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GREEDY EXPANSIONS IN HILBERT SPACES

J.L. NELSON AND V.N.TEMLYAKOV

Dedicated to Boris Kashin on the occasion of his 60th birthday.

Abstract. We study rate of convergence of expansions of elements in a Hilbert space
H into series with regard to a given dictionary D. The primary goal of this paper is to
study representations of an element f ∈ H by a series

f ∼
∞X

j=1

cj(f)gj(f), gj(f) ∈ D.

Such a representation involves two sequences: {gj(f)}∞j=1 and {cj(f)}∞j=1. In this paper

the construction of {gj(f)}∞j=1 is based on ideas used in greedy-type nonlinear approxi-
mation, hence the use of the term greedy expansion.

An interesting open problem questions, “What is the best possible rate of convergence
of greedy expansions for f ∈ A1(D)?” Previously it was believed that the rate of conver-

gence was slower than m−
1
4 . The qualitative result of this paper is that the best possible

rate of convergence of greedy expansions for f ∈ A1(D) is faster than m−
1
4 . In fact, we

prove it is faster than m−
2
7 .

1. Introduction

Let H be a real Hilbert space with an inner product 〈·, ·〉 and norm ‖x‖ = 〈x, x〉
1
2 . A

set D ⊂ H of functions (elements) is a dictionary if each g ∈ D is normalized (‖g‖ = 1)
and spanD = H. To have approximations with nonnegative coefficients, it is convenient to
consider the symmetrized dictionary D± := {±g, g ∈ D} as well.

If f ∈ H, we assume the existence of g = g(f) ∈ D, the element from D that maximizes
| 〈f, g〉 |, and define the greedy approximant as

(1) G(f) := G(f,D) := 〈f, g〉 g
and the residual as

R(f) := R(f,D) := f −G(f).
Built of these two bricks, the Pure Greedy Algorithm is an iterative process that chips away
at the residual by creating greedy approximants for successive residuals. The resulting
approximants of the residuals are combined to create an approximation for the original
f ∈ H. The Pure Greedy Algorithm is given by Algorithm 1.
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2 J.L. NELSON AND V.N.TEMLYAKOV

Algorithm 1: Pure Greedy Algorithm (PGA)
Input: f , D
begin

f0 := R0(f) := R0(f,D) := f ;
G0(f) := G0(f,D) := 0;
for m ≥ 1 do

Greedy choice:

g(Rm−1(f)) ∈
{
g ∈ D : |〈Rm−1(f), g〉| = max

g∈D
|〈Rm−1(f), g〉|

}
Greedy approximation:

Gm(f) := Gm(f,D) := Gm−1(f) +G(Rm−1(f))

Calculate residual:

fm := Rm(f) := Rm(f,D) := f −Gm(f) = R(Rm−1(f))

end

The primary goal of this paper is to study representations of an element f ∈ H by a
series

(2) f ∼
∞∑
j=1

cj(f)gj(f), gj(f) ∈ D.

where the coefficients cj(f) are created by design. We require that ~D = {gj(f)}∞j=1 is
inductively constructed based on the greedy step from the PGA: gj(f) := g(fj−1) where

fj−1 := f −
j−1∑
i=1

ci(f)gi(f).

This choice is why such expansions are called greedy expansions.
After a dictionary element has been chosen, its corresponding coefficient must be made.

There is freedom of choice in coefficients cj(f) of greedy expansions. Close study (see
Temlyakov (2007b) for example) has shown that the obvious choice is not always the
best, in terms of ushering along convergence. In the case of PGA the choice is cj(f) =
〈fj−1, gj(f)〉. In the case of an orthonormal dictionary, this inner product boils down
to cj(f) = 〈f, gj(f)〉 , but with a general dictionary, the closed form of cj(f) is more
complicated.

For now the rate of convergence of greedy expansions is the topic of interest. (Temlyakov,
2011, Chapter 6) presents results on greedy expansions, but specifically for the Pure Greedy
Algorithm, DeVore and Temlyakov (1996) proved that for a general dictionary D and
f ∈ A1(D) the estimate

‖f −Gm(f,D)‖ ≤ m−
1
6



GREEDY EXPANSIONS IN HILBERT SPACES 3

holds, where A1(D) denotes the closure of the convex hull of the symmetric dictionary D±.
Konyagin and Temlyakov (1999) improved the DeVore-Temlyakov estimate to

‖f −Gm(f,D)‖ ≤ 4m−
11
62 .

These estimates brought up the following central theoretical open problem in greedy
approximation in Hilbert spaces.

Problem 1.1. Find the order of decay of the sequence

γ(m) := sup
f∈A1(D),D,{Gm}

‖f −Gm(f,D)‖ ,

where the supremum is taken over all dictionaries D, all elements f ∈ A1(D) and all
possible choices of {Gm}.

Sil′nichenko (2004) proved the upper estimate

γ(m) ≤ Cm−
s

2(2+s)

where s is a solution from [1, 1.5] of the equation

(1 + x)
1

2+x

(
2 + x

1 + x

)
− 1 + x

x
= 0.

Numerical calculations of s by Sil′nichenko (2004) give
s

2(2 + s)
= 0.182 · · · > 11

62
.

The technique used by Sil′nichenko (2004) is a development of the method of Konyagin
and Temlyakov (1999).

There is also some progress in lower estimates. The estimate

γ(m) ≥ Cm−0.27,

with a positive constant C, has been proved in Livshitz and Temlyakov (2003). Previ-
ous lower estimates appear on page 59 of Temlyakov (2003). Recently, Livshitz (2009),
developing the technique from Livshitz and Temlyakov (2003), proved the lower estimate

γ(m) ≥ Cm−0.1898.

Although the Pure Greedy Algorithm gives, for every element f ∈ H, a convergent
expansion in a series with respect to a dictionary D, alterations of the PGA can have
their virtues. Temlyakov (2007a) developed such alteration that also provides a convergent
expansion but generalizes the PGA with a weakness sequence and a tuning parameter. The
weakness sequence is a sequence τ = {tk}∞k=1, 0 ≤ tk ≤ 1. The kth term in the weakness
sequence prescribes that the greedy choice should be at least tk times as good as an optimal
greedy choice. In fact, when τ = {1}, the algorithm is called the Pure Greedy Algorithm
with parameter b (PGA(b)). The tuning parameter b ∈ (0, 1] then attempts to ameliorate
the shortcomings of the greedy choice by scaling the greedy approximant down–analogous
to the way that someone who utters an insult might play it down by saying, “Just kidding!”
More precisely, WGA(b) updates the approximant by adding an orthogonal projection of
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the residual f τ,bm−1 onto ϕτ,bm multiplied by b, so the greedy expansion for f ∈ H is a series
of the form

f ∼
∞∑
j=1

cj(f)ϕτ,bj , cj(f) := b
〈
f τ,bj−1, ϕ

τ,b
j

〉
.

With these alterations, shown in Algorithm 2, the Weak Greedy Algorithm with parameter
b arises.

Algorithm 2: Weak Greedy Algorithm with parameter b (WGA(b))
Input: f , D, τ := {tm}∞m=1 (tm ∈ [0, 1]), b ∈ (0, 1]
begin

f τ,b0 := f ;
G0(f) := G0(f,D) := 0;
for m ≥ 1 do

Greedy choice: ϕτ,bm ∈ D is any element satisfying∣∣∣〈f τ,bm−1, ϕ
τ,b
m

〉∣∣∣ ≥ tm sup
g∈D

∣∣∣〈f τ,bm−1, g
〉∣∣∣

Greedy approximation:

Gτ,bm (f,D) := b
m∑
j=1

〈
f τ,bj−1, ϕ

τ,b
j

〉
ϕτ,bj

Calculate residual:
f τ,bm := f τ,bm−1 − b

〈
f τ,bm−1, ϕ

τ,b
m

〉
ϕτ,bm

end

Temlyakov (2007a) gives the following convergence rate of WGA(b).

Theorem 1.2. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1 is a nonin-
creasing sequence and b ∈ (0, 1]. Then for f ∈ A1(D) we have∥∥∥f −Gτ,bm (f,D)

∥∥∥ ≤ (1 + b(2− b)
m∑
k=1

t2k

) −(2−b)tm
2(2+(2−b)tm)

.

In the particular case tk = 1, k = 1, 2, . . . , we get the following rate of convergence∥∥∥f −G1,b
m (f,D)

∥∥∥ ≤ Cm−r(b), r(b) :=
2− b

2(4− b)
.

The fact that r(1) = 1
6 and r(b)→ 1

4 as b→ 0 means that at each step of the Pure Greedy
Algorithm we can choose a fixed fraction of the optimal coefficient for that step instead of
the optimal coefficient itself. Surprisingly, this leads to better upper estimates than those
known for the Pure Greedy Algorithm, so it happens that pure greed is good, as Tropp
(2004) says, but it is not as good as conservative greed. Try explaining that to Wall Street.
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In the general setting of Banach spaces, Temlyakov (2007b) pushed the flexibility of the
greedy coefficients to the extreme by making them independent of the input f . Assum-
ing that D is symmetric, it is easy to formulate the analogous Hilbert space algorithm
DGA(τ, C), given by Algorithm 3. If τ = {t} with t ∈ (0, 1], the notation says t instead of
τ . When t = 1, it is ignored, but the resulting algorithm, DGA(C), still provides a greedy
expansion.

Algorithm 3: Dual Greedy Algorithm with weakness τ and coefficients C (DGA(τ, C))

Input: f , D, τ := {tm}∞m=1 (tm ∈ [0, 1]), C = {ck}∞k=1

begin
f0 := f ;
G0 := 0;
for m ≥ 1 do

Greedy choice: ϕm ∈ D is any element satisfying

〈fm−1, ϕm〉 ≥ tm sup
g∈D
〈fm−1, g〉

Greedy approximation:
Gm := Gm−1 + cmϕm.

Calculate residual:
fm := fm−1 − cmϕm

end

The Banach space result on the rate of convergence of DGA(τ, C) from Temlyakov
(2007a) also leads to a Hilbert space version.

Theorem 1.3. Let C :=
{
k−

3
4

}∞
k=1

. Then the DGA(C) converges for f ∈ A1(D) at the

following rate: For any r ∈
(
0, 1

4

)
‖fm‖ ≤ C(r)m−r.

Thus, both PGA(b) and DGA(C) provide a rate of convergence for f ∈ A1(D) close to,
but slower than m−

1
4 . So, if even this blind chicken of an algorithm can find some corn,

what is the best possible rate of convergence of greedy expansions (2) for f ∈ A1(D)? This
is an interesting open problem. The qualitative result of this paper is that the best possible
rate of convergence is faster than m−

1
4 . Section 3 argues the following theorem where

h(x,w, b) :=
(

1− (2− b)x+
(

1− b

2

)
wx2

)
(1 + x)w(2−b).

Theorem 1.4. Let b ∈
(
0, 1

2

]
be given and let w > 1 be such that

min
0≤x≤1

h(x,w, b) < 1.
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Then for the residual of PGA(b) we have

‖fm‖ ≤ C(b, w)m−ρ(b,w), where ρ(b, w) :=

(
1− b

2

)
w

2
((

1− b
2

)
w + 1

) .
For the function h(x,w, b) we have for b ≤ 1

2

h

(
1
2
, 1, b

)
=
(

1
4

+
3b
8

)(
3
2

)2−b
≤ 63

64
< 1.

This implies the following lemma.

Lemma 1.5. There exists a number w > 1 such that for all b ≤ 1
2 we have

min
0≤x≤1

h(x,w, b) < 1.

Observing that for w > 1

lim
b→0

ρ(b, w) =
w

2(w + 1)
>

1
4

we obtain from Theorem 1.4 and Lemma 1.5 the fact that PGA(b), with appropriate b,
converges faster than m−r with r > 1

4 . At the end of Section 3 we present an elementary
numerics showing that one can take ρ(b, w) = 2

7 for appropriate b and w.
Techniques from Konyagin and Temlyakov (1999) and Temlyakov (2007a) are used in

this proof. For completeness we give the proof of Theorem 1.2 presently.

2. Rate of convergence of WGA(b)

An alternative characterization of A1(D) for a general dictionary D begins by defining
the class of functions

A0
1(D,M) :=

{
f ∈ H : f =

∑
k∈Λ

ckwk, wk ∈ D, #Λ <∞ and
∑
k∈Λ

|ck| ≤M

}
then A1(D,M) denotes the closure in H of Ao1(D,M). The union over all M > 0 of the
classes A1(D,M) is then denoted A1(D). For f ∈ A1(D), we define the norm, |f |A1(D), as
the smallest M such that f ∈ A1(D,M). For M = 1 we denote A1(D) := A1(D, 1).

For ease of notation, let

am :=
∥∥∥f τ,bm ∥∥∥2

dm−1 :=
∣∣∣〈f τ,bm−1, ϕ

τ,b
m

〉∣∣∣ , m = 1, 2, . . . ,

where f τ,bm−1 is the mth residual of WGA(b) and ϕτ,bm is the mth greedy choice. Consider the
sequence {Bn} defined by

B0 := 1,
Bm := Bm−1 + bdm−1, m = 1, 2, . . . .

(3)
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Then obviously f τ,bm ∈ A1(D, Bm).
Lemma 3.5 from DeVore and Temlyakov (1996) states that if f ∈ A1(D,M) and g(f) :=

arg sup
g∈D

|〈f, g〉| then

〈f, g(f)〉
‖f‖

≥ ‖f‖
M

.

Applying this lemma to f τ,bm−1 results in

(4) sup
g∈D

∣∣∣〈f τ,bm−1, g
〉∣∣∣ ≥

∥∥∥f τ,bm−1

∥∥∥2

Bm−1
.

Combining this with the equality∥∥∥f τ,bm ∥∥∥2
=
∥∥∥f τ,bm−1

∥∥∥2
− b(2− b)

〈
f τ,bm−1, ϕ

τ,b
m

〉2

we obtain the relations

am = am−1 − b(2− b)d2
m−1,(5)

dm−1 ≥
tmam−1

Bm−1
.(6)

Substituting (6) into (5), begets

am ≤ am−1

(
1− b(2− b)t2mam−1

B2
m−1

)
.

Knowing that Bm−1 ≤ Bm, multiplication by inverse squares narrows the gap but does
not close or reverse it, leading to

amB
−2
m ≤ am−1B

−2
m−1

(
1− b(2− b)t2mam−1

B2
m−1

)
.

At this point, Lemma 3.1 from Temlyakov (2000) interjects. It says that when {am}∞m=0

satisfies the inequalities

a0 ≤ A, am ≤ am−1

(
1− t2mam−1

A

)
, m = 1, 2, . . . ,

then we have for each m

am ≤ A

(
1 +

m∑
k=0

t2k

)−1

.

Applying this lemma with A = 1 gives

(7) amB
−2
m ≤

(
1 + b(2− b)

m∑
k=1

t2k

)−1

.
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For the time being, set aside this relation. Plugging (6) into (5) again–but not completely
replacing dm−1 this time–gives the slightly different relation,

(8) am ≤ am−1 −
b(2− b)dm−1tmam−1

Bm−1
= am−1

(
1− b(2− b)tmdm−1

Bm−1

)
.

When the square roots of both sides of this relation are taken and followed by the appli-
cation of the inequality (1− x)

1
2 ≤ 1− 1

2x for x ≤ 1, the result is

(9) a
1
2
m ≤ a

1
2
m−1

(
1−

b
(
1− b

2

)
tmdm−1

Bm−1

)
.

Now this relation can step aside until it is needed. We can return to the definition of {Bm}
in (3) and rewrite it in the form

Bm = Bm−1

(
1 +

bdm−1

Bm−1

)
,

so that applying the inequality

(1 + x)α ≤ 1 + αx, 0 ≤ α ≤ 1, x ≥ 0,

reveals that

(10) B
(1− b

2)tm
m ≤ B(1− b

2)tm
m−1

(
1 +

b
(
1− b

2

)
tmdm−1

Bm−1

)
.

Multiplying (9) and (10) allows us to trivialize the complicated multiplier in the latter so
that we obtain

a
1
2
mB

(1− b
2)tm

m ≤ a
1
2
m−1B

(1− b
2)tm

m−1 .

In order to compare successive terms, note that since Bm−1 ≥ 1 and tm ≤ tm−1,

B
(1− b

2)tm
m−1 ≤ B(1− b

2)tm−1

m−1 .

Substituting this fact into the previous one, it becomes clear that the sequence
{
a

1
2
kB

(1− b
2)tk

k

}
is non-increasing

(11) a
1
2
mB

(1− b
2)tm

m ≤ a
1
2
m−1B

(1− b
2)tm−1

m−1 ≤ · · · ≤ a
1
2
0 ≤ 1.

Raising both sides of (7) to the power
(
1− b

2

)
tm, squaring the ends of the inequality chain

(11), and then combining those two results, we obtain

a
1+(1− b

2)tm
m ≤

(
1 + b(2− b)

m∑
k=1

t2k

)−(1− b
2)tm

.

Raising both sides of this final relation to the power
(
1 +

(
1− b

2

)
tm
)−1

completes the
proof. �
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Remark 2.1. If instead of (3) we define the sequence {Bn} by

(12) B0 ≥ 1, Bm := Bm−1 + bdm−1, m = 1, 2, . . .

then we still get (7) for f ∈ A1(D).

3. Improved rate of convergence

Since the Pure Greedy Algorithm with parameter b (PGA(b)) is essentially WGA(b)
with the weakness sequence tk = 1 for all k, we will use the structure of the proof given
by Konyagin and Temlyakov (1999) and assumptions of Theorem 1.4 to improve the rate
of convergence given in Theorem 1.2. Rather than (11), we get the following inequality

(13) a
1
2
mB

(1− b
2)w

m ≤ C(b, w)

with some constant C(b, w). We define as before

d(f) := | 〈f, g(f)〉 |, dm := d(fm), m = 0, 1, 2, . . .

where fm := f τ,bm for convenience. We note that (5) implies that a0 ≥ a1 ≥ . . . and,
therefore, for f ∈ A1(D), we have, for all m, dm ≤ 1. For ease of use, we employ the
rewritten definition of the sequence {Bm}

Bm = Bm−1

(
1 +

bdm−1

Bm−1

)
,

but a different B0 will be specified later on.
It is a fact that for any f ∈ H and h ∈ A1(D) we have

(14) | 〈f, h〉 | ≤ | 〈f, g(f)〉 ||h|A1(D).

To see why this is so, observe that if h ∈ A0
1(D,M), it has a representation h =

∑
k ckgk

in terms of the dictionary D = {gk} with
∑
|ck| ≤M . Therefore we have

| 〈f, h〉 | =

∣∣∣∣∣∑
k

ck 〈f, gk〉

∣∣∣∣∣
≤
∑
k

|ck| |〈f, gk〉|

≤ | 〈f, g(f)〉 |
∑
k

|ck| ≤ | 〈f, g(f)〉 |M.

Then (14) follows by a limiting argument.
With this fact in hand, consider 〈f`, f〉 for some ` = 0, 1, 2, . . . , the inner product of the

`th residual with the original input. On one hand, (14) implies that we have for f ∈ A1(D)

(15) 〈f`, f〉 ≤ d(f`)|f |A1(D) ≤ d`B0,
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but on the other hand we can figure directly that

(16) 〈f`, f〉 =

〈
f − b

`−1∑
j=0

djg(fj), f

〉
≥ a0 − bd0

`−1∑
j=0

dj .

Mashing together the contents of our hands, by multiplying the respective sides together,
we get a lower bound

(17) d` ≥
a0 − bd0

∑`−1
j=0 dj

B0
, ` = 1, 2, . . . .

With a mind to keeping future usage of this relation clean, denote

D` :=
∑̀
j=0

dj .

To avoid a wreck of our train of thought during the proof of Theorem 1.4, we should
address the following lemma before we proceed. This lemma gives us a bound on am+1 =∥∥f bm+1

∥∥2 in terms of the parameter b, the sequence seed B0, d0 =
∣∣〈f b0 , ϕb1〉∣∣ and the newly

defined Dm.

Lemma 3.1. We have

am+1 ≤ a0

(
1− (2− b)bDm

B0

)
+
d0(2− b)

2B0
(bDm)2.

Proof. Let
xb0 :=

a0

bd0
, yb` := xb0 −D`.

The superscript b is intended to distinguish this notation from that used by Konyagin and
Temlyakov (1999), whose definitions of x0 and y` lack the parameter b due to having been
defined with PGA in mind, not PGA(b) as in our case.

The difference between yb` and yb`−1 is d` and can be estimated by the inequality-mash
made in (17), rewritten in terms of xb0 and D`

(18) yb`−1 − yb` = d` ≥
bd0

B0
(xb0 −D`−1) =

bd0

B0
yb`−1.

Rearranged, this relation entails

yb` ≤
(

1− bd0

B0

)
yb`−1.

Denote the somewhat unruly multiplier by r = 1− bd0
B0

, and define a related quantity by
s = 1−r

1+r = bd0
2B0−bd0 . The reason for s will be clear shortly.

Using the definition of yb0, we can write it in two different ways to add 0 to d2
0 to find

the identity

(19) d2
0 = −s(yb0)2 + s(xb0 − d0)2 + d2

0.
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At this point, let us reorient ourselves towards finding an estimate for am+1, an inter-
mediate step that we left out of (5) gives the identity

(20) am+1 = a0 − b(2− b)
m∑
j=0

d2
j

so it would be useful to estimate the sum of squares.
To this end, let us prove by induction the following inequality

(21) d2
0 + · · ·+ d2

n ≥ d2
0 + s(xb0 − d0)2 − s(ybn)2.

Suppose that (21) holds for some n = m− 1. Thus for n = m we obtain

d2
0 + · · ·+ d2

m−1 + d2
m ≥ d2

0 + s(xb0 − d0)2 − s(ybm−1)2 + d2
m

= d2
0 + s(xb0 − d0)2 − s(ybm−1)2 + (ybm−1 − ybm)2

where the second line follows from (18). At this time, the following lemma by Konyagin
and Temlyakov (1999) is helpful, using r and s as we have already defined them.

Lemma 3.2. Let 0 < r < 1 be given and s := 1−r
1+r . Then for x1, x2 such that x1 − x2 ≥ 0

and x2 ≤ rx1 we have
−sx2

2 ≤ −sx2
1 + (x1 − x2)2.

Applying the lemma with

r = (1− bd0

B0
) s =

bd0

2B0 − bd0

x2 = ybm = xb0 −Dm x1 = ybm−1 = xb0 −Dm−1,

we continue to estimate the sum of squares

d2
0 + · · ·+ d2

m−1 + d2
m ≥ d2

0 + s(xb0 − d0)2 − s(ybm)2

= d2
0 + s(Dm − d0)(2xb0 −Dm − d0)

= d2
0 +

bd0

2B0 − bd0
(Dm − d0)(2xb0 −Dm − d0).

Now we require another lemma by Konyagin and Temlyakov (1999).

Lemma 3.3. Let A, B, C be positive numbers such that C ≥ A + B. Then for any
0 ≤ x ≤ min(A,B) we have

x+
(A− x)(B − x)

C − x
≥ AB

C
.

This lemma works with A = Dm, B = 2xb0 −Dm, C = 2B0
b , x = d0 to bring us to

d2
0 + · · ·+ d2

m−1 + d2
m ≥

bd0

2B0
Dm(2xb0 −Dm) =

a0

B0
Dm −

bd0

2B0
D2
m.
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Inserting this estimate into the identity (20) expands the latter to

am+1 = a0 − b(2− b)
m∑
j=0

d2
j ≤ a0

(
1− (2− b)bDm

B0

)
+

(2− b)d0

2B0
(bDm)2.

This completes the proof of Lemma 3.1. �
With this lemma in hand, the proof of Theorem 1.4 follows. Remember that we are

trying to show (13), that for all m

a
1
2
mB

(1− b
2)w

m ≤ C(b, w).

However, the proof is recursive. We analyze the first iteration.
Shortly, the form of h(x,w, b) will find an explanation. For now, it suffices to say that its

role is to give a bound on a product of powers of am+1 and Bm+1 in terms of a proportion
of a product of powers of a0 and B0. If we want the residuals of PGA(b) to go to zero,
we would like h(x,w, b) to be less than 1. This assumption can be rephrased in terms of
optimization as

min
0≤x≤1

h(x,w, b) < 1

so that it implies that there exists an interval [u, v] ⊂ [0, 1], u < v, such that

(22) h(x,w, b) ≤ 1, x ∈ [u, v].

For reasons of fit, choose B0 such that B0 >
b

(v−u) .

Recall that for f ∈ A1(D) we have defined am =
∥∥f bm∥∥2 and dm =

∣∣〈f bm, ϕbm+1

〉∣∣ . The
recursive nature of the sequence Bm force any estimates to start at the beginning. During
the first step of PGA(b) one of two cases may apply:

d0 ≥
wa0

B0
(A)

d0 <
wa0

B0
.(B)

The w > 1 as mentioned in Theorem 1.4, stands in the place of tm from the proof of
Theorem 1.2 (see (6)).

The first case has short-term implications. The second case makes us wait for the other
shoe to drop.

Case (A). In this case the proof closely resembles the early part of the proof of Theo-
rem 1.2. We have for m = 1 that

a1 = a0 − b(2− b)d2
0 ≤ a0

(
1− b(2− b)wd0

B0

)
,

B1 = B0 + bd0.

First, we treat the case
(
1− b

2

)
w ≤ 1. As before, the inequality (1− x)

1
2 ≤ 1− 1

2x gives

a
1
2
1 ≤ a

1
2
0

(
1−

b
(
1− b

2

)
wd0

B0

)
.
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Using the inequality (1 + x)γ ≤ 1 + γx, 0 ≤ γ ≤ 1, x ≥ 0, we obtain

B
(1− b

2)w
1 = B

(1− b
2)w

0

(
1 +

bd0

B0

)(1− b
2)w
≤ B(1− b

2)w
0

(
1 +

b
(
1− b

2

)
wd0

B0

)
.

Second, we treat the case
(
1− b

2

)
w ≥ 1. Using the inequality 1−αx ≤ (1−x)α for α ≥ 1,

x ∈ [0, 1] we get

a
1
2
1 ≤ a

1
2
0

(
1− b (2− b)wd0

B0

) 1
2

≤ a
1
2
0

(
1− bd0

B0

)(1− b
2)w

.

Next,

B
(1− b

2)w
1 = B

(1− b
2)w

0

(
1 +

bd0

B0

)(1− b
2)w

.

Thus,

(23) a
1
2
1B

(1− b
2)w

1 ≤ a
1
2
0B

(1− b
2)w

0 ,

so we have that (13) is proved for m = 1.

Case (B). When we look at this case, Lemma 3.1 tells us that for m ≥ 0

a
1
2
m+1B

(1− b
2)w

m+1 ≤
(
a0

(
1− (2− b)bDm

B0

)
+

(2− b)d0

2B0
(bDm)2

) 1
2

(B0 + bDm)(1− b
2)w(24)

≤ a
1
2
0B

(1− b
2)w

0 h

(
b
Dm

B0
, w, b

) 1
2

.

What we want now is for bDm
B0
∈ [u, v], the interval from (22). This happens either sooner

or later.

Subcase B1 (Sooner). Since Dm = Dm−1 +dm, dm ≤ 1, if bDm increases beyond (1 +u)B0

then there exists m1 such that bDm1
B0
∈ [u, v] since by the choice of B0 we have b

B0
< v− u.

With this m1 we obtain

(25) a
1
2
m1+1B

(1− b
2)w

m1+1 ≤ a
1
2
0B

(1− b
2)w

0 , Bm1 ≤ (1 + v)B0.

Therefore, for m ≤ m1 we have

a
1
2
mB

(1− b
2)w

m ≤ a
1
2
0B

(1− b
2)w

m1(26)

≤ a
1
2
0B

(1− b
2)w

0 (1 + v)(1− b
2)w ≤ C1a

1
2
0B

(1− b
2)w

0 .

Subcase B2 (Later). If Bm ≤ (1 + u)B0 for all m then by (24) we obtain

(27) a
1
2
m+1B

(1− b
2)w

m+1 ≤ a
1
2
0B

(1− b
2)w

0 max
0≤x≤1

h(x,w, b)
1
2 ≤ C2a

1
2
0B

(1− b
2)w

0 .

Here, inequality (27) holds for all m and, therefore, implies (13). This ends consideration
of the first iteration of the algorithm.
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Combining all cases. In both Case (A) and Subcase B1, we begin the first iteration with
f and end up with fn1 (fn1 := f1 in case (A) and fn1 := fm1+1 in Subcase B1) with the
property

(28) a
1
2
n1B

(1− b
2)w

n1 ≤ a
1
2
0B

(1− b
2)w

0 .

For the interim n < n1 (in Subcase B1) we obtain

(29) a
1
2
nB

(1− b
2)w

n ≤ C1a
1
2
0B

(1− b
2)w

0 .

We now apply another iteration of PGA(b) to fn1 instead of f with Bn1(f) playing the
role of B0(fn1). The condition B0(fn1) > b

(v−u) is clearly satisfied.
Therefore, at the second iteration, if Subcase B2 occurs we get for all n

a
1
2
nB

(1− b
2)w

n ≤ C2a
1
2
n1B

(1− b
2)w

n1 ≤ C2a
1
2
0B

(1− b
2)w

0 .

Else, if case (A) occurs then with n2 = n1 + 1 we have

a
1
2
n2B

(1− b
2)w

n2 ≤ a
1
2
n1B

(1− b
2)w

n1 ≤ a
1
2
0B

(1− b
2)w

0

which also occurs for some n2 if we have Subcase B1. Moreover, for intermediate n ∈
(n1, n2) we have

a
1
2
nB

(1− b
2)w

n ≤ C1a
1
2
n1B

(1− b
2)w

n1 ≤ C1a
1
2
0B

(1− b
2)w

0 .

We continue these iterations to complete the proof of (13).
Using Remark 2.1 and combining (7) and (13) we obtain

am ≤ C(b, w)m
− (1− b

2)w

(1− b
2)w+1 .

This completes the proof of Theorem 1.4. �

3.1. Numerical calculations. Denote θ :=
(
1− b

2

)
w, then

h(x,w, b) = (1− (2− b)x+ θx2)(1 + x)2θ.

Specify x = 1
2 and b = 0 and get

h

(
1
2
, w, 0

)
=
θ

4

(
3
2

)2θ

.

Specify θ = 4
3 . Then

h

(
1
2
, w, b

)
=

1
3

(
3
2

) 8
3

and

h

(
1
2
, w, b

)3

=
(

1
3

)3(3
2

)8

=
35

28
=

243
256

< 1.



GREEDY EXPANSIONS IN HILBERT SPACES 15

Therefore, for sufficiently small b we can take w such that
(
1− b

2

)
w = 4

3 and

h

(
1
2
, w, b

)
< 1.

For these b and w we obtain ρ(b, w) = 2
7 in Theorem 1.4.
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