) 3.27711-107° 3.99269 - 1077

Table 1: Total RMSE and absolute value of total bias for emulation with neural network,
approximate nearest neighbors, CART and Random Forests applied to the whole vector or
componentwise. Training and test data each consist of 196,608 evaluations of the original
parameterization.

AMD-Opteron processor) on a standard PC. However, due to its storage require-
ments (26-20 = 520 trees have to be computed) this result is not of great practical
interest. The two practical competitors are the CARTC and the RFV emulations,
which use 26 trees (one for each component) or 20 trees, respectively. RFV seems
to be a little bit more accurate, but CARTC has a lower bias, for the reasons
we already exposed in Section 2.4. To demonstrate the latter point we show in
Figure 3 scatterplots for both emulations. The component-wise CART approx-
imation clearly has a higher variance in layer 26, but delivers good, unbiased
approximation in layer 9.

3. Notice that except for the somewhat inaccurate nearest neighbor approximation,
the neural network approximation exhibits the most biased approximation.

Finally, in Figure 4 we show the emulated heating rates for three representative
profiles in order to compare the vector-valued random forest and the componentwise
CART approximation. In general CART very accurately follows the profile of the
original parameterization. However, in extraordinary cases it can overshoot, which is
most noticeable in the third graph. The random forest approximation has the tendency
to flatten out the original profiles but does not produce extreme outliers.

4.2 Performance of the Sparse Occupancy Trees

In the previous section we have shown that the nearest neighbor method is not as
accurate as the benchmark neural network. This result is inherited by the sparse
occupancy schemes which, as explained in Section 3, are conceptually similar and do
not improve on the nearest neighbor approximation, but rather try to mimic it with
data structures that allow faster processing of large, incrementally growing data sets.
This is confirmed by the numbers given in Table 2, which, in particular, shows how
increasing the number of random shifts converges towards the quality of the original
nearest neighbor approximation.

The reason for the unsatisfactory results of both the piecewise constant simplex
and the piecewise linear vertex algorithm is revealed in Table 3, which shows the level
of resolution at which the test queries are evaluated. In the case of the simplex scheme
almost all the evaluations take place on level 0, which indeed means that most of

13

RFW(20,80), Layer 25 RFV(20,80), Layer 9
0.0z

0.01

-0.m

-0.02

-0.03

-0.04

-0.05

-0.06

_0.07 L L L 1
-0.06 -0.08 -0.04 -0.02 i} ooz

RFPRC, Layer 26 RFRC, Layer 9
0.0z

0.01

-0.m

-0.02

-0.03

-0.04

-0.05

-0.06

_0.07 L L L 1
-0.06 -0.08 -0.04 -0.02 i} ooz

Figure 3: Scatterplots for the approximation of the heating rates in the 26" and 9" vertical
layer with componentwise CART (RPRC) and the vector-valued Random Forest (RFV)
approximation.

Single Trees

Dyadic cubes | Binary cubes | Dyadic simplices | Vertex method
RMSE | 0.0147266 0.0132963 0.0200573 0.014531
Random Shifts with Dyadic Cubes
Shifts 1 10 100 1000
RMSE | 0.0147266 0.00937559 0.00835964 0.00806051

Table 2: RMSE of Sparse Occupancy Methods

the evaluations just return the global average. The reason for this is, that simplex
subdivision does not exploit the properties of the input data. The input variables are
highly correlated. Hence, if within one of the cube-subdivion schemes a split along one
variable does not separate two data points, with high probability the subsequent split
along the next input variable will also not separate the points. However, in a simplex
grid the split lines are oblique to the coordinate lines and therefore every split will

14

Figure 4: Approximation of three representative heating rate profiles. Black line with mark-
ers: original parameterization. Magenta: Component-wise emulation. Green: vector-valued
Random-Forest emulation. Heating rates units are J/kg/s.

separate points with high probability. It is an open question whether this issue can
be resolved by transforming the data in a suitable way before starting the subdivision

process.

Level | Simplices Cubes-1 Cubes-10 | Cubes-100 | Cubes-1000
0 97.998 44.0552 2.13725 0.208537 | 0.00203451
1 1.68864 33.4686 35.9996 25.6978 18.8019
2 0.217692 14.7217 22.8271 25.5249 26.9145
3 0.0701904 5.57658 17.9555 18.5211 19.5536
4 0.0203451 1.5350 12.4695 14.7339 15.3971
5 0.00406901 | 0.455729 5.87667 9.75138 10.0141
6 0.00101725 | 0.142415 1.88293 3.90828 5.88277
7 0.0386556 | 0.581868 1.10779 1.74052
8 0.00508626 | 0.18514 0.37028 0.519816
9 0.00101725 | 0.0640869 | 0.127157 0.18514
10 0.0203451 | 0.0457764 | 0.0742594
11 0.00305176 | 0.142415

Table 3: Relative frequencies (in percent) of the evaluation at a given dyadic level for the
sparse occupancy trees and the random shift method.

However, the situation is not as bleak as it might look like from this result. As has
become clear in the previous subsection, even regression trees do not yield very good
results singly, but rather one needs ensembles of them to achieve high accuracy. We
need a different mechanism for the generation of nearest-neighbor ensembles, though.

15

In this case we employ dimension reduction. The basic idea is that not all input pa-
rameters are equally relevant for all output parameters, and “superfluous” parameters
have a negative effect on the quality of the nearest neighbor approximation. A possible
remedy could be as follows: by some statistical analysis one tries to determine which
input variables are relevant for the computation of a given output component. Then
one applies nearest neighbor methods or sparse occupancy trees for each output com-
ponent using only the assigned “relevant” variables. With this intention, during the
runs of the CART algorithms documented in the previous section we collected some
statistics about the variables on which the splits were performed and how much the
splits along these variables improved the results. Then, we chose only the 15 variables
for which the splits had been most effective as input parameters for each output com-
ponent. This is only an ad-hoc solution, but it proved quite effective, as shown in Table
4. Tt should be added that the approximate nearest neighbors method yields a RMSE
of 0.00521976 using this approach.

Single Trees

Dyadic Cubes | Binary cubes | Dyadic simplices | Vertex method
RMSE | 0.00736002 0.00737307 0.0127928 0.00708333
Random Shifts of Dyadic Cubes
Shifts 1 10 100 1000
RMSE | 0.00736002 0.00580438 0.00550121

Table 4: RMSE of Sparse Occupancy Methods

Unfortunately, even in this setting the methods based on simplex subdivisions do
not perform as well as one could have expected considering the promising results pre-
sented in [BDL10] . Nevertheless, sparse occupancy trees together with dimension
reduction methods seem to be another viable way of constructing emulation for the
LWR parameterization.

4.3 A Convergence Study

Finally, we use a database of 5 million points from the period 1960-1963 for a conver-
gence study. For this purpose we use CART and the Sparse Occupancy Tree method,
because the other methods like random forest or nearest neighbors are too expensive
computationally. We randomly divide the data points into 33 approximately equally
sized subsets. The first of these subsets is used a test data set. Then we perform each
algorithm using 1,2,4,8,16 or all 32 of the remaining sets as training data. The results
of this experiment are listed in table 5. The database contains the evaluations of the
original parameterization for every 10th day during a 4-year run (1960-1963) of the
global climate model which used 6-hour timesteps and a grid on the globe with 128 x 64
grid points. Standard estimates for piecewise constant approximation predict that for
a smooth function y = f(z) the Lo-error on a non-adaptive partition is proportional
to N~Y4, Therefore, we use as the measure for the convergence speed the quantity

) log(N2/N1))

16

where N1, No are the number of training points and RMSFE,, RMSEs are the calcu-
lated root mean square errors of two experiments with the same numerical scheme. In
the table we list the values for d’ in the case one takes N; and No from two consecutive
rows in the table. We expect values for d’ which are near to the intrinsic dimension of
the input data set. Actually numerical experiments with other data sets indicate that
the numerical d’ computed with Sparse Occupancy Trees slightly underestimates the
true dimension. Hence, from this data we conclude that the convergence behavior is
similar to what one would expect for data living on submanifold of dimension at most
1 in the input space.

N OccBin | d RPR-C | d RPR-V d
145911 | 1.4755 0.6319 0.8961
292650 || 1.3648 | 8.924 || 0.5737 | 7.203 || 0.8459 | 12.072
286879 || 1.2635 | 9.023 || 0.5313 | 9.063 | 0.7978 | 11.886
1174907 || 1,1720 | 9.062 || 0.4812 | 7.008 || 0.7411 | 9.415

2351709 | 1.0856 | 9.062 || 0.4428 | 8.344 || 0.6940 | 10.586
4702660 || 1.0055 | 9.041 | 0.4044 | 7.639 | 0.6467 | 9.817

Table 5: RMSE for NCAR-CAM Data

5 Results of 10-Year Climate Simulation

Finally, we try to asses the impact of using a tree approximation of the LWR parame-
terization in a climate simulation. Therefore, we run the NCAR CAM climate model
for 10 years using the original parameterization, the neural network emulation and the
component-wise CART emulation. As discussed above, this choice of tree design is
debatable, since we could have achieved a more stable and more accurate (in terms
of the RMSE) approximation using a vector-valued random forest design. However,
the CART-design was the best available method at the time the experiment was set
up. The relatively small training data set with its 196,608 samples was used because
the parallel simulation was performed on a distributed memory systems, where each
processor could only address 4GB of memory, the emulation had to be stored on each
processor, and on each processor most of the memory had to be reserved for other
parts of the simulation. Therefore, we do not give any numbers about the achieved
speed-up of the GCM, although even under these imperfect conditions, the speed up
was still considerable.

One of the most desirable properties of an emulation is the preservation of the time
means of the prognostic and diagnostic fields. In [KRCO05] it has been shown, that
neural network emulations reliably achieve this aim. The CART emulation in general
produces good agreements, too, but it also seems to be more prone to produce local
instabilities. As an example we consider the annual zonal means of the LW radiation
heating rates (QRL) in Figure 5. Whereas the plots in the left column seem to be in
very good agreement, the difference plots in the right column reveal that the CART
approximation causes significant differences in the forecast in the lower atmospheric
layers near the polar regions.

17

control
LW heating rote K/ day

— 300
o) o
E 400 E
T &
<
L osoo -
i o
g ‘3
& o0 e
850
1000
GON JON D 305 EOS
MIN = —488 MAX = 0.21
camz2iree
LW heating rate
cam2Ztree - contrel2.0.1
LW heating rate K/day
EE 20
= 1 18 MIN = 1.32
'E z 150
& & - &
2 - o 300
= o 8 -
7 = B ico g
a o ko =
& B 2 soo
] d
; g
A 700
850
1000
BON 30N o 308 603
camZlwnnBs
LW heating rate K/ day
cam2lwnnB8 — control
LW heating rate K/ day
o) = i 2
= B 10 16 MIN = —0.36 MAX = 0.30
£ = 150
= 200 12
g = 250
300
a xn = B o
e 2 E £
ol o .
g sw0 v
r o
a2
2
4 700
G0N 20N a 308 605
MIN = -503 MAX = 0.2 .
-7 -5 -4 -3 -2 -1 0 1 10005

Figure 5: Comparison of the predicted annual zonal means of the LWR heating rates com-
puted with the original parameterization (top row), a tree based emulation (center row) and
a neural network emulation (bottom row). The right column plots the difference between
the simulation and the control.

18

control2.0.1

2-meter Air Temp mean= 287.40 K

Min = 225.11 Max = 30247

camztree
2—meler Air Temp mean= 287.28 K

cam2tree - control2.0.1
mean = -—0.12 rmse = 0.64 K

= 303.16
Min = -4.63 Max =

cam2lwnngg ©~ " 77

2—meter Air Temp mesn= 287.34 K cam2iwnné8 - control

mean = -=0.01 rmse = 0.16 K

= 302.53
Min =

Figure 6: Comparison of the predicted annual means of the two meter air temperatures
computed with the original parameterization (top row), a tree-based emulation (center row)
and a neural network emulation (bottom row). The right column plots the difference between
the simulation and the control.

Basically, the same observation can be made, if we look at the annular means of
the two-meter air temperature in Figure 6. The agreement of the control run with the
tree-emulation run is satisfactory, but a comparison of the difference plots in the right
column reveals that the neural network run is closer to the original parameterization.
Again, we see that the largest differences occur in the polar regions.

For this reason we checked the approximation accuracy for all test data samples
stemming from these regions separately. It turned out that the RMSE’s were much
worse for these points than for other regions of the earth, and the CART emulation
was biased towards predicting higher heating rates than the original parameterization.
The reason for this seems to be that the extreme weather conditions at the poles are
represented only by a small fraction of all training samples. As remedy for this problem
one can train separate approximation modules for different regions on the earth, or
balance the distribution of the training such that the statistical approximation error
is equally distributed over the whole globe. The neural network approximation seems
to be more reliable with regard to the generalization to rare states. The vector-valued
random forest approximation also seems to be stable in this sense.

19

2.90

6 Concluding Remarks

We reported on numerical experiments investigating the possibility of substituting
physical parameterizations in global climate models with non-parametric emulations.
The results are positive in the sense that they show that both nearest neighbor type
methods and regression trees are in principle able to achieve statistical approximation
quality on par with neural networks, even if trained with a relatively moderate amount
of data. Convergence studies showed that a basic precondition for the nearest neigh-
bor type approximations is fulfilled: namely that the data is concentrated in a small
enough region of the whole input space to allow for reasonable convergence in terms of
the size of the training data. Special measures have to be taken to ensure error control
in underrepresented regions, though. It has been demonstrated that the NCAR CAM
with a tree-based LWR emulation gave results in good agreement with the calculation
using the original parameterization, except in the polar regions, which could have been
expected from the statistical properties of the approximation. Some ideas have been
presented for designing new tree-based approximation schemes that offer the opportu-
nity of true incremental learning and automatic adaption to new climate conditions.
The main obstacle for the practical use of non-parametric methods is less a mathemat-
ical one, but rather one of implementation. Non-parametric approximation methods
are memory-based, i.e., they need to store all the training data permanently. This
makes its use in a parallel environment more difficult than is the case for the relatively
compact neural network representation. Of course, for huge, complex projects like cli-
mate simulation software, implementation issues are a major concern. Therefore, the
ideas and results presented in the current paper can only be considered as preliminary
step towards a new emulation paradigm. As such, in the opinion of the authors, they
show very good potential for future developments.

Acknowledgments

This work has been supported in part by the National Science Foundation grants
DMS-0721621 and DMS-0915104, the Office of Naval Research/DEPSCoR contract
N00014-07-1-0978, the Office of Naval Research/DURIP contract N00014-08-1-0996,
and the Army Research Office/MURI contract W911NF-07-1-0185.

References

[BDL10] Peter Binev, Wolfgang Dahmen, and Philipp Lamby. Fast high-
dimensional approximation with sparse occupancy trees. Technical Re-
port 10:03, Interdisciplinary Mathematics Institute, University of South
Carolina, Columbia, SC, 2010. Accepted for publication in Journal of
Computational and Applied Mathematics.

[BFOS84] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.
Stone. Classification and Regression Trees. Wadsworth, 1984.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45:5-32, 2001.

[CFCC98] F. Chevallier, N.A. Scott F. Chéruy, and A. Chedin. A neural network ap-
proach for a fast and accurate computation of longwave radiative budget.
J. Appl. Meteor., 37:1385-1397, 1998.

20

[DOPY7]

[Hor89]

[HTFO09]

[KFRTBOS]

[KRCO5)]

[Tra97]

[Wen05]

R. DeVore, K. Oskolkov, and P. Petrushev. Approximation by feed-
forward neural networks. Annals of Numerical Mathematics, 4:261-287,
1997.

Kurt Hornik. Multilayer feedforward networks are universal approxima-
tors. Neural Networks, 2:359-366, 1989.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The FElements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer,
2nd edition, 2009.

Vladimir M. Krasnopolsky, Michael S. Fox-Rabinovitz, Hendrik L. Tol-
man, and Alexei A. Belochitski. Neural network approach for robust and
fast calculation of physical processes in numerical environmental models:

Compound parameterization with a qulaity control of larger errors. Neural
Networks, 21:535-543, 2008.

Vladimir M. Krasnopolsky, Michael Fox Rabinovitz, and Dmitry Chalikov.
New Approach to Calculation of Atmospheric Model Physics: Accurate

and Fast Neural Network Emulation of Longwave Radiation in a Climate
Model. Monthly Weather Review, 133:1370-1383, 2005.

C.T. Traxler. An Algorithm for Adaptive Mesh Refinement in n Dimen-
sions. Computing, 59:115-137, 1997.

Holger Wendland. Scattered Data Approximation. Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge Univer-
sity Press, 2005.

21

	IMI_Preprint_Cover_2010_08
	2010:08

	climapprox_preprint

