
  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

  

  

  

  

  

  

IINNTTEERRDDIISSCCIIPPLLIINNAARRYY  

  

MMAATTHHEEMMAATTIICCSS  

  

IINNSSTTIITTUUTTEE  

  
  

2012:03 
 

Greedy Approximation in 

Convex Optimization 

  

  

  

  

  

  

  

  

  

  

  

  

IIMMII  

  

PPRREEPPRRIINNTT  SSEERRIIEESS  

  

    

  

V.N. Temlyakov 
  

  

  

  

  

  

  

  

  

  

  

  

CCOOLLLLEEGGEE  OOFF  AARRTTSS  AANNDD  SSCCIIEENNCCEESS    

  

UUNNIIVVEERRSSIITTYY  OOFF  SSOOUUTTHH  CCAARROOLLIINNAA  

 



Greedy approximation in convex optimization

V.N. Temlyakov ∗

May 1, 2012

Abstract

We study sparse approximate solutions to convex optimization
problems. It is known that in many engineering applications re-
searchers are interested in an approximate solution of an optimiza-
tion problem as a linear combination of elements from a given system
of elements. There is an increasing interest in building such sparse
approximate solutions using different greedy-type algorithms. The
problem of approximation of a given element of a Banach space by
linear combinations of elements from a given system (dictionary) is
well studied in nonlinear approximation theory. At a first glance the
settings of approximation and optimization problems are very differ-
ent. In the approximation problem an element is given and our task is
to find a sparse approximation of it. In optimization theory an energy
function is given and we should find an approximate sparse solution
to the minimization problem. It turns out that the same technique
can be used for solving both problems. We show how the technique
developed in nonlinear approximation theory, in particular, the greedy
approximation technique can be adjusted for finding a sparse solution
of an optimization problem.

1 Introduction

We study sparse approximate solutions to convex optimization problems. We
apply the technique developed in nonlinear approximation known under the
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name of greedy approximation. A typical problem of convex optimization is
to find an approximate solution to the problem

inf
x
E(x) (1.1)

under assumption that E is a convex function. Usually, in convex optimiza-
tion function E is defined on a finite dimensional space Rn (see [1], [6]).
Recent needs of numerical analysis call for consideration of the above op-
timization problem on an infinite dimensional space, for instance, a space
of continuous functions. Thus, we consider a convex function E defined on
a Banach space X. It is pointed out in [14] that in many engineering ap-
plications researchers are interested in an approximate solution of problem
(1.1) as a linear combination of elements from a given system D of elements.
There is an increasing interest in building such sparse approximate solutions
using different greedy-type algorithms (see, for instance, [14], [7], [3], and
[13]). The problem of approximation of a given element f ∈ X by linear
combinations of elements from D is well studied in nonlinear approximation
theory (see, for instance [4], [11], [12]). In order to address the contemporary
needs of approximation theory and computational mathematics, a very gen-
eral model of approximation with regard to a redundant system (dictionary)
has been considered in many recent papers. As such a model, we choose a
Banach space X with elements as target functions and an arbitrary system
D of elements of this space such that the closure of spanD coincides with X
as an approximating system.

The fundamental question is how to construct good methods (algorithms)
of approximation. Recent results have established that greedy type algo-
rithms are suitable methods of nonlinear approximation in both sparse ap-
proximation with regard to bases and sparse approximation with regard to
redundant systems. It turns out that there is one fundamental principal that
allows us to build good algorithms both for arbitrary redundant systems and
for very simple well structured bases like the Haar basis. This principal is
the use of a greedy step in searching for a new element to be added to a
given sparse approximant. By a greedy step, we mean one which maximizes
a certain functional determined by information from the previous steps of
the algorithm. We obtain different types of greedy algorithms by varying the
above mentioned functional and also by using different ways of constructing
(choosing coefficients of the linear combination) the m-term approximant
from the already found m elements of the dictionary.
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We point out that at a first glance the settings of approximation and
optimization problems are very different. In the approximation problem an
element f ∈ X is given and our task is to find a sparse approximation of it.
In optimization theory an energy function E(x) is given and we should find
an approximate sparse solution to the minimization problem. It turns out
that the same technique can be used for solving both problems.

We show how the technique developed in nonlinear approximation theory,
in particular, the greedy approximation technique can be adjusted for finding
a sparse with respect to D solution of problem (1.1).

We begin with a brief description of greedy approximation methods in
Banach spaces. Let X be a Banach space with norm ‖ · ‖. We say that a
set of elements (functions) D from X is a dictionary, respectively, symmetric
dictionary, if each g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and the closure of spanD is X. In this paper symmetric dictionaries are
considered. We denote the closure (in X) of the convex hull of D by A1(D).
For a nonzero element f ∈ X we let Ff denote a norming (peak) functional
for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.
The existence of such a functional is guaranteed by Hahn-Banach theorem.
We describe a typical greedy algorithm from a family of dual greedy algo-
rithms. Let τ := {tk}∞k=1 be a given weakness sequence of nonnegative
numbers tk ≤ 1, k = 1, . . . . We define first the Weak Chebyshev Greedy
Algorithm (WCGA) (see [9]) that is a generalization for Banach spaces of
the Weak Orthogonal Greedy Algorithm.

Weak Chebyshev Greedy Algorithm (WCGA). We define f c0 :=
f c,τ0 := f . Then for each m ≥ 1 we have the following inductive definition.

(1) ϕcm := ϕc,τm ∈ D is any element satisfying

Ffc
m−1

(ϕcm) ≥ tm sup
g∈D

Ffc
m−1

(g).

(2) Define
Φm := Φτ

m := span{ϕcj}mj=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
(3) Let

f cm := f c,τm := f −Gc
m.

3



Let us make a remark that justifies the idea of the dual greedy algo-
rithms in terms of real analysis. We consider here approximation in uni-
formly smooth Banach spaces. For a Banach space X we define the modulus
of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖+ ‖x− uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

We note that from the definition of modulus of smoothness we get the
following inequality.

0 ≤ ‖x+ uy‖ − ‖x‖ − uFx(y) ≤ 2‖x‖ρ(u‖y‖/‖x‖). (1.2)

This inequality implies the proposition.

Proposition 1.1. Let X be a uniformly smooth Banach space. Then, for
any x 6= 0 and y we have

Fx(y) =

(
d

du
‖x+ uy‖

)
(0) = lim

u→0
(‖x+ uy‖ − ‖x‖)/u. (1.3)

Proposition 1.1 shows that in the WCGA we are looking for an element
ϕm ∈ D that provides a big derivative of the quantity ‖fm−1 + ug‖. Here is
one more important greedy algorithm.

Weak Greedy Algorithm with Free Relaxation (WGAFR). Let
τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f and
G0 := 0. Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D

Ffm−1(g).

(2) Find wm and λm such that

‖f − ((1− wm)Gm−1 + λmϕm)‖ = inf
λ,w
‖f − ((1− w)Gm−1 + λϕm)‖

and define
Gm := (1− wm)Gm−1 + λmϕm.

4



(3) Let
fm := f −Gm.

It is known that both algorithms WCGA and WGAFR converge in any uni-
formly smooth Banach space under mild conditions on the weakness sequence
{tk}, for instance, tk = t, k = 1, 2, . . . , t > 0, guarantees such convergence.
The following theorem provides rate of convergence (see [12], pp. 347, 353).

Theorem 1.1. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two elements
f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then, for both algorithms WCGA and WGAFR
we have (p := q/(q − 1))

‖f c,τm ‖ ≤ max

(
2ε, C(q, γ)(A(ε) + ε)(1 +

m∑
k=1

tpk)
−1/p

)
.

The above Theorem 1.1 simultaneously takes care of two issues: noisy
data and approximation in an interpolation space. In order to apply it for
noisy data we interpret f as a noisy version of a signal and f ε as a nois-
less version of a signal. Then, assumption f ε/A(ε) ∈ A1(D) describes our
smoothness assumption on the noisless signal. Theorem 1.1 can be applied
for approximation of f under assumption that f belongs to one of interpola-
tion spaces between X and the space generated by the A1(D)-norm (atomic
norm). We now make a remark showing that the A1(D)-norm (in other
words, the assumption f/A ∈ A1(D)) appears naturally in convex optimiza-
tion problems.

It is pointed out in [5] that there has been considerable interest in solving
the convex unconstrained optimization problem

min
x

1

2
‖y − Φx‖2

2 + λ‖x‖1 (1.4)

where x ∈ Rn, y ∈ Rk, Φ is an k × n matrix, λ is a nonnegative parameter,
‖v‖2 denotes the Euclidian norm of v, and ‖v‖1 is the `1 norm of v. Problems
of the form (1.4) have become familiar over the past three decades, partic-
ularly in statistical and signal processing contexts. Problem (1.4) is closely
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related to the following convex constrained optimization problem

min
x

1

2
‖y − Φx‖2

2 subject to ‖x‖1 ≤ A. (1.5)

The above convex optimization problem can be recast as an approximation
problem of y with respect to a dictionary D := {±ϕi}ni=1 which is associated
with a k × n matrix Φ = [ϕ1 . . . ϕn] with ϕj ∈ Rk being the column vectors
of Φ. The condition y ∈ A1(D) is equivalent to existence of x ∈ Rm such
that y = Φx and

‖x‖1 := |x1|+ · · ·+ |xm| ≤ 1. (1.6)

As a direct corollary of Theorem 1.1, we get for any y ∈ A1(D) that the
WCGA and the WGAFR with τ = {t} guarantee the following upper bound
for the error

‖yk‖2 ≤ Ck−1/2. (1.7)

The bound (1.7) holds for any D (any Φ).
We note that in the study of greedy-type algorithms in approximation

theory (see [12]) emphasis are put on the theory of approximation with re-
spect to arbitrary dictionary D. The reader can find examples of specific
dictionaries of interest in [12] and [13]. We present some results on sparse
solutions for convex optimization problems in the setting with an arbitrary
dictionary D.

We generalize the algorithms WCGA and WGAFR to the case of convex
optimization and prove an analog of Theorem 1.1 for the new algorithms.
Let us illustrate this on the generalization of the WGAFR.

We assume that the set

D := {x : E(x) ≤ E(0)}

is bounded. For a bounded set D define the modulus of smoothness of E on
D as follows

ρ(E, u) :=
1

2
sup

x∈D,‖y‖=1

|E(x+ uy) + E(x− uy)− 2E(x)|. (1.8)

We assume that E is Fréchet differentiable. Then convexity of E implies
that for any x, y

E(y) ≥ E(x) + 〈E ′(x), y − x〉 (1.9)
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or, in other words,

E(x)− E(y) ≤ 〈E ′(x), x− y〉 = 〈−E ′(x), y − x〉. (1.10)

We will often use the following simple lemma.

Lemma 1.1. Let E be Fréchet differentiable convex function. Then the
following inequality holds for x ∈ D

0 ≤ E(x+ uy)− E(x)− u〈E ′(x), y〉 ≤ 2ρ(E, u‖y‖). (1.11)

Proof. The left inequality follows directly from (1.9). Next, from the defini-
tion of modulus of smoothness it follows that

E(x+ uy) + E(x− uy) ≤ 2(E(x) + ρ(E, u‖y‖)). (1.12)

Inequality (1.9) gives

E(x− uy) ≥ E(x) + 〈E ′(x),−uy〉 = E(x)− u〈E ′(x), y〉. (1.13)

Combining (1.12) and (1.13), we obtain

E(x+ uy) ≤ E(x) + u〈E ′(x), y〉+ 2ρ(E, u‖y‖).

This proves the second inequality.

Weak Greedy Algorithm with Free Relaxation (WGAFR(co)).
Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define G0 := 0.
Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g〉.

(2) Find wm and λm such that

E((1− wm)Gm−1 + λmϕm) = inf
λ,w

E((1− w)Gm−1 + λϕm)

and define
Gm := (1− wm)Gm−1 + λmϕm.

In Section 4 we prove the following rate of convergence result.
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Theorem 1.2. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and an
element f ε from D such that

E(f ε) ≤ inf
x∈D

E(x) + ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ 1. Then we have for WGAFR(co) (p := q/(q−1))

E(Gm)− inf
x∈D

E(x) ≤ max

2ε, C(q, γ)A(ε)

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q
 .

We note that in all algorithms studied in this paper the sequence {Gm}∞m=0

of approximants satisfies the conditions

G0 = 0, E(G0) ≥ E(G1) ≥ E(G2) ≥ . . . .

This guarantees that Gm ∈ D for all m.

2 The Weak Chebyshev Greedy Algorithm

We begin with the following two simple and well-known lemmas.

Lemma 2.1. Let E be a uniformly smooth convex function on a Banach
space X and L be a finite-dimensional subspace of X. Let xL denote the
point from L at which E attains the minimum:

E(xL) = inf
x∈L

E(x).

Then we have
〈E ′(xL), φ〉 = 0

for any φ ∈ L.

Proof. Let us assume the contrary: there is a φ ∈ L such that ‖φ‖ = 1 and

〈E ′(xL), φ〉 = β > 0.

It is clear that xL ∈ L∩D. For any λ we have from the definition of ρ(E, λ)
that

E(xL − λφ) + E(xL + λφ) ≤ 2(E(xL) + ρ(E, λ)). (2.1)
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Next by (1.9)

E(xL + λφ) ≥ E(xL) + 〈E ′(xL), λφ〉 = E(xL) + λβ. (2.2)

Combining (2.1) and (2.2) we get

E(xL − λφ) ≤ E(xL)− λβ + 2ρ(E, λ). (2.3)

Taking into account that ρ(E, u) = o(u), we find λ′ > 0 such that

−λ′β + 2ρ(E, λ′) < 0.

Then (2.3) gives
E(xL − λ′φ) < E(xL),

which contradicts the assumption that xL ∈ L is the point of minimum of
E.

Lemma 2.2. For any bounded linear functional F and any dictionary D, we
have

sup
g∈D
〈F, g〉 = sup

f∈A1(D)

〈F, f〉.

Proof. The inequality

sup
g∈D
〈F, g〉 ≤ sup

f∈A1(D)

〈F, f〉

is obvious. We prove the opposite inequality. Take any f ∈ A1(D). Then
for any ε > 0 there exist gε1, . . . , g

ε
N ∈ D and numbers aε1, . . . , a

ε
N such that

aεi > 0, aε1 + · · ·+ aεN ≤ 1 and

‖f −
N∑
i=1

aεig
ε
i‖ ≤ ε.

Thus

〈F, f〉 ≤ ‖F‖ε+ 〈F,
N∑
i=1

aεig
ε
i 〉 ≤ ε‖F‖+ sup

g∈D
〈F, g〉

which proves Lemma 2.2.
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We define the following generalization of the WCGA for convex optimiza-
tion.

Weak Chebyshev Greedy Algorithm (WCGA(co)). We define
G0 := 0. Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm := ϕc,τm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g〉.

(2) Define
Φm := Φτ

m := span{ϕj}mj=1,

and define Gm := Gc,τ
m to be the point from Φm at which E attains the

minimum:
E(Gm) = inf

x∈Φm

E(x).

The following lemma is a key lemma in studying convergence and rate of
convergence of WCGA(co).

Lemma 2.3. Let E be a uniformly smooth convex function with modulus of
smoothness ρ(E, u). Take a number ε ≥ 0 and an element f ε from D such
that

E(f ε) ≤ inf
x∈X

E(x) + ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ 1. Then we have for the WCGA(co)

E(Gm)− E(f ε) ≤ E(Gm−1)− E(f ε)

+ inf
λ≥0

(−λtmA(ε)−1(E(Gm−1)− E(f ε)) + 2ρ(E, λ)),

for m = 1, 2, . . . .

Proof. It follows from the definition of WCGA(co) that E(0) ≥ E(G1) ≥
E(G2) . . . . Therefore, if E(Gm−1)−E(f ε) ≤ 0 then the claim of Lemma 2.3
is trivial. Assume E(Gm−1)− E(f ε) > 0. By Lemma 1.1 we have for any λ

E(Gm−1 + λϕm) ≤ E(Gm−1)− λ〈−E ′(Gm−1), ϕm〉+ 2ρ(E, λ) (2.4)

and by (1) from the definition of the WCGA(co) and Lemma 2.2 we get

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g〉 =

10



tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ〉 ≥ tmA(ε)−1〈−E ′(Gm−1), f ε〉.

By Lemma 2.1 and (1.10) we obtain

〈−E ′(Gm−1), f ε〉 = 〈−E ′(Gm−1), f ε −Gm−1〉 ≥ E(Gm−1)− E(f ε).

Thus,
E(Gm) ≤ inf

λ≥0
E(Gm−1 + λϕm)

≤ E(Gm−1) + inf
λ≥0

(−λtmA(ε)−1(E(Gm−1)− E(f ε)) + 2ρ(E, λ), (2.5)

which proves the lemma.

We proceed to a theorem on convergence of the WCGA. In the formula-
tion of this theorem we need a special sequence which is defined for a given
modulus of smoothness ρ(u) and a given τ = {tk}∞k=1.

Definition 2.1. Let ρ(E, u) be an even convex function on (−∞,∞) with
the property:

lim
u→0

ρ(E, u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and θ > 0 we define ξm := ξm(ρ, τ, θ) as a
number u satisfying the equation

ρ(E, u) = θtmu. (2.6)

Remark 2.1. Assumptions on ρ(E, u) imply that the function

s(u) := ρ(E, u)/u, u 6= 0, s(0) = 0,

is a continuous increasing function on [0,∞). Thus 2.6 has a unique solution
ξm = s−1(θtm) such that ξm > 0 for θ ≤ θ0 := s(2). In this case we have
ξm(ρ, τ, θ) ≤ 2.

Theorem 2.1. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the
condition: for any θ ∈ (0, θ0] we have

∞∑
m=1

tmξm(ρ, τ, θ) =∞.

Then
lim
m→∞

E(Gm) = inf
x∈D

E(x).
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Corollary 2.1. Let a convex function E have modulus of smoothness ρ(E, u)
of power type 1 < q ≤ 2, that is, ρ(E, u) ≤ γuq. Assume that

∞∑
m=1

tpm =∞, p =
q

q − 1
. (2.7)

Then
lim
m→∞

E(Gm) = inf
x∈D

E(x).

Proof. The definition of the WCGA(co) implies that {E(Gm)} is a non-
increasing sequence. Therefore we have

lim
m→∞

E(Gm) = a.

Denote
b := inf

x∈D
E(x), α := a− b.

We prove that α = 0 by contradiction. Assume to the contrary that α > 0.
Then, for any m we have

E(Gm)− b ≥ α.

We set ε = α/2 and find f ε such that

E(f ε) ≤ b+ ε and f ε/A(ε) ∈ A1(D),

with some A(ε) ≥ 1. Then, by Lemma 2.3 we get

E(Gm)− E(f ε) ≤ E(Gm−1)− E(f ε) + inf
λ≥0

(−λtmA(ε)−1α/2 + 2ρ(E, λ)).

Let us specify θ := min
(
θ0,

α
8A(ε)

)
and take λ = ξm(ρ, τ, θ). Then we

obtain
E(Gm) ≤ E(Gm−1)− 2θtmξm.

The assumption
∞∑
m=1

tmξm =∞

brings a contradiction, which proves the theorem.

12



Theorem 2.2. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and an
element f ε from D such that

E(f ε) ≤ inf
x∈D

E(x) + ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ 1. Then we have for the WCGA(co) (p := q/(q −
1))

E(Gm)− inf
x∈D

E(x) ≤ max

2ε, C(q, γ)A(ε)q

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q
 .

(2.8)

Proof. Denote
an := E(Gn)− E(f ε).

The sequence {an} is non-increasing. If an ≤ 0 for some n ≤ m then E(Gm)−
E(f ε) ≤ 0 and E(Gm)−infx∈D E(x) ≤ ε which implies (2.8). Thus we assume
that an > 0 for n ≤ m.

By Lemma 2.3 we have

am ≤ am−1 + inf
λ≥0

(
−λtmam−1

A(ε)
+ 2γλq

)
. (2.9)

Choose λ from the equation

λtmam−1

A(ε)
= 4γλq

which implies that

λ =

(
tmam−1

4γA(ε)

) 1
q−1

.

Let
Aq := 2(4γ)

1
q−1 .

Using the notation p := q
q−1

we get from (2.9)

am ≤ am−1

(
1− λtm

2A(ε)

)
= am−1(1− tpma

1
q−1

m−1/(AqA(ε)p)).

13



Raising both sides of this inequality to the power 1
q−1

and taking into account
the inequality xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

a
1

q−1
m ≤ a

1
q−1

m−1(1− tpma
1

q−1

m−1/(AqA(ε)p)).

We now need a simple known lemma (see [8]).

Lemma 2.4. Suppose that a sequence y1 ≥ y2 ≥ · · · ≥ 0 satisfies inequalities

yk ≤ yk−1(1− wkyk−1), wk ≥ 0,

for k > n. Then for m > n we have

1

ym
≥ 1

yn
+

m∑
k=n+1

wk.

Proof. It follows from the chain of inequalities

1

yk
≥ 1

yk−1

(1− wkyk−1)−1 ≥ 1

yk−1

(1 + wkyk−1) =
1

yk−1

+ wk.

By Lemma 2.4 with yk := a
1

q−1

k , n = 0, wk = tpm/(AqA(ε)p) we get

a
1

q−1
m ≤ C1(q, γ)A(ε)p

(
C(E, q, γ) +

m∑
n=1

tpn

)−1

which implies

am ≤ C(q, γ)A(ε)q

(
C(E, q, γ) +

m∑
n=1

tpn

)1−q

.

Theorem 2.2 is now proved.

3 Relaxation. Co-convex approximation

In this section we study a generalization for optimization problem of relaxed
greedy algorithms in Banach spaces considered in [9]. Let τ := {tk}∞k=1 be a
given weakness sequence of numbers tk ∈ [0, 1], k = 1, . . . .
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Weak Relaxed Greedy Algorithm (WRGA(co)). We define G0 :=
Gr,τ

0 := 0. Then, for each m ≥ 1 we have the following inductive definition.
(1) ϕm := ϕr,τm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm −Gm−1〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g −Gm−1〉.

(2) Find 0 ≤ λm ≤ 1 such that

E((1− λm)Gm−1 + λmϕm) = inf
0≤λ≤1

E((1− λ)Gm−1 + λϕm)

and define
Gm := Gr,τ

m := (1− λm)Gm−1 + λmϕm.

Remark 3.1. It follows from the definition of the WRGA that the sequence
{E(Gm)} is a non-increasing sequence.

We call the WRGA(co) relaxed because at the mth step of the algorithm
we use a linear combination (convex combination) of the previous approx-
imant Gm−1 and a new element ϕm. The relaxation parameter λm in the
WRGA(co) is chosen at the mth step depending on E. We prove here the
analogs of Theorems 2.1 and 2.2 for the Weak Relaxed Greedy Algorithm.

Theorem 3.1. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the
condition: for any θ ∈ (0, θ0] we have

∞∑
m=1

tmξm(ρ, τ, θ) =∞.

Then, for the WRGA(co) we have

lim
m→∞

E(Gm) = inf
x∈A1(D)

E(x).

Theorem 3.2. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1,
tk ≤ 1, k = 1, 2, . . . , we have for any f ∈ A1(D) that

E(Gm)− E(f) ≤

(
1 + C1(q, γ)

m∑
k=1

tpk

)1−q

, p :=
q

q − 1
,

with a positive constant C1(q, γ) which may depend only on q and γ.
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Proof. This proof is similar to the proof of Theorems 2.1 and 2.2. Instead of
Lemma 2.3 we use the following lemma.

Lemma 3.1. Let E be a uniformly smooth convex function with modulus of
smoothness ρ(E, u). Then, for any f ∈ A1(D) we have

E(Gm) ≤ E(Gm−1)+ inf
0≤λ≤1

(−λtm(E(Gm−1)−E(f))+2ρ(E, 2λ)), m = 1, 2, . . . .

Proof. We have

Gm := (1− λm)Gm−1 + λmϕm = Gm−1 + λm(ϕm −Gm−1)

and
E(Gm) = inf

0≤λ≤1
E(Gm−1 + λ(ϕm −Gm−1)).

As for (2.4) we have for any λ

E(Gm−1 + λ(ϕm −Gm−1))

≤ E(Gm−1)− λ〈−E ′(Gm−1), ϕm −Gm−1〉+ 2ρ(E, 2λ) (3.1)

and by (1) from the definition of the WRGA(co) and Lemma 2.2 we get

〈−E ′(Gm−1), ϕm −Gm−1〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g −Gm−1〉 =

tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ−Gm−1〉 ≥ tm〈−E ′(Gm−1), f −Gm−1〉.

By (1.10) we obtain

〈−E ′(Gm−1), f −Gm−1〉 ≥ E(Gm−1)− E(f).

Thus,
E(Gm) ≤ inf

0≤λ≤1
E(Gm−1 + λ(ϕm −Gm−1))

≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1)− E(f)) + 2ρ(E, 2λ), (3.2)

which proves the lemma.
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The remaining part of the proof uses the inequality (3.2) in the same
way relation (2.5) was used in the proof of Theorems 2.1 and 2.2. The only
additional difficulty here is that we are optimizing over 0 ≤ λ ≤ 1. In the
proof of Theorem 3.1 we choose θ = α/8, assuming that α is small enough
to guarantee that θ ≤ θ0 and λ = ξm(ρ, τ, θ)/2.

We proceed to the proof of Theorem 3.2. Denote

an := E(Gn)− E(f).

The sequence {an} is non-increasing. If an ≤ 0 for some n ≤ m then E(Gm)−
E(f) ≤ 0 which implies Theorem 3.2. Thus we assume that an > 0 for n ≤ m.
We obtain from Lemma 3.1

am ≤ am−1 + inf
0≤λ≤1

(−λtmam−1 + 2γ(2λ)q).

We choose λ from the equation

λtmam−1 = 4γ(2λ)q (3.3)

if it is not greater than 1 and choose λ = 1 otherwise. The sequence {ak} is
monotone decreasing and therefore we may choose λ = 1 only at first n steps
and then choose λ from (3.3). Then we get for k ≤ n

ak ≤ ak−1(1− tk/2)

and

an ≤ a0

n∏
k=1

(1− tk/2). (3.4)

For k > n we have

ak ≤ ak−1(1− λtk/2), λ =

(
tmam−1

22+qγ

) 1
q−1

. (3.5)

As in the proof of Theorem 2.2 we obtain using Lemma 2.4

1

ym
≥ 1

yn
+

m∑
k=n+1

wk, yk := a
1

q−1

k , wk :=
tpk

2(22+qγ)
1

q−1

.

By (3.4) we get

1

yn
≥ 1

y0

n∏
k=1

(1− tk/2)
1

1−q .
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Next,
n∏
k=1

(1− tk/2)
1

1−q ≥
n∏
k=1

(1 + tk/2)
1

q−1 ≥
n∏
k=1

(1 + tk/2)

≥ 1 +
1

2

n∑
k=1

tk ≥ 1 +
1

2

n∑
k=1

tpk.

Combining the above inequalities we complete the proof.

4 Free relaxation

Both of the above algorithms, the WCGA(co) and the WRGA(co), use the
functional E ′(Gm−1) in a search for the mth element ϕm from the dictio-
nary to be used in optimization. The construction of the approximant in
the WRGA(co) is different from the construction in the WCGA(co). In the
WCGA(co) we build the approximant Gm so as to maximally use the mini-
mization power of the elements ϕ1, . . . , ϕm. The WRGA(co) by its definition
is designed for working with functions from A1(D). In building the approxi-
mant in the WRGA(co) we keep the property Gm ∈ A1(D). As we mentioned
in Section 3 the relaxation parameter λm in the WRGA(co) is chosen at the
mth step depending on E. The following modification of the above idea of
relaxation in greedy approximation will be studied in this section (see [10]).

Weak Greedy Algorithm with Free Relaxation (WGAFR(co)).
Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define G0 := 0.
Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g〉.

(2) Find wm and λm such that

E((1− wm)Gm−1 + λmϕm) = inf
λ,w

E((1− w)Gm−1 + λϕm)

and define
Gm := (1− wm)Gm−1 + λmϕm.

Remark 4.1. It follows from the definition of the WGAFR(co) that the
sequence {E(Gm)} is a non-icreasing sequence.
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We begin with an analog of Lemma 2.3.

Lemma 4.1. Let E be a uniformly smooth convex function with modulus of
smoothness ρ(E, u). Take a number ε ≥ 0 and an element f ε from D such
that

E(f ε) ≤ inf
x∈D

E(x) + ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ 1. Then we have for the WGAFR(co)

E(Gm)− E(f ε) ≤ E(Gm−1)− E(f ε)

+ inf
λ≥0

(−λtmA(ε)−1(E(Gm−1)− E(f ε)) + 2ρ(E,C0λ)),

for m = 1, 2, . . . .

Proof. By the definition of Gm

E(Gm) ≤ inf
λ≥0,w

E(Gm−1 − wGm−1 + λϕm).

As in the arguments in the proof of Lemma 2.3 we use Lemma 1.1

E(Gm−1 + λϕm − wGm−1) ≤ E(Gm−1)

−λ〈−E ′(Gm−1), ϕm〉−w〈E ′(Gm−1), Gm−1〉+ 2ρ(E, ‖λϕm−wGm−1‖) (4.1)

and estimate

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E ′(Gm−1), g〉 =

tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ〉 ≥ tmA(ε)−1〈−E ′(Gm−1), f ε〉.

We set w∗ := λtmA(ε)−1 and obtain

E(Gm−1 − w∗Gm−1 + λϕm)

≤ E(Gm−1)− λtmA(ε)−1〈−E ′(Gm−1), f ε −Gm−1〉. (4.2)

By (1.10) we obtain

〈−E ′(Gm−1), f ε −Gm−1〉 ≥ E(Gm−1)− E(f ε).

Thus,
E(Gm) ≤ E(Gm−1)
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+ inf
λ≥0

(−λtmA(ε)−1(E(Gm−1)− E(f ε)) + 2ρ(E, ‖λϕm − w∗Gm−1‖). (4.3)

We now estimate

‖w∗Gm−1 − λϕm‖ ≤ w∗‖Gm−1‖+ λ.

Next, E(Gm−1) ≤ E(0) and, therefore, Gm−1 ∈ D. Our assumption on
boundedness of D implies that ‖Gm−1‖ ≤ C1. Thus, under assumption
A(ε) ≥ 1 we get

w∗‖Gm−1‖ ≤ C1λtm ≤ C1λ.

Finally,
‖w∗Gm−1 − λϕm‖ ≤ C0λ.

This completes the proof of Lemma 4.1.

We now prove a convergence theorem for an arbitrary uniformly smooth
convex function. Modulus of smoothness ρ(E, u) of a uniformly smooth con-
vex function is an even convex function such that ρ(E, 0) = 0 and

lim
u→0

ρ(E, u)/u = 0.

Theorem 4.1. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u). Assume that a sequence τ := {tk}∞k=1 satisfies the
following condition. For any θ ∈ (0, θ0] we have

∞∑
m=1

tmξm(ρ, τ, θ) =∞. (4.4)

Then, for the WGAFR(co) we have

lim
m→∞

E(Gm) = inf
x∈D

E(x).

Proof. By Remark 4.1, {E(Gm)} is a non-increasing sequence. Therefore we
have

lim
m→∞

E(Gm) = a.

Denote
b := inf

x∈D
E(x), α := a− b.
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We prove that α = 0 by contradiction. Assume to the contrary that α > 0.
Then, for any m we have

E(Gm)− b ≥ α.

We set ε = α/2 and find f ε such that

E(f ε) ≤ b+ ε and f ε/A(ε) ∈ A1(D),

with some A(ε) ≥ 1. Then, by Lemma 4.1 we get

E(Gm)− E(f ε) ≤ E(Gm−1)− E(f ε) + inf
λ≥0

(−λtmA(ε)−1α/2 + 2ρ(E,C0λ)).

Let us specify θ := min
(
θ0,

α
8A(ε)

)
and take λ = C0ξm(ρ, τ, θ). Then we

obtain
E(Gm) ≤ E(Gm−1)− 2θtmξm.

The assumption
∞∑
m=1

tmξm =∞

brings a contradiction, which proves the theorem.

Theorem 4.2. Let E be a uniformly smooth convex function with modulus
of smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and an
element f ε from D such that

E(f ε) ≤ inf
x∈D

E(x) + ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ 1. Then we have (p := q/(q − 1))

E(Gm)− inf
x∈D

E(x) ≤ max

2ε, C(q, γ)A(ε)q

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q
 .

(4.5)

Proof. Denote
an := E(Gn)− E(f ε).

By Lemma 4.1 we have

am ≤ am−1 + inf
λ≥0

(
−λtmam−1

A(ε)
+ 2γ(C0λ)q

)
. (4.6)
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Choose λ from the equation

λtmam−1

A(ε)
= 4γ(C0λ)q.

The rest of the proof repeats the argument from the proof of Theorem 2.2.

5 Comments

We already mentioned in the Introduction that the technique used in this
paper is a slight modification of the corresponding technique developed in
approximation theory (see [9], [11] and the book [12]). We now discuss this
in more detail. We pointed out in the Introduction that at a first glance
the settings of approximation and optimization problems are very different.
In the approximation problem an element f ∈ X is given and our task
is to find a sparse approximation of it. In optimization theory an energy
function E(x) is given and we should find an approximate sparse solution
to the minimization problem. It turns out that the same technique can be
used for solving both problems. In nonlinear approximation we use greedy
algorithms, for instance WCGA and WGAFR, for solving this problem. The
greedy step is the one where we look for ϕm ∈ D satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D

Ffm−1(g).

This step is based on the norming functional Ffm−1 . As we pointed out
in the Introduction the norming functional Ffm−1 is the derivative of the
norm function E(x) := ‖x‖. Clearly, we can reformulate our problem of
approximation of f as an optimization problem with E(x) := ‖f −x‖. It is a
convex function, however, it is not a uniformly smooth function in the sense
of smoothness of convex functions. A way out of this problem is to consider
E(f, x, q) := ‖f − x‖q with appropriate q. For instance, it is known (see [2])
that if ρ(u) ≤ γuq, 1 < q ≤ 2, then E(f, x, q) is a uniformly smooth convex
function with modulus of smoothness of order uq. Next,

E ′(f, x, q) = −q‖f − x‖q−1Ff−x.

Therefore, the algorithms WCGA(co), WRGA(co) and WGAFR(co) coincide
in this case with the corresponding algorithms WCGA, WRGA and WGAFR
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from approximation theory. In the proofs of approximation theory results we
use inequality (1.2) and the trivial inequality

‖x+ uy‖ ≥ Fx(x+ uy) = ‖x‖+ uFx(y). (5.1)

In the proofs of optimization theory results we use Lemma 1.1 instead of
inequality (1.2) and the convexity inequality (1.9) instead of (5.1). The rest
of the proofs uses the same technique of solving the corresponding recurrent
inequalities.

Our smoothness assumption on E was used in the proofs of all theorems
from Sections 2–4 in the form of Lemma 1.1. This means that in all those
theorems the assumption that E has modulus of smoothness ρ(E, u) can be
replaced by the assumption that E satisfies the inequality

E(x+ uy)− E(x)− u〈E ′(x), y〉 ≤ 2ρ(E, u‖y‖), x ∈ D. (5.2)

Moreover, in Section 3, where we consider the WRGA(co), the approximants
Gm are forced to stay in the A1(D). Therefore, in Theorems 3.1 and 3.2 we
can use the following inequality instead of (5.2)

E(x+ u(y − x))− E(x)− u〈E ′(x), y − x〉 ≤ 2ρ(E, u‖y − x‖), (5.3)

for x, y ∈ A1(D) and u ∈ [0, 1].
We note that smoothness assumptions in the form of (5.3) with ρ(E, u‖y−

x‖) replaced by C‖y−x‖q were used in [13]. The authors studied the version
of WRGA(co) with weakness sequence tk = 1, k = 1, 2, . . . . They proved
Theorem 3.2 in this case. Their proof alike our proof in Section 3 is very close
to the corresponding proof from greedy approximation (see [9], [11] Section
3.3 or [12] Section 6.3).
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