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RATIONAL BASES FOR SPACES OF HOLOMORPHIC
FUNCTIONS IN THE DISC

GEORGE KYRIAZIS AND PENCHO PETRUSHEV

Abstract. A new method for construction of bases for general distribution
spaces is developed. This method allows the freedom to prescribe the nature
and properties of the basic elements. The method is deployed to the construc-
tion of bases consisting of rational functions of uniformly bounded degrees for
Besov and Triebel-Lizorkin spaces of holomorphic functions in the unit disc.
In turn, this is utilized to give a new proof of Pekarski’s direct estimate for
rational approximation of holomorphic functions in Hp.

1. Introduction

The main purpose of this paper is to construct bases for spaces of holomorphic
functions in the unit disc D in C consisting of rational functions of uniformly
bounded degrees. Such a basis will be of the form

R = {RQ : Q ∈ Q},
where the index set Q consists of dyadic subintervals of [0, 1], quite like Meyer’s two
hump basis for Hp(D) constructed out of periodic wavelets [11]. Each element RQ

of R will be a rational function of degree ≤ K that is fixed. Targeted spaces are the
Hardy spaces Hp(D) and the more general Besov spaces Bs

p,q and Triebel-Lizorkin
spaces F s

p,q of holomorphic functions in D.
The primary motivation for this undertaking lies in the theory of rational ap-

proximation of holomorphic functions in D. A. Pekarskii [15, 16] proved remarkable
direct and inverse estimates for rational approximation in Hp(D) which involve
Besov spaces and allowed him to completely characterize the rates of rational ap-
proximation in Hp(D). We refer the reader to [14] for in depth discussion and
analysis of these results. The construction of a rational basis as described above
will enable us to give another proof of Pekarskii’s direct estimate and shed some
additional light on rational approximation of holomorphic functions.

To achieve our goal of constructing rational bases for spaces of holomorphic
functions we first develop a general method for construction of bases by “small
perturbation” of “nice” existing bases. The idea is to approximate the elements of
an existing basis, say, {GQ} by the elements of the new basis {RQ} following two
simple principles: localization and approximation. The localization of the new basis
is measured in terms of the size of the inner products 〈GQ, RP 〉, while the approxi-
mation - by the size of the inner products 〈GQ−RQ, GP 〉. Technically, it boils down
to constructing {RQ} so that the operator with matrix (〈GQ−RQ, GP 〉)Q,P∈Q has
sufficiently small norms on `2(Q) and on the sequence “smoothness” space of in-
terest (e.g. Besov or Triebel-Lizorkin sequence space). This method is rooted in
our previous work on bases [6, 7, 17], where bases were constructed for Besov and
Triebel-Lizorkin spaces on Rn. In [8] this method was developed for construction
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2 GEORGE KYRIAZIS AND PENCHO PETRUSHEV

of frames in a general setting and applied to the construction of frames of small
shrinking support on the sphere.

In our specific implementation of the method here we approximate Meyer’s two
hump wavelet basis functions, denoted {GQ}, by appropriate rational functions
{RQ} of uniformly bounded degrees on T = ∂D. The key observation is that the
H2 projection of the 1-periodized version of a rational function of the form 1

(1+x2)n

on R or its shifts extends to a rational function on D with poles outside D. This
allows us to mediate between rational functions with poles outside D and rational
functions on R and achieve the needed localization and approximation properties
of the new system.

An important background component of our development is the identification
of the Besov and Triebel-Lizorkin spaces Bs

p,q and F s
p,q of holomorphic functions

in D as spaces of distributions on the unit circle T , obtained by P. Oswald in [12].
We further improve on this result by obtaining a characterization of these Besov
and Triebel-Lizorkin spaces in terms of Meyer’s two hump wavelet basis [11], quite
in the spirit of the wavelet characterization of Besov and Triebel-Lizorkin spaces
on R (see e.g. [5, 11]).

Our main result asserts that under some conditions on the parameters of our
rational basis R, it can be used for decomposition of the Besov and Triebel-Lizorkin
spaces Bs

p,q and F s
p,q of holomorphic functions in D. As an application of this result

we prove a direct estimate for n-term approximation from our rational basis for Hp

which involves certain Besov spaces and as a consequence we obtain another proof
of Pekarskii’s direct theorem [16] for rational approximation in Hp.

The paper is organized as follows: In §2 we review Besov and Triebel-Lizorkin
spaces of holomorphic functions in D and their identification as spaces of distri-
butions on T from [12]. In §3 we give the definition of Meyer’s two hump wavelet
basis for Hp and use it for decomposition of Besov and Triebel-Lizorkin spaces on T .
In §4 we develop our general method for construction of bases. In §5 we construct
our rational basis and show that it can be used for decomposition of Besov and
Triebel-Lizorkin spaces. In §6 we prove a direct estimate for n-term approximation
from our rational basis in Hp and as a consequence we prove Pekarskii’s direct
estimate from [16].

Notation: We shall use the notation T := {z ∈ C : |z| = 1} and T := R/Z;
|x − y| = minn∈Z |x− y + n| will denote the distance on T or on R when dealing
with 1-periodic functions. Positive constants will be denoted by c, c1, c

′, . . . and
they may vary at every occurrence. Also, a ∼ b means c1a ≤ b ≤ c2a.

2. Spaces of holomorphic functions in the unit disc

2.1. Definition of Besov and Triebel-Lizorkin spaces. Here we review Besov
and Triebel-Lizorkin spaces of holomorphic functions in the unit disk D in C. We
refer the reader to [13, 19, 20] for the theory of the classical Besov and Triebel-
Lizorkin spaces on Rn and Tn. We begin with some notation. We let A = A(D)
denote the set of all holomorphic functions in D and for f ∈ A(D) we shall denote
briefly

‖f(r·)‖Lp :=
( ∫

|z|=1

|f(rz)|p|dz|
)1/p

=
(
2π

∫ 1

0

|f(re2πit)|pdt
)1/p

, 0 < p < ∞,
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and
‖f(r·)‖L∞ := sup

|z|=1

|f(rz)|.

The Hardy space Hp, 0 < p ≤ ∞, (see e.g. [22]) is defined as the set of all f ∈ A(D)
such that

‖f‖Hp := lim
r→1−

‖f(r·)‖Lp < ∞.

For a function f ∈ A(D) with Taylor series expansion f(z) =
∑

n≥0 f̂(n)zn we set

Jβf(z) :=
∑

n≥0

(n + 1)β f̂(n)zn, β ∈ R.

For β > 0 this is called the Weyl derivative of f of order β.

Definition 2.1. (a) Let s ∈ R and 0 < p, q ≤ ∞. The Besov space (B-space)
Bs

pq := Bs
pq(A) is defined as the set of all functions f ∈ A(D) with finite semi-norm

‖f‖Bs
pq

:=
( ∫ 1

0

(1− r)(β−s)q−1‖Jβf(r·)‖q
Lpdr

)1/q

if q 6= ∞, and

‖f‖Bs
p∞ := sup

0<r<1
(1− r)β−s‖Jβf(r·)‖Lp if q = ∞.

(b) Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. The Triebel-Lizorkin space (F-space)
F s

pq = F s
pq(A) is defined as the set of all f ∈ A(D) with finite quasinorm

‖f‖F s
pq

:=
∥∥∥
( ∫ 1

0

(1− r)(β−s)q−1|Jβf(r·)|qdr
)1/q∥∥∥

Lp
if q 6= ∞, and

‖f‖F s
p∞ :=

∥∥ sup
0<r<1

(1− r)β−s|Jβf(r·)|∥∥
Lp .

In the definition of all of the above quasi-norms β := s + 1.

Observe that in the above definition it suffices to require β > s. For such a se-
lection of β the respective quasinorms are equivalent. For this and other properties
of the B- and F-spaces we refer the reader to [2, 12].

It will be important for our further developments that the Besov and Triebel-
Lizorkin spaces of holomorphic functions defined above can be identified as spaces
of distributions on the unit circle T = {z : |z| = 1}, which should be viewed as
their boundary values.

We denote by D+ the class of test functions φ : T → C of the form

φ(e2πix) =
∑

n≥0

φ̂(n)e2πinx, x ∈ [0, 1), with φ̂(n) :=
∫ 1

0

φ(e2πix)e−2πinx dx

such that

(2.1) Pr(φ) := sup
n≥0

(n + 1)r|φ̂(n)| < ∞ for all r ≥ 0.

The locally convex topology in D+ is defined by the norms Pr, r = 0, 1, . . . .
The space of distributions D′+ is defined as the set of all bounded linear functionals
on D+. The pairing of f ∈ D′+ and φ ∈ D+ will be denoted by 〈f, φ〉 := f(φ),
which is consistent with the inner product 〈f, g〉 =

∫ 1

0
f(e2πix)g(e2πix)dx on T .

The above definition readily implies that for any f ∈ D′+ there exists r ≥ 0 such
that |〈f, φ〉| ≤ crPr(φ) for all φ ∈ D+, which yields

(2.2) |f̂(n)| ≤ cr(n + 1)r, n ≥ 0, where f̂(n) := 〈f, e2πinx〉.
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This in turn leads to the conclusion that for any f ∈ D′+
(2.3) f =

∑

n≥0

f̂(n)e2πinx in D′+.

Therefore, for any f ∈ D′+ there is a holomorphic function f ∈ A(D) (the extension
of f) such that

(2.4) f(z) =
∑

n≥0

f̂(n)zn, |z| < 1.

Conversely, for any function f ∈ A(D) with at most polynomially growing Taylor
coefficients (like in (2.2)) there is a unique distribution f ∈ D′+ with the same
Fourier series coefficients.
New convention. To simplify our notation, from now on we shall use the notation
φ(x) and f(x) instead of φ(e2πix) and f(e2πix), and consider the functions defined
on R and 1-periodic, i.e. defined on T := R/Z. For instance, the class of test
functions D+ will consist of all functions φ : T→ C of the form

φ(x) =
∑

n≥0

φ̂(n)e2πinx with φ̂(n) :=
∫ 1

0

φ(x)e−2πinx dx

such that Pr(φ) < ∞ for all r ≥ 0, where the norms Pr are defined in (2.1). It is
easy to see that the topology on D+ can be equivalently defined by the semi-norms

Nr(φ) := ‖φ(r)‖L∞ , r = 0, 1, . . . .

By (2.3) it follows that for f ∈ D′+ and φ ∈ D+

〈f, φ〉 =
∑

n≥0

f̂(n)φ̂(n),

where the series converges absolutely.
As already inducated in the introduction, when dealing with 1-periodic functions

on R we shall use the distance |x− y| = minn∈Z |x− y + n| on R or T.
As usual for φ ∈ D+ and x ∈ R we denote by τx the translation operator

τxφ(·) := φ(· − x) and we set φ̃(·) := φ(−·). These definitions extend by duality
to D′+. In particular, for f ∈ D′+ and φ ∈ D+ we define the convolution of f with
φ by f ∗ φ(x) := f(τx(φ̃)). It is easily seen that f ∗ φ ∈ D+ and

(2.5) f ∗ φ(x) =
∑

n≥0

f̂(n)φ̂(n)e2πinx.

2.2. Equivalent definition of Besov and Triebel-Lizorkin spaces. Here we
give an equivalent definition for the B- and F-spaces, introduced by Definition 2.1,
in terms of distributions on T. We shall essentially follow the development of these
spaces in [12]. Let ϕ̂ ∈ C∞[0,∞) satisfy

(2.6) supp ϕ̂ ⊂ [0, 2], ϕ̂ ≥ 0, ϕ̂(t) = 1 if t ∈ [0, 1].

Set ϕ̂1(t) := ϕ̂(t)− ϕ̂(2t) and note that supp ϕ̂1 ⊂ [1/2, 2].
Let the trigonometric polynomials Φj be defined by

(2.7) Φ0(x) := 1 and Φj(x) :=
∞∑

ν=0

ϕ̂1

(
2−j+1ν

)
e2πiνx, j ≥ 1.
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Definition 2.2. (a) Let s ∈ R and 0 < p, q ≤ ∞. The Besov space Bs
pq = Bs

pq(D′+)
is defined as the set of all f ∈ D′+ such that

(2.8) ‖f‖Bs
pq

:=
( ∞∑

j=0

(2sj‖Φj ∗ f‖Lp
)q

)1/q

< ∞

with the usual modification when q = ∞.
(b) Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. The Triebel-Lizorkin space

F s
pq = F s

pq(D′+) is defined as the set of all f ∈ D′+ such that

(2.9) ‖f‖F s
pq

:=
∥∥∥
( ∞∑

j=0

(2sj |Φj ∗ f(·)|)q
)1/q∥∥∥

Lp
< ∞

with the usual modification when q = ∞.

One of the main results in [12] asserts that Definitions 2.1 and 2.2 essentially
define the same spaces:

Theorem 2.3. [12] With the identification from (2.3)−(2.4) the Besov spaces from
Definition 2.1 and Definition 2.2 are the same with equivalent norms. The same is
true for the Triebel-Lizorkin spaces from Definition 2.1 and Definition 2.2.

Several remarks are in order: 1) The spaces Bs
pq and F s

pq are in general quasi-
Banach spaces and Banach spaces if p, q ≥ 1.

2) In the definition of the Besov and Triebel-Lizorkin norms above ϕ̂1 can be
replaced by any ϕ̂1 ∈ C∞[0,∞) with the properties: supp ϕ̂1 ⊂ [δ,K] and

|ϕ̂1(t)| ≥ c > 0 for δ + ε ≤ t ≤ K − ε,

where 0 < δ < 1, K > 1, ε > 0, and 2(δ + ε) ≤ K − ε. The resulting norms are
equivalent.

3) The spaces Bs
pq and F s

pq are continuously embedded in D′+, i.e. for any f ∈ Bs
pq

there exists k ≥ 0 such that |〈f, φ〉| ≤ c‖f‖Bs
pq
Pk(φ) for all φ ∈ D+, and the same

holds for F s
pq.

4) The Hardy space Hp can be identified as F 0
p2 with equivalent norms, when

0 < p < ∞.

2.3. Additional background material.
The maximal operator Mt, 0 < t < ∞, is defined by

(2.10) Mtf(x) := sup
I3x

(
1
|I|

∫

I

|f(y)|t dy

)1/t

,

where the sup is over all intervals I of length |I| ≤ 1.
The Fefferman-Stein (see [18]) vector-valued maximal inequality will play a

prominent role: If 0 < p < ∞, 0 < q ≤ ∞ and 0 < t < min{p, q} then for any
sequence of functions {fν}∞ν=1 on T,

(2.11)
∥∥∥
( ∞∑

ν=1

|Mtfν(·)|q
)1/q∥∥∥

Lp
≤ c

∥∥∥
( ∞∑

ν=1

|fν(·)|q
)1/q∥∥∥

Lp
.

An estimate on (Mt1I)(x) will be needed for an arbitrary interval I ⊂ R of
length |I| < 1, where 1I is the 1-periodic extension of the characteristic function
on I.
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Lemma 2.4. For any interval I = [a, b] of length b− a < 1

(2.12) (Mt1I)(x) ∼
(
1 + |I|−1|x− a|

)−1/t

,

where as elsewhere |x− a| := minn∈Z |x− a + n|.
This lemma is trivial and the proof will be omitted.

Localization of trigonometric polynomials. The nearly exponential localiza-
tion of trigonometric polynomials with coefficients obtained from sampling of smooth
compactly supported cutoff functions will be needed.

Lemma 2.5. Given ϕ̂ ∈ C∞(R) with supp ϕ̂ ⊂ [c, d] and n ≥ 1 we write

(2.13) Φ(x) :=
∑

ν∈Z
ϕ̂ (ν/n) e2πiνx.

Then for any r ≥ 0 and σ > 0 there exists a constant c > 0 such that

(2.14) |Φ(r)
n (x)| ≤ cnr+1(1 + n|x|)−σ, |x| ≤ 1/2.

This lemma is well known and follows by the fact that ϕ, the inverse Fourier
transform of the function ϕ̂ above, belongs to the Schwartz class S(R) of rapidly
decaying C∞ functions on R. For the proof one just applies the Poisson summation
formula as in the proof of Lemma 5.9 below. We omit the details.

3. Decomposition of B- and F-spaces via the two hump basis

3.1. Two hump wavelet basis. We next introduce wavelets with two humps
following closely Meyer’s construction from [11]. As in [11], given f ∈ L1(R) we
denote by f̂ its Fourier transform, defined by

(3.1) f̂(ξ) :=
∫

R
f(x)e−ixξdx.

Let Ψ := {2j/2ψ(2jx−k), j, k ∈ Z} be Meyer’s orthonormal wavelet basis for L2(R).
We recall that ψ is a real-valued function with the properties:

ψ ∈ S(R) with supp ψ̂ ⊂
{

ξ :
2π

3
≤ |ξ| ≤ 8π

3

}
,(3.2)

ψ(1− x) = ψ(x),(3.3)
∑

j∈Z
|ψ̂(ξ2−j |2 = 1, ξ 6= 0.(3.4)

From (3.3) it follows that ψ(x + 1/2) is even. It is convenient to write

ψ̂(ξ) = ω(ξ)e−iξ/2,

where ω(ξ) = ̂ψ(·+ 1/2)(ξ) is also real-valued and even.
Set

gj,k(x) := 2j/2
∑

`∈Z
ψ(2j(x + `)− k), 0 ≤ k < 2j , j ≥ 0.

It is not hard to see that the family {1} ∪ {gj,k : 0 ≤ k < 2j , j ≥ 0} is an
orthonormal basis for L2(T). These are the 1-periodic Meyer’s wavelets [11]. Then
gj,k(x) + gj,k(−x) is even and noting that gj,k(−x) = gj,k(1 − x) = gj,k∗(x) with
k∗ = 2j − k − 1 we conclude that the family

G := {1} ∪ {gj,k + gj,k∗ : 0 ≤ k < 2j−1, j ≥ 0}
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is an orthogonal basis for the subspace of even functions in L2(T).
Following Bochkariev’s idea from [1] Meyer constructed a basis for H2 by pro-

jecting the elements of G onto H2. More precisely, using the Poisson summation
formula it readily follows that

gj,k(x) = 2−j/2
∑

ν∈Z
ψ̂(2πν2−j)e2πiν(x−k2−j).

Set

Gj,k(x) := 2−j/2
∑

ν≥0

ψ̂(2πν2−j)
(
e2πiν(x−k2−j) + e2πiν(x−k∗2−j)

)
(3.5)

= 2−j/2
∑

ν≥0

ω(2νπ2−j) cos
(2νπ

2j

(
k +

1
2

))
e2πiνx

for 0 ≤ k < 2j−1, j ≥ 0. This is the orthogonal projection of gj,k + gj,k∗ onto
H2(T). Note that G0,0(x) = −e2πix. In addition, let G−1,0(x) := 1. Then the
family

{Gj,k : 0 ≤ k < 2j−1, j ≥ −1}
is an orthonormal basis for H2. Furthermore, as is shown in [11] this is an uncon-
ditional basis for Hp for 0 < p < ∞ and a Schauder basis for H∞.

We next introduce more compact and convenient for us notation. Let

(3.6) Qjk := [k/2j , (k + 1)/2j), k = 0, . . . , 2j−1 − 1, j ≥ 1,

and if Q = Qj,k we let xQ := k/2j denote the left end of Q and `(Q) := 2−j is its
length. Also, if Q = Qjk we set Q∗ = Qjk∗ , where k∗ := 2j − k − 1.

We define for j ≥ 1

Qj := {Qjk : 0 ≤ k < 2j−1}, Q∗j := {Qjk∗ : 0 ≤ k < 2j−1} = {Q∗ : Q ∈ Qj},
Vj := Qj ∪ Q∗j , and we also set Q0 = Q−1 := {[0, 1]}, Q∗0 = Q∗−1 := ∅. Note that
Qj ∩Q∗j = ∅. Finally we define

(3.7) Q := ∪j≥−1Qj and V := ∪j≥−1Vj .

In what follows we shall identify any pair of indices (j, k) with the respective
dyadic interval Qjk = [k/2j , k + 1/2j). Then we can write

(3.8) G = {GQ : Q ∈ Q}.
Observe that by Lemma 2.5 it readily follows that the basis elements GQ have

a two hump nearly exponential localization: For any σ > 0 there exists a constant
cσ > 0 such that for any Q ∈ Q
(3.9) |GQ(x)| ≤ cσ`(Q)−1/2

(
(1 + 2j |x− xQ|)−σ + (1 + 2j |x− xQ∗ |)−σ

)
.

It is also not hard to estimate the norms of GQ. Indeed, ‖GQ‖L2 = 1 by construc-
tion. This and (3.9) lead to

(3.10) ‖GQ‖Lp ∼ `(Q)−1/2+1/p for 0 < p ≤ ∞,

see e.g. the proof of Proposition 5.12 below.
We next show that that G is a decomposition system for D+ and D′+.
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Proposition 3.1. For any φ ∈ D+

(3.11) φ =
∑

Q∈Q
〈φ,GQ〉GQ in D+

and, hence, for any f ∈ D′+
(3.12) f =

∑

Q∈Q
〈f,GQ〉GQ in D′+.

Proof. Since G is a basis for H2 to prove (3.11) it suffices to show that the series
in (3.11) converges in the topology of D+.

Let r ≥ 0 and choose ` > r + 1. Using (3.5) and (2.1) if Q = Qjk, 0 ≤ k < 2j−1,
j ≥ 0, we obtain

|〈φ,GQ〉| ≤ 2−j/2
∑

2j/3<ν<2j+2/3

|ψ̂(2πν2−j)||φ̂(ν)|

≤ 2−j/2‖ψ̂‖∞P`(φ)
∑

2j/3<ν<2j+2/3

(ν + 1)−` ≤ c2−j(`−1/2)P`(φ)

and evidently |ĜQ(n)| ≤ 2−j/2+1|ψ̂(2πn2−j)|. Hence
∑

Q∈Qj

|〈φ,GQ〉||ĜQ(n)| ≤ c2−j(`−1)|ψ̂(2πn2−j)|P`(φ).

From this and (3.2) we infer

(n + 1)r
∑

Q∈Qj

|〈φ, GQ〉||ĜQ(n)| ≤ c2−j(`−r−1)|ψ̂(2πn2−j)|P`(φ), n ≥ 0.

Further, we use again (3.2) to obtain

sup
n≥0

(n + 1)r
∑

j≥N

∑

Q∈Qj

|〈φ,GQ〉||ĜQ(n)| ≤ cP`(φ) sup
n≥0

∑

j≥N

2−j(`−r−1)|ψ̂(2πn2−j)|

≤ cP`(φ)2−N(`−r−1) → 0 as N →∞,

which readily implies the convergence in D+ of the series in (3.11). ¤

3.2. Main assertion. In order to show that G is a basis for Besov and Tribel-
Lizorkin spaces we need to introduce their sequence counterparts.

Definition 3.2. (a) Given s ∈ R and 0 < p, q ≤ ∞ the space bs
pq := bs

pq(Q) is
defined as the set of all complex-valued sequences h := {hQ}Q∈Q such that

(3.13) ‖h‖bs
pq

:=
( ∞∑

j=−1

2j(s− 1
p + 1

2 )q
( ∑

Q∈Qj

|hQ|p
) q

p
)1/q

< ∞

with the usual modification for q = ∞.
(b) Given s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ the space fs

pq := fs
pq(Q) is defined

as the space of all complex-valued sequences h := {hQ}Q∈Q such that

(3.14) ‖h‖fs
pq

:=
∥∥∥
( ∞∑

j=−1

2sjq
∑

Q∈Qj

[|hQ|1̃Q(·)]q
)1/q∥∥∥

Lp
< ∞

with the usual modification for q = ∞. Here 1̃Q := `(Q)−1/21Q.
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We next use the above sequence spaces to establish the claimed decomposition
result.

Theorem 3.3. (a) Let s ∈ R, 0 < p, q ≤ ∞. Then any f ∈ Bs
pq has a unique

representation

(3.15) f =
∑

Q∈Q
cQ(f)GQ, where cQ(f) := 〈f, GQ〉

and the convergence is in the norm of Bs
pq; the convergence is unconditional if

p, q 6= ∞. Moreover,

(3.16) ‖f‖Bs
pq
∼ ‖(cQ(f))Q‖bs

pq(Q).

(b) Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Then any f ∈ F s
pq has a unique

representation

(3.17) f =
∑

Q∈Q
cQ(f)GQ, where cQ(f) := 〈f, GQ〉

and the convergence is in F s
pq; the convergence is unconditional if q 6= ∞. Further-

more,

(3.18) ‖f‖F s
pq
∼ ‖(cQ(f))Q‖fs

pq(Q).

This theorem is quite close in spirit to the developments in [3, 4, 5, 11, 19]. For
completeness we provide the essential parts of its proof in the following. We shall
need several lemmas.

Lemma 3.4. For any σ > 0 there exists a constant cσ > 0 such that

(3.19) |Φj ∗GQ(x)| ≤ cσ2ν/2
(
(1 + 2ν |x− xQ|)−σ + (1 + 2ν |x− xQ∗ |)−σ

)

for Q ∈ Qν , j − 2 ≤ ν ≤ j + 1, and Φj ∗ GQ(x) = 0 for Q ∈ Qν whenever
ν ≥ j + 2 or ν ≤ j − 3. Here Qν := ∅ if ν < −1.

Proof. Let Q = Qνk, j − 2 ≤ ν ≤ j + 1, j ≥ 1, and ν ≥ 0. By the definitions of
Φj , GQ in (2.7),(3.5), and by (2.5) we get

Φj ∗GQ(x) = 2−ν/2
∑

µ≥0

ϕ̂1

( µ

2j−1

)
ψ̂

(2πµ

2ν

)
e2πiµ(x−xQ)

+ 2−ν/2
∑

µ≥0

ϕ̂1

( µ

2j−1

)
ψ̂

(2πµ

2ν

)
e2πiµ(x−xQ∗ ) =: F (x) + F ∗(x).

Set ĝ(ξ) := ϕ̂1(2ν−j+1ξ)ψ̂(2πξ). Evidently, ĝ ∈ C∞(R), supp ĝ ⊂ [1/3, 4/3], and all
derivatives of ĝ can be bounded by constants independent of j, ν due to |ν− j| ≤ 3.
On the other hand, ϕ̂1( µ

2j−1 )ψ̂( 2πµ
2ν ) = ĝ( µ

2ν ). Therefore, by Lemma 2.5 we get

|F (x)| ≤ cσ2ν/2(1 + 2ν |x− xQ|)−σ

and the same estimate with xQ replaced by xQ∗ holds for F ∗. These two estimates
yield (3.19). In the case when j = 0 or ν = −1, estimate (3.19) holds trivially.

Also, Φj ∗GQ(x) = 0 for Q ∈ Qν , ν ≥ j +2 or ν ≤ j− 3, since in this case ĝ ≡ 0
with ĝ from above. ¤
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Definition 3.5. For a collection of complex numbers {hQ}Q∈Vj we set

(3.20) h\
Q :=

∑

P∈Vj

|hP |
(1 + 2j |xP − xQ|))κ

.

Here κ > 0 is a sufficiently large parameter that will be selected later on.

Lemma 3.6. Suppose t > 0 and let {hQ}Q∈Vj
, j ≥ 0, be a collection of complex

numbers. Assume κ > 1/t + 1 in the definition (3.20) of h\
Q. Then

h\
Q1Q(x) ≤ cMt

( ∑

P∈Vj

|hP |1P

)
(x).

This lemma is essentially the univariate version of Lemma A.2 in [4] and its proof
will be omitted.

Lemma 3.7. For any t > 0 there exists a constant c > 0 such that for any trigono-
metric polynomial g of degree ≤ n (n ≥ 0) one has

sup
y∈T

|g(y)|
(1 + n|x− y|)1/t

≤ c(Mtg)(x), x ∈ T.

This lemma is well known; its version for entire functions of exponential type is
given in [19], Theorem 1.3.1. We omit the proof.

Proof of Theorem 3.3. We shall only prove part (b) of this theorem in the case
when q < ∞; the proof in the case q = ∞ and the proof of part (a) are easier and
will be omitted.

Choose the constants t, κ, σ so that 0 < t < min{p, q}, κ > 1/t + 1, and σ ≥ κ.
Let f ∈ F s

pq. Then by Proposition 3.1 f =
∑

Q∈Q〈f,GQ〉GQ in D′+. Denote briefly
cQ := 〈f, GQ〉 and let us extend the sequence (cQ)Q∈Q to Q∗ by setting cQ∗ := cQ.

From above and (3.19) we get

|Φj ∗ f(x)| =
∣∣∣

∑

Q∈Q
cQΦj ∗GQ(x)

∣∣∣ ≤
∑

j−2≤ν≤j+1

∑

Q∈Qν

|cQ||Φj ∗GQ(x)|

≤ c
∑

j−2≤ν≤j+1

2ν/2
∑

Q∈Qν

|cQ|
(1 + 2ν |x− xQ|)σ

+
|cQ|

(1 + 2ν |x− xQ∗ |)σ

= c
∑

j−2≤ν≤j+1

2ν/2
∑

Q∈Vν

|cQ|
(1 + 2ν |x− xQ|)σ

.

For any Q ∈ Vj we denote WQ := {P ∈ ∪j−2≤ν≤j+1Vν : P ∩Q 6= ∅}, where Vν := ∅
if ν < 0. Note that #WQ ≤ 5. Then it follows from above that

|Φj ∗ f(x)| ≤ c
∑

P∈WQ

c\
P 1̃P (x), x ∈ Q ∈ Vj .

Here 1̃P := `(P )−1/21P is the L2-normalized characteristic function of P . We now
insert the above in (2.9) and use Lemma 3.6 and the maximal inequality (2.11) to
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obtain

‖f‖F s
pq
≤ c

∥∥∥
( ∑

j≥0

[
2sj

∑

Q∈Vj

∑

P∈WQ

c\
P 1̃P (·)

]q)1/q∥∥∥
Lp

≤ c
∥∥∥
( ∑

j≥0

[
2sj

∑

Q∈Vj

c\
Q1̃Q(·)

]q)1/q∥∥∥
Lp

≤ c
∥∥∥
( ∑

j≥0

[
Mt

(
2sj

∑

Q∈Vj

|cQ|1̃Q

)
(·)

]q)1/q∥∥∥
Lp

≤ c
∥∥∥
( ∑

j≥0

[
2sj

∑

Q∈Vj

|cQ|1̃Q

]q)1/q∥∥∥
Lp
≤ c‖(cQ)Q‖fs

pq(Q).

Thus ‖f‖F s
pq
≤ c‖(cQ)Q‖fs

pq(Q), which readily implies the unconditional convergence
in (3.17) in the norm of F s

pq.
We next prove an estimate in the opposite direction. Put

Ψ̆j(x) :=
∑

ν≥0

ψ(2πν2−j)e2πiνx, j ≥ 0, and Ψ̆−1(x) := 1.

From properties (3.2)-(3.4) of ψ and remark (2) after Theorem 2.3 it follows that

(3.21) ‖f‖F s
pq
∼

∥∥∥
( ∑

j≥−1

(2sj |Ψ̆j ∗ f(·)|)q
)1/q∥∥∥

Lp
.

Observe that Ψ̆j ∗ f is a trigonometric polynomial of degree < 4
32j and for Q ∈ Qj

|〈f, GQ〉| = 2−j/2|Ψ̆j ∗ f(xQ) + Ψ̆j ∗ f(xQ∗)|
≤ c2−j/2

(
sup
y∈Q

|Ψ̆j ∗ f(y)|+ sup
y∈Q∗

|Ψ̆j ∗ f(y)|).

Using the above and Lemma 3.7 we get
∑

Q∈Qj

[|〈f,GQ〉|1̃Q(·)]q ≤ c
∑

Q∈Vj

[sup
y∈Q

|Ψ̆j ∗ f(y)|1Q(·)]q

≤ c
[
sup
y∈T

|Ψ̆j ∗ f(y)|
(1 + 2j |x− y|)1/t

]q

≤ c
[
Mt

(|Ψ̆j ∗ f |)(x)
]q

.

Further, we use the definition of ‖ · ‖fs
pq

in (3.14) and the maximal inequality (2.11)
to obtain

‖(〈f,GQ〉)‖fs
pq

:=
∥∥∥
( ∑

j≥−1

2jsq
∑

Q∈Qj

[|〈f,GQ〉|1̃Q(·)]q
)1/q∥∥∥

Lp

≤ c
∥∥∥
( ∑

j≥−1

2jsq
[
Mt

(|Ψ̆j ∗ f |)(·)
]q)1/q∥∥∥

Lp

≤ c
∥∥∥
( ∑

j≥−1

[
2sj |Ψ̆j ∗ f(·)|]q

)1/q∥∥∥
Lp
≤ c‖f‖F s

pq
.

Here for the last inequality we used (3.21). ¤
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4. General scheme for construction of bases

4.1. The setting. Assume that H is a separable complex Hilbert space (of func-
tions) and D ⊂ H is a linear subspace (of test functions) furnished with a locally
convex topology induced by a sequence of norms or semi-norms. Let D′ be the
dual of D consisting of all continuous linear functionals on D. We also assume that
H ⊂ D′. The pairing of f ∈ D′ and φ ∈ D will be denoted by 〈f, φ〉 := f(φ) and we
assume that it is consistent with the inner product 〈f, g〉 in H. Typical examples
are

(a) H = L2(Rn), D = S(Rn) the Schwartz class on Rn, and D′ = S ′ the dual
space of all tempered distributions on Rn;

(b) H = L2(Rn), D = S∞(Rn) the set of all functions φ in the Schwartz class
S(Rn) such that

∫
φ(x)xα = 0 for α ∈ Zn

+, and D′ its dual;
(c) H = H2(T) the Hardy space of boundary values of holomorphic functions in

the unit disc D, and D := D+ and D′ := D′+ as described in §2.
Our next assumption is that L ⊂ D′ with norm ‖ · ‖L is a quasi-Banach space

of distributions, which is continuously embedded in D′. Further, we assume that
D ⊂ H ∩ L and D is dense in H and L with respect to their respective norms.

We also assume that `(Q) with norm ‖ · ‖`(Q) is an associated to L quasi-Banach
space of complex-valued sequences with domain a countable index set Q. Coupled
with a basis Ψ the sequence space `(Q) will be utilized for characterization of the
space L. In addition to being a quasi-norm we assume that ‖ · ‖`(Q) obeys the
conditions:

(i) For any sequence (hQ)Q∈Q ∈ `(Q) one has ‖(hQ)‖`(Q) = ‖(|hQ|)‖`(Q).
(ii) If the sequences (hQ)Q∈Q, (gQ)Q∈Q ∈ `(Q) and |hQ| ≤ |gQ| for Q ∈ Q, then

‖(hQ)‖`(Q) ≤ c‖(gQ)‖`(Q).
(iii) Compactly supported sequences are dense in `(Q).

4.2. Construction of bases for spaces of distributions.

4.2.1. The old basis. Given spaces D ⊂ H ⊂ D′, L, and `(Q) as described in §4.1
with Q a countable index set, we assume that Ψ := {ψQ : Q ∈ Q} ⊂ D is an
orthonormal basis for H, that is, 〈ψQ, ψP 〉 = δQP for Q,P ∈ Q, and for any f ∈ H

(4.1) f =
∑

Q∈Q
〈f, ψQ〉ψQ in H and ‖f‖H = ‖(〈f, ψQ〉)Q‖`2(Q).

We also assume that Ψ is a basis for the space L in the following sense: Every
f ∈ L has a unique representation in terms of {ψQ}Q∈Q and

(4.2) f =
∑

Q∈Q
〈f, ψQ〉ψQ,

where the convergence is unconditional in L, and

(4.3) c1‖f‖L ≤ ‖(〈f, ψQ〉)Q‖`(Q) ≤ c2‖f‖L

for some constants c1, c2 > 0.

Remark 4.1. In (4.1)-(4.2) above and throughout the rest of this section when we
write “in H” or “in L” it will always mean that the convergence of the respective
series is unconditional in H or in L. For unconditional convergence and bases we
refer the reader to [10].
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4.2.2. Construction of a new basis. Our idea is to first construct by perturbing Ψ
a new basis Θ = {θQ : Q ∈ Q} for H with elements θQ ∈ H and then to show
that under some additional localization and approximation conditions Θ is a basis
for L. Since Ψ is a basis for H, we have

(4.4) θQ =
∑

P∈Q
〈θQ, ψP 〉ψP in H.

Denote by A the transformation matrix

(4.5) A := (aQP )Q,P∈Q, aQP := 〈θQ, ψP 〉.
Our key assumption is that the operator A with matrix A is bounded and invertible
on `2(Q) and A−1 is also bounded on `2(Q). Observe that if

(4.6) D = (dQP )Q,P∈Q := (〈ψQ − θQ, ψP 〉)Q,P∈Q,

then D = I −A and, therefore, A−1 exists and is bounded on `2(Q) if

(4.7) ‖D‖`2(Q)7→`2(Q) < 1.

This is our main assumption in constructing Θ as a Riesz basis for H. The gist of
our method is to approximate ψQ by θQ in such a way that D satisfies (4.7).

We shall show that under these conditions Θ is a Riesz basis for H. To proceed,
let

(4.8) A−1 =: (bQP )Q,P∈Q

and define

(4.9) θ̃Q :=
∑

P

bPQψP , Q ∈ Q.

Since (A−1)∗ =
(
bPQ

)
Q,P∈Q is the adjoint matrix of A−1 and

‖(A−1)∗‖`2(Q) 7→`2(Q) = ‖A−1‖`2(Q)7→`2(Q) < ∞,

each vector row of (A−1)∗ belongs to `2(Q) and hence θ̃Q from (4.9) is well defined
and θ̃Q ∈ H. Evidently, bPQ = 〈θ̃Q, ψP 〉 and hence 〈ψP , θ̃Q〉 = bPQ.

We set Θ̃ := {θ̃Q : Q ∈ Q}. Then it is easy to see that the pair (Θ, Θ̃) is a
biorthogonal system in H, i.e. 〈θP , θ̃Q〉 = δQP . Indeed,

〈θP , θ̃Q〉 =
∑

I

bIQ〈θP , ψI〉 =
∑

I

aPIbIQ = (AA−1)PQ = δPQ.

Proposition 4.2. If A,A−1,AT , (A−1)T are bounded on `2(Q), then Θ (with dual
Θ̃) is a Riesz basis for H, i.e. for any f ∈ H

(4.10) f =
∑

Q∈Q
〈f, θ̃Q〉θQ in H and

(4.11) c1‖f‖H ≤ ‖(〈f, θ̃Q〉)Q‖`2(Q) ≤ c2‖f‖H .

Proof. It is well know that (see e.g. [21]) a necessary and sufficient condition for
Θ ⊂ H to be a Riesz basis for H is that Θ satisfies the conditions:

(i) Θ is complete in H (the closed span of Θ is all of H).
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(ii) There exist constants c′, c′′ > 0 such that for any compactly supported
sequence h = (hQ)Q∈Q one has

(4.12) c′‖h‖`2(Q) ≤
∥∥ ∑

Q∈Q
hQθQ

∥∥
H
≤ c′′‖h‖`2(Q).

We shall first prove that for any Q ∈ Q
(4.13) ψQ =

∑

I∈Q
〈ψQ, θ̃I〉θI =

∑

I∈Q
bQIθI in H.

To this end we shall utilize this lemma:

Lemma 4.3. The operator Th :=
∑

Q∈Q hQθQ is well defined and bounded as an
operator from `2(Q) into H.

Proof. Let h = (hQ)Q∈Q be a compactly supported sequence of complex numbers.
Then by the boundedness of AT on `2(Q) and (4.1) we have

‖Th‖H =
∥∥(〈 ∑

Q∈Q
hQθQ, ψP

〉)
P

∥∥
`2(Q)

=
∥∥( ∑

Q∈Q
hQ〈θQ, ψP 〉

)
P

∥∥
`2(Q)

≤ c‖AT ‖`2(Q)7→`2(Q)‖h‖`2(Q) ≤ c‖h‖`2(Q).

Since compactly supported sequences are dense in `2(Q), it follows that the operator
T is bounded as an operator from `2(Q) to H. It also follows that for any sequence
{hQ} ∈ `2(Q) the series

∑
Q∈Q hQθQ converges unconditionally in `2(Q). ¤

We now prove (4.13). Since A−1 = (bQP )Q,P∈Q and ‖(A−1)T ‖`2(Q) 7→`2(Q) < ∞,
we have (bQI)I ∈ `2(Q) and applying Lemma 4.3 it follows that gQ :=

∑
I∈Q bQIθI

is a well defined element of H. On the other hand,

〈gQ, ψP 〉 =
∑

I∈Q
bQI〈θI , ψP 〉 =

∑

I∈Q
bQIaIP = (A−1A)QP = δQP ,

yielding gQ = ψQ. Hence, (4.13) holds.
As a basis Ψ := {ψQ} is complete in H and now (4.13) implies that Θ := {θQ}

is complete in H as well.
We now turn to the proof of (4.12). Let h = (hQ)Q∈Q be a compactly supported

sequence of complex numbers. Then by Lemma 4.3
∥∥∑

Q∈Q hQθQ

∥∥
H
≤ c‖h‖`2(Q),

which gives the right-hand side estimate in (4.12).
For the other direction, denote briefly f :=

∑
Q∈Q hQθQ. As was shown above

the system Θ̃ := {θ̃Q}, defined in (4.9), is the dual of Θ and hence for Q ∈ Q

hQ = 〈f, θ̃Q〉 =
〈
f,

∑

P∈Q
bPQψP

〉
=

∑

P∈Q
bPQ

〈
f, ψP

〉
,

which yields

‖h‖`2(Q) ≤ ‖(A−1)T ‖`2(Q) 7→`2(Q)

∥∥(〈f, ψP 〉)P

∥∥
`2(Q)

≤ c‖f‖H .

Here we used the boundedness of (A−1)T on `2(Q) and (4.1). Thus (4.12) is
established and hence Θ is a Riesz basis. This in turn implies (4.10)-(4.11). ¤

Our next aim is to show that under some reasonable conditions on A and A−1

the system Θ is an unconditional basis for L.
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Theorem 4.4. Let A and A−1 be bounded on `2(Q) and assume that the operators
AT and (A−1)T with matrices AT and (A−1)T are bounded on `(Q). Then Θ
(with dual Θ̃) is a basis for L in the following sense: Each f ∈ L has a unique
representation in terms of {θQ}Q∈Q and

(4.14) f =
∑

Q∈Q
〈f, θ̃Q〉θQ,

where by definition 〈f, θ̃Q〉 :=
∑

P∈Q〈f, ψP 〉〈ψP , θ̃Q〉 and the series converges un-
conditionally in L. Furthermore, there exist constants c1, c2 > 0 such that

(4.15) c1‖f‖L ≤ ‖(〈f, θ̃Q〉)Q‖`(Q) ≤ c2‖f‖L for f ∈ L.

Proof. We first prove the right-hand side estimate in (4.15). Let f ∈ L. Then by
(4.9) 〈ψQ, θ̃P 〉 = bQP and using that (A−1)T is bounded on `(Q), we get

‖(〈f, θ̃Q〉)‖`(Q) =
∥∥( ∑

P∈Q
〈f, ψP 〉〈ψP , θ̃Q〉

)
Q

∥∥
`(Q)

≤ ∥∥( ∑

P∈Q
bPQ〈f, ψP 〉

)
Q

∥∥
`(Q)

≤ ‖(A−1)T ‖`(Q)7→`(Q)‖(〈f, ψQ〉)Q‖`(Q) ≤ c‖f‖L,(4.16)

where for the last inequality we used (4.3). Thus the claimed inequality is confirmed.
We next deal with the left-hand side estimate in (4.15). For this we first prove

that the operator Th :=
∑

Q∈Q hQθQ is well defined and bounded as an operator
from `(Q) into L. Let first h = (hQ)Q∈Q be a compactly supported sequence of
complex numbers. By (4.4) we have θQ =

∑
P aQP ψP and hence

Th =
∑

Q∈Q
hQθQ =

∑

P∈Q

( ∑

Q∈Q
aQP hQ

)
ψP .

Then by (4.3) and the boundedness of AT on `(Q), we obtain

‖Th‖L ≤ c
∥∥( ∑

Q∈Q
aQP hQ

)
P

∥∥
`(Q)

≤ c‖AT ‖`(Q)7→`(Q)‖h‖`(Q) ≤ c‖h‖`(Q).(4.17)

By condition (iii) on `(Q) compactly supported sequences are dense in `(Q), and
hence the operator T can be extended uniquely as a bounded operator from `(Q)
to L. More precisely, from above and conditions (i)-(iii) on `(Q) it follows that for
any sequence h = (hQ)Q∈Q ∈ `(Q) and any ε > 0 there exists a finite set of indices
F ⊂ Q such that for every index set F ′ ⊂ Q \ F we have

∥∥ ∑

Q∈F ′
hQθQ

∥∥
L

< ε.

This readily implies (see [10]) that the series
∑

Q∈Q hQθQ converges unconditionally
in L. Thus T is a well defined and bounded operator from `(Q) into L. Assuming
that (4.14) is valid, using (4.17) we obtain the left-hand side estimate in (4.15).

It remains to show the validity of (4.14). We define a new operator U on L by

Uf :=
∑

Q∈Q
〈f, θ̃Q〉θQ.

By (4.16) we have
(〈f, θ̃Q〉

)
Q∈Q ∈ `(Q) for f ∈ L. Then from the boundedness of

the operator T it follows that the operator U is well defined and bounded on L. On
the other hand by (4.10), Uf = f for f ∈ H and hence for f ∈ D, but D is dense
in L. Therefore, Uf = f for f ∈ L, i.e. (4.14) holds true. ¤
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5. Rational basis for B- and F-spaces on the disc

In this section we utilize the scheme from §4 to the construction of a basis
consisting of rational functions of uniformly bounded degrees for Besov and Triebel-
Lizorkin spaces of holomorphic functions in the unit disc. Our basis will be of the
form {RQ}Q∈Q, where the index set Q is the family of dyadic cubes defined in (3.7).

5.1. Construction of the new basis. Let

(5.1) Φ(x) :=
1

(1 + x2)n
, x ∈ R, n ∈ N,

and denote

(5.2) ΘK :=
{

θ : θ(x) =
K∑

ν=1

cνΦ(ax + bν), cν , bν ∈ R, a > 0
}

.

Evidently, ΘK ⊂ R2nK(R), where Rn(R) is the set of all rational functions of degree
(order) ≤ n on R with real coefficients.

For future references, we denote by Rn(D) the set of all rational functions R of
degree (order) ≤ n which are holomorphic on D, i.e. the poles of R are outside D.

The gist of our method is to construct a rational basis for spaces of holomorphic
functions in D by taking the H2 projections of the periodized appropriate rational
functions from RK(R) for some fixed K.

The first step of this scheme is to approximate Meyer’s mother wavelet ψ and
its derivatives by a rational function on R:

Proposition 5.1. Suppose ψ is the function from (3.2) − (3.4) which generates
Meyer’s orthonormal basis of L2(R). Given N, n ∈ N, M > 0 with 2n > M , and
ε > 0 there exists K ≥ 1 and θ ∈ ΘK such that

(5.3)
(i) |ψ(r)(x)− θ(r)(x)| ≤ ε(1 + |x|)−M , 0 ≤ r ≤ N + 2,

(ii)
∫

R
xrθ(x) dx = 0, 0 ≤ r ≤ N.

For the construction of a function θ as above we refer the reader to [7, Theo-
rem 4.1] (see also [8, Theorem 3.8]).

We are now prepared to define the elements of our rational basis. Just as in the
construction of the two hump wavelet basis of H2(T) (see (3.5)) we define for each
Q = Qjk ∈ Qj (0 ≤ k < 2j−1, j ≥ 0) a function RQ on T by

(5.4) RQ(x) := 2−j/2
∑

ν≥0

θ̂(2πν2−j)
(
e2πiν(x−k2−j) + e2πiν(x−k∗2−j)

)
,

where k∗ = 2j − k − 1 and we set RQ(x) := 1 if Q = Q−1,0. Here θ̂ is the Fourier
transform of θ. Then

(5.5) R := {RQ : Q ∈ Q}
is our new system on T. The parameters N , M , n, ε of R will be selected in
Theorem 5.2 below.
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5.2. Main result. In the following, we let J := 1/ min{1, p} in the case of B-spaces
and J := 1/ min{1, p, q} for F-spaces. Now, we can state our main result:

Theorem 5.2. Suppose s ∈ R, 0 < p, q < ∞, and let R := {RQ}Q∈Q be con-
structed as above with θ satisfying (5.3), where N > max{s,J ,J − s − 1} and
M > N + 1. Then

(a) Each RQ ∈ R extends to a rational function in RK(D) for some fixed K < ∞.
(b) If ε > 0 is sufficiently small (depending only on N and M) the system R

has a dual system R̃ such that (R, R̃) is a Riesz basis for H2(T) and unconditional
basis for Bs

pq and F s
pq in the sense of Theorem 4.4. In particular, any f ∈ Bs

pq or
f ∈ F s

pq has a unique representation

(5.6) f =
∑

Q∈Q
dQ(f)RQ,

where dQ(f) := 〈f, R̃Q〉 :=
∑

P∈Q〈f,GP 〉〈GP , R̃Q〉 and the convergence is uncon-
ditional in Bs

pq or F s
pq. Furthermore, if f ∈ Bs

pq or f ∈ F s
pq we have

(5.7) ‖f‖Bs
pq
∼ ‖(dQ(f))Q‖bs

pq(Q) or ‖f‖F s
pq
∼ ‖(dQ(f))Q‖fs

pq(Q),

respectively.

Remark 5.3. (a) The roles of {s, p, q} and {N, M, ε} above can be reversed, i.e.
the conditions on the parameters of the basis R can be considered as conditions on
the indices {s, p, q} under which the conclusion of the theorem holds.

(b) Using the identification from (2.3) − (2.4) one can immediately extend the
elements of R to D to obtain a rational basis for the F- and B-spaces of holomorphic
functions on D. In the future, e.g. in §6, we shall denote this basis by R again.

We shall carry out the proof of Theorem 5.2 in several steps, showing first that
the elements of R are rational functions.

5.3. The basis elements are rational functions. In this subsection we prove
part (a) of Theorem 5.2 (see Proposition 5.6 below). To this end we need some
preparation.

Denote by Pn the set of all univariate algebraic polynomials of degree ≤ n.

Lemma 5.4. Let Φ(x) = 1
(1+x2)n , n ∈ N. Then there exists a polynomial P ∈ Pn−1

such that

(5.8) Φ̂(x) = e−|x|P (|x|),
where Φ̂ is the Fourier transform of Φ (see (3.1)).

Proof. Since Φ is an even function Φ̂ is also even, and hence it suffices to establish
(5.8) for x > 0 only. Changing the variables we get

(5.9) Φ̂(x) =
∫

R

1
(1 + y2)n

e−ixy dy = x2n−1

∫

R

eiy

(x2 + y2)n
dy.

Let

f(z) :=
eiz

(x2 + z2)n
=

eiz

(z − ix)n(z + ix)n
.
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Fix x > 0 and for R > x let γ = γR be the curve consisting of the segment [−R, R]
on the real line and the arch of the circle |z| = r in the upper half plane. By the
Residue Theorem

1
2πi

∫

γ

f(z)dz = Res(f ; ix),

where Res(f ; ix) is the residue of f at ix given by

Res(f ; ix) =
1

(n− 1)!
lim

z→ix

dn−1

dzn−1
(z − ix)nf(z)

=
1

(n− 1)!
lim

z→ix

dn−1

dzn−1

(
eiz

(z + ix)n

)
.

Using Leibniz’s formula there exist constants aν ∈ C, ν = 0, . . . , n− 1, such that

(5.10) Res(f ; ix) = e−x
n−1∑
ν=0

aνx−n−ν .

Writing ∫

γ

f(z)dz =
∫ R

−R

eiy

(x2 + y2)n
dy +

∫ π

0

eiReit

iReit

(x2 + R2e2it)n
dt

we observe that the second integral above tends to zero as R → ∞ and letting
R →∞ we arrive at

(5.11)
∫

R

eiy

(x2 + y2)n
dy = 2πi Res(f ; ix).

Finally, putting together (5.9), (5.10), and (5.11) we get

Φ̂(x) = e−x
n−1∑
ν=0

cνxν ,

for some constants c0, . . . , cn−1 ∈ C, which completes the proof. ¤

Lemma 5.5. Let P ∈ Pn−1, n ∈ N, and a ∈ C. Then there exist constants
b0, . . . , bn−1 ∈ C such that

(5.12)
∑

m≥0

P (m)
(z

a

)m

=
n−1∑
ν=0

bν

( a

a− z

)ν+1

, |z| < |a|.

Proof. Put pν(x) := (x+1)···(x+ν)
ν! for ν ≥ 1 and p0(x) := 1. Evidently, the

polynomials p0, . . . , pn−1 are linear independent and pν(m) =
(
m+ν

ν

)
. Therefore,

there exist coefficients bν ∈ C, ν = 0, . . . , n− 1, such that

(5.13) P (m) =
n−1∑
ν=0

bν

(
m + ν

ν

)
, m ∈ Z.

On the other hand, the identity
(

1
a−z

)(ν) = ν!
(a−z)ν+1 implies that for |z| < |a|

aν+1

(a− z)ν+1
=

aν

ν!

∑

n≥0

(zn

an

)(ν)

=
∑

n≥ν

(
n

ν

)(z

a

)n−ν

=
∑

m≥0

(
m + ν

ν

)(z

a

)m

.
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Using this and (5.13) we obtain

∑

m≥0

P (m)
(z

a

)m

=
n−1∑
ν=0

bν

∑

m≥0

(
m + ν

ν

)(z

a

)m

=
n−1∑
ν=0

bν

( a

a− z

)ν+1

,

which confirms (5.12). ¤
We are now prepared to show that the new system R = {RQ : Q ∈ Q} (defined

in (5.5)) consists of rational functions of uniformly bounded degrees.

Proposition 5.6. Each element RQ of the new system R extends to a rational
function from R2nK(D).

Proof. Let Q = Qjk ∈ Qj (0 ≤ k < 2j−1, j ≥ 0). From the definition of RQ in
(5.4) we infer that RQ can be extended in D as

RQ(z) = Hj,k(z) + Hj,k∗(z),

where

(5.14) Hj,k(z) =
∑

m≥0

θ̂(2πm2−j)e−2πimk2−j

zm, |z| < 1,

and k∗ := 2j−k−1. Observe that from the decay of θ̂ it follows that the last series
above converges absolutely for |z| = 1. Thus it suffices to show that Hj,k(z) ∈ RnK

if 0 ≤ k < 2j .
Since θ ∈ ΘK then θ is of the form θ(x) =

∑K
ν=1 cνΦ(αx + βν) with α > 0 and

cν , βν ∈ R. Applying the Fourier transform and Lemma 5.4 we get

(5.15) θ̂(ξ) = α−1Φ̂(ξ/α)
K∑

ν=1

cνei(βν/α)ξ = α−1e−|ξ|/αP (|ξ|/α)
K∑

ν=1

cνei(βν/α)ξ,

where P ∈ Pn−1, and hence

Hj,k(z) =
∑

m≥0

α−1e−2πm2−jα−1
P (2πm2−jα−1)

K∑
ν=1

cνei2πm2−j(βν/α−k)zm

=
K∑

ν=1

cν

α

∑

m≥0

P (2πm2−jα−1)

(
z

exp
{
2π2−jα−1 − i2π2−j(βν

α − k)
}

)m

.

We set aν := exp
{
2π2−jα−1− i2π2−j(βν/α− k)

}
and apply Lemma 5.5 to obtain

Hj,k(z) =
K∑

ν=1

α−1cν

∑

m≥0

P (2πm2−jα−1)
( z

aν

)m

=
K∑

ν=1

n−1∑
r=0

γrcν

( aν

aν − z

)r+1

,

for some γ0, . . . , γn−1 ∈ C. Observe that |aν | > 1. Therefore, Hj,k ∈ RnK(D),
which completes the proof. ¤
5.4. Almost diagonal operators. For the proof of Theorem 5.2 we need to study
the boundedness of almost diagonal operators on the sequence spaces bs

pq := bs
pq(Q)

and fs
pq := fs

pq(Q).

Definition 5.7. Let A be a linear operator acting on bs
pq or bs

pq with associated
matrix (aQP )Q,P∈Q. We say that A is almost diagonal if there exists δ > 0 such
that

sup
Q,P∈Q

|aQP |
ωδ(Q, P )

< ∞,
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where for Q ∈ Qj and P ∈ Qi, i, j ≥ −1,

ωδ(Q,P ) := 2(i−j)s min
{
2(i−j)(1+δ)/2, 2(j−i)(J+δ/2−1/2)

}

×
(

1(
1 + 2min{i,j}|xQ − xP |

)J+δ
+

1(
1 + 2min{i,j}|xQ − xP∗ |

)J+δ

)
(5.16)

with J := 1/ min{1, p} for bs
pq and J := 1/ min{1, p, q} for fs

pq.

Note that above we use our earlier convention |x− y| := minn∈Z |x− y + n|.
We claim that almost diagonal operators are bounded on bs

pq and fs
pq. More

precisely, with the notation

(5.17) ‖A‖δ := sup
Q,P∈Q

|aQP |
ωδ(Q,P )

the following result holds:

Proposition 5.8. Suppose s ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ (0 < p ≤ ∞ in the
case of b-spaces) and assume that ‖A‖δ < ∞ for some δ > 0. Then there exists a
constant c > 0 such that for any sequence h := {hQ}Q∈Q ∈ bs

pq

(5.18) ‖Ah‖bs
pq
≤ c‖A‖δ‖h‖bs

pq
,

and for any h := {hQ}Q∈Q ∈ fs
pq

(5.19) ‖Ah‖fs
pq
≤ c‖A‖δ‖h‖fs

pq
.

The proof of this proposition is quite similar to the proof of Theorem 3.3 in [4].
We omit it.

5.5. Estimation of inner products. Our next step is to estimate the decay of
|〈RQ, GP 〉| and |〈GQ−RQ, GP 〉| away from the main diagonal. To this end we need
some preparation.

Lemma 5.9. Let h ∈ C2(R) satisfy the following conditions for some N > 1 and
M > N + 1: ∫

R
xrh(x) dx = 0, 0 ≤ r ≤ N,(5.20)

|h(r)(x)| ≤ A(1 + |x|)−M , r = 0, 1, 2.(5.21)

If
g(x) =

∑

ν≥0

ĥ(2πνn−1)e2πiνx, n ≥ 1,

then

(5.22) |g(x)| ≤ cAn(1 + n|x|)−N , |x| ≤ 1/2.

Proof. Formally,

ξmĥ(r)(ξ) = (−i)mir
∫

R
(xrh(x))(m)e−iξxdx

and hence, using (5.21) and the assumption M > N + 1, we get

|ξ|2|ĥ(r)(ξ)| ≤
∫

R
|(xrh(x))

′′ |dx ≤ cA for 0 ≤ r ≤ N,
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which implies
|ĥ(r)(ξ)| ≤ cA(1 + |ξ|)−2, ξ ∈ R, 0 ≤ r ≤ N.

On the other hand, by (5.20) we have ĥ(r)(0) = 0 for 0 ≤ r ≤ N .
Let f := (ĥ(·)1[0,∞))∨, i.e. f(x) =

∫∞
0

ĥ(ξ)eiξxdξ. Using the above we infer

|x|N |f(x)| =
∣∣∣
∫ ∞

0

ĥ(N)(ξ)eiξxdξ
∣∣∣ ≤

∫ ∞

0

|ĥ(N)(ξ)|dξ ≤ cA

and hence

(5.23) |f(x)| ≤ cA(1 + |x|)−N , x ∈ R.

The Poisson’s summation formula

(5.24)
∑

ν∈Z
f(x + ν) =

∑

ν∈Z
f̂(2πν)e2πiνx,

applied to f(n·) (observe that f̂(n·) = n−1f̂(·/n)), yields

g(x) =
∑

ν≥0

ĥ(2πνn−1)e2πiνx = n
∑

ν∈Z
f(n(x + ν)).

This coupled with (5.23) gives, for |x| ≤ 1/2,

|g(x)| ≤ cnA
∑

ν∈Z
(1 + n|x + ν|)−N ≤ cnA(1 + n|x|)−N

∑

ν≥1

ν−N ≤ cnA(1 + n|x|)−N ,

which completes the proof. ¤
In the following, for a given function g on R we set gj(x) := 2jg(2jx) for j ∈ Z.

Observe that (gj)∧(ξ) = ĝ(ξ2−j).

Lemma 5.10. Suppose the functions g ∈ CN (R) and h ∈ C(R) satisfy the condi-
tions:

|g(r)(x)| ≤ A1(1 + |x|)−M1 , 0 ≤ r ≤ N, |h(x)| ≤ A2(1 + |x|)−M2 ,

and ∫

R
xrh(x)dt = 0 for 0 ≤ r ≤ N − 1,

where N ≥ 1, M2 ≥ M1, M2 > N + 1, and A1, A2 > 0. Then for k ≥ j (j, k ∈ Z)

|gj ∗ hk(x)| ≤ cA1A22−(k−j)N2j(1 + 2j |x|)−M1 ,

where c > 0 depends only on M1, M2, and N .

The proof of this lemma is essentially the same as the proof of Lemma B.1 in [4].
The only difference is in the normalization of the functions. We omit the proof.

To give our main assertion here we introduce the following notation: Given
f, h ∈ L1(R) we write for Q = Qj,k ∈ Qj and P = Pm,l ∈ Qm

(5.25)

FQ(x) := 2−j/2
∑

ν≥0

f̂(2πν2−j)
(
e2πiν(x−k2−j) + e2πiν(x−k∗2−j)

)
,

HP (x) := 2−m/2
∑

ν≥0

ĥ(2πν2−m)
(
e2πiν(x−l2−m) + e2πiν(x−l∗2−m)

)
.
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Proposition 5.11. Suppose g, h ∈ CN+2(R), N ≥ 2, satisfy the conditions:

(5.26) |f (r)(x)| ≤ A1(1 + |x|)−M and |h(r)(x)| ≤ A2(1 + |x|)−M

for 0 ≤ r ≤ N + 2, where M > N + 1, and

(5.27)
∫

R
xrf(x) dx =

∫

R
xrh(x) dx = 0, 0 ≤ r ≤ N − 1.

Then for Q = Qj,k ∈ Qj and P = Pm,l ∈ Qm

|〈FQ, HP 〉| ≤ cA1A22−|j−m|(N+1/2)

×
[(

1 + 2min{j,m}|xQ − xP |
)−N +

(
1 + 2min{j,m}|xQ − xP∗ |

)−N
]
,(5.28)

where c > 0 depends only on N and M .

Proof. From the definition of FQ, HP in (5.25) we get

〈FQ,HP 〉 = 2−(j+m)/2
∞∑

ν=0

f̂
(2πν

2j

)
ĥ
(2πν

2m

)
e2πiν(xP−xQ)

+ 2−(j+m)/2
∞∑

ν=0

f̂
(2πν

2j

)
ĥ
(2πν

2m

)
e2πiν(xP∗−xQ)

+ 2−(j+m)/2
∞∑

ν=0

f̂
(2πν

2j

)
ĥ
(2πν

2m

)
e2πiν(xP−xQ∗ )

+ 2−(j+m)/2
∞∑

ν=0

f̂
(2πν

2j

)
ĥ
(2πν

2m

)
e2πiν(xP∗−xQ∗ )

=: β1 + β2 + β3 + β4.

Assume that m ≥ j. It is readily seen that

f̂
(2πν

2j

)
ĥ
(2πν

2m

)
= (fj ∗ h̃m)∧(2πν) = (f ∗ h̃m−j)∧

(2πν

2j

)
,

where h̃(x) := h(−x). On the other hand, evidently

(f ∗ h̃m−j)(r)(x) = (f (r) ∗ h̃m−j)(x).

By (5.26) we have

|f (r+s)(x)| ≤ A1(1 + |x|)−M , 0 ≤ s ≤ N , 0 ≤ r ≤ 2, and |h̃(x)| ≤ A2(1 + |x|)−M .

Also, by (5.27) it follows that
∫
R xsh̃(x) dx = 0, 0 ≤ s ≤ N − 1. We apply

Lemma 5.10 to f (r) and h̃ to obtain

|(f ∗ h̃m−j)(r)(x)| = |(f (r) ∗ h̃m−j)(x)| ≤ c2−(m−j)N (1 + |x|)−M , 0 ≤ r ≤ 2.

On the other hand by (5.27) it follows that
∫

R
xs(f ∗ h̃m−j)(r)(x) dx = 0, 0 ≤ r ≤ 2, 0 ≤ s ≤ 2(N − 1), (2(N − 1) ≥ N).

Using the above we apply Proposition 5.9 to f ∗ h̃m−j and infer

β1 ≤ c2−(j+m)/22−(m−j)N2j(1 + 2j |xP − xQ|)−N

= c2−(m−j)(N+1/2)(1 + 2j |xQ − xP |)−N .
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Exactly in the same way we get similar estimates for β2, β3, β4, where xQ − xP is
replaced by xQ−xP∗ , xQ∗−xP , and xQ∗−xP∗ , respectively. These estimates imply
(5.28) taking into account that 2j |xP − xQ| ∼ 2j |xP∗ − xQ∗ | and 2j |xP∗ − xQ| ∼
2j |xP − xQ∗ |. ¤

5.6. Proof of Theorem 5.2. Let

(5.29) A := (aQP )Q,P∈Q, aQ,P := 〈RQ, GP 〉,
and D = I −A, that is,

(5.30) D := (dQP )Q,P∈Q, dQP := 〈GQ −RQ, GP 〉.
Evidently, Theorem 5.2 will follow by Theorem 4.4, applied with H := H2(T),

L := Bs
pq and `(Q) := bs

pq(Q) (or L := F s
pq and `(Q) := fs

pq(Q)) and Ψ := G, Meyer’s
biorthogonal basis from (3.8) and Theorem 3.3, if we prove that the matrices A,A−1

above are bounded on H2(T) and AT , (A−1)T are bounded on bs
pq (or fs

pq).
To establish the boundedness of A,AT it is sufficient to show that A is almost

diagonal on bs
pq(f

s
pq), while for the boundedness of AT , (A−1)T it is sufficient to

prove that ‖D‖bs
pq→bs

pq
< 1 (or ‖D‖fs

pq→fs
pq

< 1). However, by Proposition 5.8
‖D‖bs

pq→bs
pq
≤ c‖D‖δ, and hence it suffices to prove that there exists δ > 0 such

that for any sufficiently small ε > 0

(5.31) ‖D‖δ < ε,

and similarly for fs
pq. We shall only prove (5.31); the proof of the estimates

‖A‖δ, ‖AT ‖δ < ∞ is very similar and will be omitted.
By the definition of the systems {GQ} and {RQ} in (3.8) and (5.5), we have for

Q = Qjk ∈ Qj (j ≥ 0)

GQ(x)−RQ(x) = 2−j/2
∑

ν≥0

(ψ − θ)∧(2νπ2−j)
(
e2νπi(x−k2−j) + e2νπi(x−k∗2−j)

)
,

GQ(x) = 2−j/2
∑

ν≥0

ψ̂(2νπ2−j)
(
e2νπi(x−k2−j) + e2νπi(x−k∗2−j)

)
,

and from the construction of θ in Proposition 5.1 and from (3.2)

|(ψ − θ)(r)(x)| ≤ ε(1 + |x|)−M , |ψ(r)(x)| ≤ c(1 + |x|)−M , 0 ≤ r ≤ N + 2,
∫

R
xrθ(x) dx = 0,

∫

R
xrψ(x) dx = 0, 0 ≤ r ≤ N − 1,

where M > N + 1 and N > max{s,J ,J − s− 1}. Now, applying Proposition 5.11
we obtain for Q ∈ Qj , P ∈ Qi, i, j ≥ 0,

|〈GQ −RQ, GP 〉| ≤ cεmin
{

2(j−i), 2(i−j)

}N+ 1
2

×
((

1 + 2min{i,j}|xQ − xP |
)−N +

(
1 + 2min{i,j}|xQ − xP∗ |

)−N
)
.(5.32)

It is easy to see that this estimate also holds whenever i = −1 or j = −1. Therefore,
there exists δ > 0 such that ‖D‖δ < cε. However, ε is independent of c,N,M , and
hence cε can be replaced by ε, i.e. (5.31) holds. ¤
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5.7. Localization and norms of the basis elements {RQ}. The following
result will be instrumental in the next section.

Proposition 5.12. For any Q ∈ Q we have

(5.33) |RQ(x)| ≤ c`(Q)−1/2
(
(1 + 2j |x− xQ|)−N + (1 + 2j |x− xQ∗ |)−N

)

and if ε > 0 in the definition of RQ is sufficiently small

(5.34) ‖RQ‖Lp ∼ `(Q)−1/2+1/p for 1/N < p ≤ ∞.

Proof. Estimate (5.33) is immediate from the definition of GQ in (5.4) and
Lemma 5.9.

From (5.33) it readily follows that ‖RQ‖Lp ≤ c`(Q)−1/2+1/p if p > 1/N . The es-
timate in the other direction is more subtle. Exactly as in the proof of (5.32) using
Proposition 5.11 we get ‖GQ − RQ‖L2 ≤ cε. On the other hand ‖GQ‖L2 = 1.
Therefore, choosing ε > 0 so that cε ≤ 1/2 we obtain 1/2 ≤ ‖RQ‖L2 ≤ 3/2. This
and (5.33) imply (5.34) in general. Indeed, if 1/N < p < 2, then

1/4 ≤ ‖RQ‖2L2 ≤ ‖RQ‖p
Lp‖RQ‖2−p

L∞ ≤ c‖RQ‖p
Lp`(Q)−1+p/2,

and hence ‖RQ‖Lp ≥ c`(Q)−1/2+1/p. If 2 < p < ∞ we apply Hölder’s inequality to
obtain

1/4 ≤
∫

T
|RQ(x)|2dx ≤ ‖RQ‖Lp‖RQ‖Lp′ ≤ c‖RQ‖Lp`(Q)−1/2+1/p′ ,

which leads again to ‖RQ‖Lp ≥ c`(Q)−1/2+1/p. For p = ∞ this estimate is imme-
diate from ‖RQ‖L2 ≥ 1/2. ¤

6. Rational approximation in the Hardy spaces Hp on the disc

Here we use the development of a rational basis from the previous section to give
another proof of the direct estimate of A. Pekarskii [16] for rational approximation
in Hp(D). Given f ∈ Hp we denote by ρn(f,Hp) the best approximation of f from
the class Rn(D) of rational functions of degree ≤ n on D, i.e.

ρn(f, Hp) := inf
g∈Rn(D)

‖f − g‖Hp .

Pekarskii’s result involves the Besov space Bs
τ := Bs

ττ , s > 0, 1/τ := s + 1/p,
0 < p < ∞, of holomorphic functions in D.

Theorem 6.1 (Pekarskii [16] ). For any f ∈ Bs
τ

(6.1) ρn(f, Hp) ≤ cn−s‖f‖Bs
τ
, n ≥ 1,

where the constant c > 0 depends only on s and p.

This result coupled with the companion Bernstein estimate from [15] enabled
Pekarskii to give a complete characterization of the rates of rational approximation
(approximation spaces) in the Hp spaces, see [14] for a comprehensive discussion
of these results.

To prove estimate (6.1) we shall consider n-term approximation in Hp from the
rational basis R := {RQ : Q ∈ Q} we constructed in §5.1. More precisely, we
shall use {RQ} to denote both the basis functions introduced in (5.4)-(5.5) and
their analytic extensions to D that are rational functions with poles outside D as
shown in §5.3. As such we have ‖RQ‖Hp(D) = ‖RQ‖Lp , where on the right we have
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the Lp-norm of RQ on T. We hope this slight abuse of notation will not create
problems.

Let Σn be the nonlinear set of all functions g of the form

g =
∑

Q∈Λn

aQRQ,

where Λn ⊂ Q, #Λn ≤ n, and Λn may vary with g. Denote by σn(f)p the error of
best Hp-approximation to f ∈ Hp from Σn, i.e.

σn(f, Hp) := inf
g∈Σn

‖f − g‖Hp .

The approximation will take place in Hp(D), 1/N < p < ∞, where N is the main
parameter of the basis R, see Theorem 5.2; N can be selected arbitrarily large.

Under this assumption, from (5.7) in Theorem 5.2 and (5.34) one obtains easily
the following representation of the norm in Bs

τ :

(6.2) ‖f‖Bs
τ
∼

( ∑

Q∈Q
‖〈f, R̃Q〉RQ‖τ

Hp

)1/τ

.

We now give the main result of this section.

Theorem 6.2. If f ∈ Bs
τ , then

(6.3) σn(f, Hp) ≤ cn−s‖f‖Bs
τ
, n ≥ 1,

where c depends only on s, p, and the parameters of R.

Remark 6.3. Observe that by Theorem 5.2 RQ ∈ RK(D) for all Q ∈ Q with
some K = const. Therefore, Σn ⊂ RKn(D) and hence ρn(f, Hp) ≤ σKn(f,Hp).
Consequently, estimate (6.3) implies Pekarskii’s estimate (6.1).

The proof of Theorem 6.2 relies on the following lemma.

Lemma 6.4. Let F =
∑

Q∈Ωn
aQRQ, where Ωn ⊂ Q and #Ωn ≤ n. Suppose

‖aQRQ‖Hp ≤ A for Q ∈ Ωn, where 0 < p < ∞. Then ‖F‖Hp ≤ cAn1/p.

Proof. Let 1 < p < ∞; the case when 0 < p ≤ 1 is trivial. For the rest of the proof
we shall work as before with the norms on T rather than on D. By (5.34) and the
assumption ‖aQRQ‖Lp ≤ A we get |aQ| ≤ cA`(Q)1/2−1/p for Q ∈ Qj . Choose t so
that 1/N < t < 1. Then using (2.12) and (5.33) we infer

|RQ(x)| ≤ cMt(`(Q)−1/21Q)(x) + cMt(`(Q∗)−1/21Q∗)(x), Q ∈ Qj ,

and hence, using the maximal inequality (2.11),

‖F‖Lp ≤ c
∥∥∥

∑

Q∈Ωn

Mt

(|aQ|`(Q)−1/21Q

)∥∥∥
Lp

+ c
∥∥∥

∑

Q∈Ωn

Mt

(|aQ|`(Q∗)−1/21∗Q
)∥∥∥

Lp

≤ c
∥∥∥

∑

Q∈Ωn

|aQ|`(Q)−1/21Q

∥∥∥
Lp

+ c
∥∥∥

∑

Q∈Ωn

|aQ|`(Q∗)−1/21∗Q
∥∥∥

Lp

≤ cA
∥∥∥

∑

Q∈Ωn

`(Q)−1/p1Q

∥∥∥
Lp

.

Let E := ∪Q∈ΩnQ and ω(x) := min{`(Q) : Q ∈ Ωn, x ∈ Q} for x ∈ E. Evidently,
for x ∈ Q, Q ∈ Ωn, we have∑

P :x∈P,Q⊂P

(`(P )/`(Q))1/p ≤
∑

ν≥0

2−ν/p = c1 < ∞.
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Therefore, ∑

Q∈Ωn

`(Q)−1/p1Q(x) ≤ c1ω(x)−1/p, x ∈ E,

which implies

‖F‖Lp ≤ cA‖ω(·)−1/p‖Lp = cA
(∫

E

ω(x)−1dx
)1/p

≤ cA
( ∑

Q∈Ωn

`(Q)−1

∫

E

1Q(x)dx
)1/p

≤ cA(#Ωn)1/p ≤ cAn1/p. ¤

One carries out the proof Theorem 6.2 precisely as the proof of Theorem 6.2 in
[9], using (6.2) and Lemma 6.4. We omit the details.
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Basel, 1983.
[20] H. Triebel, Theory of function spaces II, Monographs in Math., Vol. 84, Birkhäuser,
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