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HEAT KERNEL GENERATED FRAMES IN THE SETTING OF
DIRICHLET SPACES

T. COULHON, G. KERKYACHARIAN, AND P. PETRUSHEV

Abstract. Wavelet bases and frames consisting of band limited functions of
nearly exponential localization on Rd are a powerful tool in harmonic anal-
ysis by making various spaces of functions and distributions more accessible
for study and utilization, and providing sparse representation of natural func-
tion spaces (e.g. Besov spaces) on Rd. Such frames are also available on the
sphere and in more general homogeneous spaces, on the interval and ball.
The purpose of this article is to develop band limited well-localized frames
in the general setting of Dirichlet spaces with doubling measure and a local
scale-invariant Poincaré inequality which lead to heat kernels with small time
Gaussian bounds and Hölder continuity. As an application of this construction,
band limited frames are developed in the context of Lie groups or homogeneous
spaces with polynomial volume growth, complete Riemannian manifolds with
Ricci curvature bounded from below and satisfying the volume doubling prop-
erty, and other settings. The new frames are used for decomposition of Besov
spaces in this general setting.
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1. Introduction

Decomposition systems (bases or frames) consisting of band limited functions of
nearly exponential space localization have had significant impact in theoretical and
computational harmonic analysis, PDEs, statistics, approximation theory and their
applications. Meyer’s wavelets [39] and the frames (the ϕ-transform) of Frazier and
Jawerth [21, 22, 23] are the most striking examples of such decomposition systems
playing a pivotal role in the solution of numerous theoretical and computational
problems. The key to the success of wavelet type bases and frames is rooted in
their ability to capture a great deal of smoothness and other norms in terms of
respective coefficient sequence norms and provide sparse representation of natural
function spaces (e.g. Besov spaces) on Rd. Frames of a similar nature have been
recently developed in non-standard settings such as on the sphere [42, 43] and more
general homogeneous spaces [24], on the interval [47, 35] and ball [48, 36] with
weignts, and extensively used in statistical applications (see e.g. [32, 31]).

The primary goal of this paper is to extend and refine the construction of band
limited frames with elements of nearly exponential space localization to the general
setting of strictly local regular Dirichlet spaces with doubling measure and local
scale-invariant Poincaré inequality which lead to a markovian heat kernel with
small time Gaussian bounds and Hölder continuity. The key point of our approach
is to be able to deal with (a) different geometries, (b) compact and noncompact
spaces, and (c) spaces with nontrivial weights, and at the same time to allow for
the development and frame decomposition of Besov and Triebel-Lizorkin spaces
with complete range of indices. This will enable us to cover and shed new light on
the existing frames and space decompositions and develop band limited localized
frames in the context of Lie groups or homogeneous spaces with polynomial volume
growth, complete Riemannian manifold with Ricci curvature bounded from below
and satisfying the volume doubling condition, and other new settings. To this
end we will make advances on several fronts: development of functional calculus of
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positive self-adjoint operators with associated heat kernel (in particular, localization
of the kernels of related integral operators), development of lower bounds on kernel
operators, development of a Shannon sampling theory, Littlewood-Paley analysis,
and development of dual frames.

As a first application of our frames we shall develop rapidly and characterize
the classical Besov spaces Bs

pq with positive smoothness and p ≥ 1. Classical and
nonclassical Besov and Triebel-Lizorkin spaces in the general framework of this
paper with full range of indices and their frame and heat kernel decompositions are
developed in the follow-up paper [33].

In this preamble we outline the main components and points of this undertaking,
including the underlying setting, a general scenario for realization of the setting and
examples, and a description of the main results.

1.1. The setting. We now describe precisely all the ingredients we need to develop
our theory.

I. We assume that (M, ρ, µ) is a metric measure space, which satisfies the con-
ditions:

(a) (M,ρ) is a locally compact metric space with distance ρ(·, ·) and µ is a positive
Radon measure such that the following volume doubling condition is valid

(1.1) 0 < µ(B(x, 2r)) ≤ 2dµ(B(x, r)) < ∞ for x ∈ M and r > 0.

Here B(x, r) is the open ball centered at x of radius r and d > 0 is a constant that
plays the role of a dimension. Note that (M, ρ, µ) is also a homogeneous space in
the sense of Coifman and Weiss [10, 11].

(b) The reverse doubling condition is assumed to be valid, that is, there exists a
constant β > 0 such that

(1.2) µ(B(x, 2r)) ≥ 2βµ(B(x, r)) for x ∈ M and 0 < r ≤ diam M
3 .

It will be shown in §2 that this condition is a consequence of the above doubling
condition if M is connected.

(c) The following non-collapsing condition will also be stipulated: There exists
a constant c > 0 such that

(1.3) inf
x∈M

µ(B(x, 1)) ≥ c, x ∈ M.

As will be shown in §2 in the case µ(M) < ∞ the above inequality follows by (1.1).
Therefore, it is an additional assumption only when µ(M) = ∞.

Since we consider in this paper inhomogeneous function spaces only, it would
be natural to make only purely local assumptions, and in particular to assume
doubling only for balls with radius bounded by some constant, which would enlarge
considerably our range of examples. This would require however more work and
more space. On the other hand, our next assumptions on the heat kernel are local,
in the sense that they are required for small time only. Clearly, by assuming global
doubling and global heat kernel bounds, one can treat homogeneous spaces as well.

II. Our main assumption is that the local geometry of the space (M, ρ, µ) is
related to an essentially self-adjoint positive operator L on L2(M,dµ) such that the
associated semigroup Pt = e−tL consists of integral operators with (heat) kernel
pt(x, y) obeying the conditions:
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(d) Small time Gaussian upper bound:

(1.4) pt(x, y) ≤ C exp{− cρ2(x,y)
t }√

µ(B(x,
√

t))µ(B(y,
√

t))
for x, y ∈ M, 0 < t ≤ 1.

One can see that by combining the results in [9, 45] and [13], this estimate and the
doubling condition (1.1) coupled with the fact that e−tL is actually a holomorphic
semigroup on L2(M,dµ), i.e. e−zL exists for z ∈ C, Re z ≥ 0, imply that e−zL is
an integral operator with kernel pz(x, y) satisfying the following estimate: For any
z = t + iu, 0 < t ≤ 1, u ∈ R, x, y ∈ M ,

(1.5) |pz(x, y)| ≤ C exp
{− cRe ρ2(x,y)

z

}
√

µ(B(x,
√

t))µ(B(y,
√

t))
.

(e) Hölder continuity: There exists a constant α > 0 such that

(1.6)
∣∣pt(x, y)− pt(x, y′)

∣∣ ≤ C
(ρ(y, y′)√

t

)α exp{− cρ2(x,y)
t }√

µ(B(x,
√

t))µ(B(y,
√

t))

for x, y, y′ ∈ M and 0 < t ≤ 1, whenever ρ(y, y′) ≤ √
t.

(f) Markov property:

(1.7)
∫

M

pt(x, y)dµ(y) ≡ 1 for t > 0,

which readily implies, by analytic continuation,

(1.8)
∫

M

pz(x, y)dµ(y) ≡ 1 for z = t + iu, t > 0.

Above C, c > 0 are structural constants that will affect almost all constants in what
follows.

The main results in this article will be derived from the above conditions. How-
ever, it is perhaps suitable to exhibit a more tangible general scenario that guar-
antees the validity of these conditions.

1.2. Realization of the setting in the framework of Dirichlet spaces. We
would like to point out that in a general framework of Dirichlet spaces the needed
Gaussian bound, Hölder continuity, and Markov property of the heat kernel follow
from the local scale-invariant Poincaré inequality and the doubling condition on
the measure, which in turn are equivalent to the parabolic Harnack inequality. The
point is that situations where our theory is applicable are quite common and it just
amounts to verifying the local scale-invariant Poincaré inequality and the doubling
condition on the measure. We shall further illustrate this point on several examples
and, in particular, on the “simple” example of [−1, 1] with the heat kernel induced
by the Jacobi operator, seemingly not covered in the literature.

We shall operate in the framework of strictly local regular Dirichlet spaces (see
[20, 45, 2, 55, 56, 57, 5, 6, 14]). To be specific, we assume that M is a locally
compact separable metric space equipped with a positive Radon measure µ such
that every open and nonempty set has positive measure. Also, we assume that L
is a positive symmetric operator on (the real) L2(M, µ) with domain D(L), dense
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in L2(M,µ). We shall denote briefly Lp := Lp(M, µ) in what follows. One can
associate with L a symmetric non-negative form

E(f, g) = 〈Lf, g〉 = E(g, f), E(f, f) = 〈Lf, f〉 ≥ 0,

with domain D(E) = D(L). We consider on D(E) the prehilbertian structure
induced by

‖f‖2E = ‖f‖22 + E(f, f)

which in general is not complete (not closed), but closable ([14]) in L2. Denote by
E and D(E) the closure of E and its domain. It gives rise to a self-adjoint extension
L (the Friedrichs extension) of L with domain D(L̄) consisting of all f ∈ D(E) for
which there exists u ∈ L2 such that E(f, g) = 〈u, g〉 for all g ∈ D(E) and L̄f = u.
Then L̄ is positive and self-adjoint, and

D(E) = D((L)1/2), E(f, g) = 〈(L)1/2f, (L)1/2g〉.
Using the classical spectral theory of positive self-adjoint operators, we can as-

sociate with L a self-adjoint strongly continuous contraction semigroup Pt = e−tL̄

on L2(M, µ). Then

e−tL̄ =
∫ ∞

0

e−λtdEλ,

where Eλ is the spectral resolution associated with L̄. Moreover this semigroup has
a holomorphic extension to the complex half-plane Re z > 0.

Our next assumption is that Pt is a submarkovian semigroup: 0 ≤ f ≤ 1 and
f ∈ L2 imply 0 ≤ Ptf ≤ 1. Then Pt can be extended as a contraction operator
on Lp, 1 ≤ p ≤ ∞, preserving positivity, satisfying Pt1 ≤ 1, and hence yielding a
strongly continuous contraction semigroup on Lp, 1 ≤ p < ∞. A sufficient condition
for this [2, 20], which can be verified on D(L), is that for every ε > 0 there exists
Φε : R 7→ [−ε, 1 + ε] such that Φε is non-decreasing, Φε ∈ Lip 1, Φε(t) = t for
t ∈ [0, 1] and

Φε(f) ∈ D(E) and E(Φε(f), Φε(f)) ≤ E(f, f), ∀f ∈ D(L).

(in fact, this can be done easily only if Φε(f) ∈ D(L)).
Under the above conditions, (D(E), E) is called a Dirichlet space and D(E)∩L∞

is an algebra.
We assume that the form E is strongly local, i.e. E(f, g) = 0 for f, g ∈ D(E)

whenever f is with compact support and g is constant on a neighbourhood of the
support of f . We also assume that E is regular, meaning that the space Cc(M) of
continuous functions on M with compact support has the property that the algebra
Cc(M) ∩D(E) is dense in Cc(M) with respect to the sup norm, and dense in D(E)

in the norm
√
E(f, f) + ‖f‖22.

We next give a sufficient condition for strong locality and regularity ([20], Chap-
ter 3) which can be verified for D(L): E is strongly local and regular if (i) D(L) is
a subalgebra of Cc(M) verifying the strong local condition: 0 = E(f, g) = 〈Lf, g〉
if f, g ∈ D(L), f is with compact support, and g is constant on a neighbourhood
of the support of f , and (ii) for any compact K and open set U such that K ⊂ U
there exists u ∈ D(L), u ≥ 0, suppu ⊂ U , and u ≡ 1 on K (thus D(L) is a dense
subalgebra of Cc(M) and dense in D(E)).
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Under the above assumptions, there exists a bilinear symmetric form dΓ defined
on D(E)×D(E) with values in the signed Radon measures on M such that

E(φf, g) + E(f, φg)− E(φ, fg) = 2
∫

M

φdΓ(f, g) for f, g, φ ∈ Cc(M) ∩D(E),

which obviously verifies E(f, g) =
∫

M
dΓ(f, g) and dΓ(f, f) ≥ 0.

In fact, if D(L) is a subalgebra of Cc(M), then dΓ is absolutely continuous with
respect to µ, and

dΓ(f, g)(u) = Γ(f, g)(u)dµ(u), Γ(f, g) =
1
2
(L(fg)− fLg − gLf) ∀f, g ∈ D(L).

In other words, E admits a ”carré du champ” ([8], Chapter 1, §4): There exists a
bilinear function D(E)×D(E) 3 f, g 7→ Γ(f, g) ∈ L1 such that Γ(f, f)(u) ≥ 0,

E(φf, g) + E(f, φg)− E(φ, fg) = 2
∫

M

φ(u)Γ(f, g)(u)dµ(u) ∀f, g, φ ∈ D(E) ∩ L∞,

and E(f, g) = 2
∫

M
Γ(f, g)(u)dµ(u).

One can define an intrinsic distance on M by

ρ(x, y) = sup{u(x)−u(y) : u ∈ D(E)∩Cc(M), dΓ(u, u) = γ(u)(x)dµ(x), γ(u)(x) ≤ 1}.
We assume that ρ : M ×M → [0,∞] is actually a true metric that generates the
original topology on M and that (M, ρ) is a complete metric space.

As a consequence of this assumption, the space M is connected, the closure of
an open ball B(x, r) is the closed ball B(x, r) := {y ∈ M, ρ(x, y) ≤ r}, and the
closed balls are compact (see [57, 55, 56]).

We are now in a position to describe an optimal scenario when the needed Gauss-
ian bound (1.4), Hölder continuity (1.5), and Markov property (1.6) on the heat
kernel can be effectively realized. In the framework of strictly local regular Dirichlet
spaces with a complete intrinsic metric, the following two properties are equivalent
[57, 28]:

(i) The heat kernel satisfies

(1.9)
c′1 exp{− c1ρ2(x,y)

t }√
µ(B(x,

√
t))µ(B(y,

√
t))

≤ pt(x, y) ≤ c′2 exp{− c2ρ2(x,y)
t }√

µ(B(x,
√

t))µ(B(y,
√

t))

for x, y ∈ M and 0 < t ≤ 1.
(ii) (a) (M, ρ, µ) is a local doubling measure space: There exists d > 0 such that

µ(B(x, 2r)) ≤ 2dµ(B(x, r) for x ∈ M and 0 < r < 1.
(b) Local scale-invariant Poincaré inequality holds: There exists a constant C > 0

such that for any ball B = B(x, r) with 0 < r ≤ 1, x ∈ M , and any function
f ∈ D(E), ∫

B

|f − fB |2 ≤ Cr2

∫

B

dΓ(f, f).

Moreover, it is also well-known that the above property is equivalent to a local
parabolic Harnack inequality, and, furthermore, any of these equivalent properties
implies the validity of (1.6) and (1.7) (see [57], [28], [53], [27], and the references
therein).

Consequently, given a situation which fits into the framework of strictly local
regular Dirichlet spaces with a complete intrinsic metric it suffices to only verify
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the local Poincaré inequality and the global doubling condition on the measure and
then our theory applies in full.

In a future work we will further develop this theory under the more general
assumption of the small time sub-Gaussian estimate:

(1.10) pt(x, y) ≤
C exp

{
−c

(ρm(x,y)
t

) 1
m−1

}
√

µ(B(x, t1/m))µ(B(y, t1/m))
for x, y ∈ M, 0 < t ≤ 1,

where m ≥ 2.

1.3. Examples. There is a great deal of set-ups which fit in the general framework
of this article. We next briefly describe several benchmark examples which are
indicative for the versatility and depth of our methods.

1.3.1. Uniformly elliptic divergence form operators on Rd. Given a uniformly el-
liptic symmetric matrix-valued function {ai,j(x)} depending on x ∈ Rd, one can
define an operator

L = −
d∑

i,j=1

∂

∂xi

(
ai,j

∂

∂xj

)

on L2(Rd, dx) via the associated quadratic form. Thanks to the uniform ellipticity
condition, the intrinsic metric associated with this operator is equivalent to the
Euclidean distance. The Gaussian upper and lower estimates of the heat kernel
in this setting hold for all time and are due to Aronson, the Hölder regularity of
the solutions is due to Nash [44], the Harnack inequality was obtained by Moser
[40, 41].

1.3.2. Domains in Rd. One can define uniformly elliptic divergence form operators
on Rd by choosing boundary conditions. In this case the upper bounds of the heat
kernels are well understood (see for instance [45]). The problem for establishing
Gaussian lower bounds is much more complicated. One has to choose Neumann
conditions and impose regularity assumptions on the domain. For the state of the
art, we refer the reader to [27].

1.3.3. Riemannian manifolds and Lie groups. The conditions from §1.2 are verified
for the Laplace-Beltrami operator of a Riemannian manifold with non-negative
Ricci curvature [38], also for manifolds with Ricci curvature bounded from below
if one assumes in addition that they satisfy the volume doubling property, also
for manifolds that are quasi-isometric to such a manifold [25, 51, 52], also for
co-compact covering manifolds whose deck transformation group has polynomial
growth [51, 52], for sublaplacians on polynomial growth Lie groups [61, 50] and
their homogeneous spaces [39]. We would like to point out that the case of the
sphere endowed with the natural Laplace-Beltrami operator treated in [42, 43] and
the case of more general compact homogeneous spaces endowed with the Casimir
operator considered in [24] fall into the above category. One can also consider
variable coefficients operators on Lie groups, see [54].

We refer the reader to [27, Section 2.1] for further details on the above examples.
For more references on the heat kernel in various settings, see [61, 14, 26, 53].
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1.3.4. Heat kernel on [−1, 1] generated by the Jacobi operator. To show the flexibil-
ity of our general approach to frames and spaces through heat kernels we consider
in §7 the “simple” example of M = [−1, 1] with dµ(x) = wα,β(x)dx, where wα,β(x)
is the classical Jacobi weight:

wα,β(x) = w(x) = (1− x)α(1 + x)β , α, β > −1.

The Jacobi operator is defined by

Lf(x) = −
[
w(x)a(x)f ′(x)

]′
w(x)

with a(x) := 1− x2

and D(L) = C2[−1, 1]. As is well-known ([58]), LPk = λkPk, where Pk (k ≥ 0)
is the kth degree (normalized) Jacobi polynomial and λk = k(k + α + β + 1).
Integration by parts gives

E(f, g) := 〈Lf, g〉 =
∫ 1

−1

a(x)f ′(x)g′(x)wα,β(x)dx.

In §7 it will be shown that in this case the general theory applies, resulting in a
complete strictly local Dirichlet space with an intrinsic metric defined by

ρ(x, y) = | arccosx− arccos y|, x, y ∈ [−1, 1],

which is apparently compatible with the usual topology on [−1, 1]. It will be also
shown that in this setting the measure µ verifies the doubling condition and the
respective scale-invariant Poincaré inequality is valid. Therefore, the example under
consideration fits in the general setting described in §1.2 and our theory applies.
In particular, the associated heat kernel with a representation

pt(x, y) =
∑

k≥0

e−λktPk(x)Pk(y)

has Gaussian bounds (see §7), which to the best of our knowledge appears first in the
present article. Another consequence of this is that our theory covers completely the
construction of frames and the development of Besov and Triebel-Lizorkin spaces
on [−1, 1] with Jacobi weights from [35, 47].

Finally, we would like to point out that there are other examples, e.g. the
development of frames and weighted Besov and Triebel-Lizorkin spaces on the unit
ball B in Rd in [36, 48], which perfectly fit in our general setting, but we will not
pursue in this article.

1.4. Outline of the paper. This paper is organized as follows:
In §2 we give some auxiliary results which are instrumental in proving our main

results. In particular, we collect all needed facts about doubling measures and
related kernels, construction of maximal δ-nets, and integral operators.

In §3 we develop some components of a non-holomorphic functional calculus
related to a positive self-adjoint operator L in the general set-up of the paper.
In particular, we establish the nearly exponential localization of the kernels of
operators of the form f(

√
L) under suitable conditions on f . These localization

results are crucial for the development of the Littlewood-Paley theory in our setting.
They also enable us to explore the main properties of the spectral spaces and develop
the linear approximation theory from spectral spaces through the machinery of
Jackson-Bernstein inequalities and interpolation. In this section we also give the
main properties of finite dimentional spectral spaces.
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In §4 we establish a sampling theorem in the spirit of the Shannon theory and de-
velop a cubature rule/formula in the compact and non-compact case, which is exact
for spectral functions of a given order. This cubature rule is a critical component
in the development of our frames.

Our main results are placed in §5, where we construct pairs of dual frames of
the form: {ψjξ : ξ ∈ Xj , j ≥ 0}, {ψ̃jξ : ξ ∈ Xj , j ≥ 0}, where each Xj is a δj-net on
M for an appropriate δj . The frame elements ψjξ, ψ̃jξ are band limited and well-
localized functions, which allow for decomposition of functions and distributions
from various spaces (in particular, Besov and Triebel-Lizorkin spaces) of the form

f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ〉ψjξ.

The most critical point in this paper is the construction of the dual frame {ψ̃jξ}.
We develop it in two settings: (i) in the general case, and (ii) in the case when
the spectral spaces have the polynomial property under multiplication (see §5.3).
In the second case the construction is simple and elegant, however, the setting is
somewhat restrictive, while in the first case the construction is much more involved,
but the localization of ψ̃jξ is inverse polynomial of an arbitrarily fixed order.

In §6 we develop the classical and most commonly used Besov spaces Bs
pq with

indices s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞ in the setting of this paper. These
spaces are defined through Littlewood-Paley decomposition and characterized as
approximation spaces of linear approximation from spectral spaces. A frame de-
composition of Bs

pq is also established. In full generality, classical and non-classical
Besov and Triebel-Lizorkin spaces and their frame decomposition in the general
setting of the paper are developed in [33].

Section 7 is an appendix, where we place the proofs of the Poincaré inequality for
the Jacobi operator and the doubling property of the respective measure. Gaussian
bounds of the associated heat kernel are also established.
Notation. Throughout this article we shall use the notation |E| := µ(E) for
E ⊂ M , Lp := Lp(M, µ), ‖ · ‖p := ‖ · ‖Lp , and ‖T‖p→q will denote the norm of
a bounded operator T : Lp → Lq. UCB will stand for the space of all uniformly
continuous and bounded functions on M and L∞ will be in most cases identified
with UCB. D(T ) will stand for the domain of a given operator T . We shall denote
by C∞0 (R+) the set of all compactly supported C∞ functions on R+ := [0,∞). In
most cases “sup” will mean “ess sup”. Positive constants will be denoted by c, C,
c1, c′, . . . and they may vary at every occurrence, a ∼ b will stand for c1 ≤ a/b ≤ c2.

2. Doubling metric measure spaces: Basic facts

In this section we put together some simple facts related to metric measure
spaces (M, ρ, µ) obeying the doubling, inverse doubling and non-collapsing condi-
tions (1.1)-(1.3) and integral operators acting on functions defined on such spaces.

2.1. Consequences of doubling and clarifications. The doubling condition
(1.1) readily implies

(2.1) |B(x, λr)| ≤ (2λ)d|B(x, r)|, x ∈ M, λ > 1, r > 0,

and, therefore, due to B(x, r) ⊂ B(y, ρ(y, x) + r)

(2.2) |B(x, r)| ≤ 2d
(
1 +

ρ(x, y)
r

)d

|B(y, r)|, x, y ∈ M, r > 0.
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In turn, the reverse doubling condition yields

(2.3) |B(x, λr)| ≥ (λ/2)β |B(x, r)|, λ > 1, r > 0, 0 < λr < diam M
3 .

Also, the non-collapsing condition (1.3) coupled with (2.1) implies

(2.4) inf
x∈M

|B(x, r)| ≥ ĉrd, 0 < r ≤ 1,

where ĉ = c2−d with c > 0 the constant from (1.3).
Note that |B(x, r)| can be much larger than crd as is evidenced by the case of

the Jacobi operator on [−1, 1], considered in §1.3.4 and §7, see (7.1).
Several clarifying statements are in order. We begin with a claim which, in

particular, shows that the non-collapsing condition is automatically obeyed when
µ(M) < ∞.

Proposition 2.1. Let (M, ρ, µ) be a metric measure space which obeys the doubling
condition (1.1). Then

(a) µ(M) < ∞ if and only if diam M < ∞. Moreover, if diam M = D < ∞,
then

(2.5) inf
x∈M

|B(x, r)| ≥ rd|M |(2D)−d, 0 < r ≤ D.

(b) µ({x}) > 0 for some x ∈ M if and only if {x} = B(x, r) for some r > 0.

Proof. We first prove (a). Note that if diam M = D < ∞, then M = B(x,D) for
any x ∈ M and hence |M | = |B(x,D)| < ∞.

In the other direction, let |M | < ∞. Assume on the contrary that diam M = ∞.
Then inductively one can construct a sequence of points {x0, x1, . . . } ⊂ M such
that if dj := ρ(x0, xj), then 1 ≤ d1 < d2 < · · · and dj+1 > 3dj , j ≥ 0. One checks
easily that B(xj ,

dj

2 ) ∩B(xk, dk

2 ) = ∅ if j 6= k. On the other hand, using (1.1),

0 < |B(x0, 1)| ≤ |B(xj , 2dj)| ≤ 4d|B(xj , dj/2)|.
Therefore, we have a sequence of disjoint balls {B(xj ,

dj

2 )}j≥1 in M such that
|B(xj ,

dj

2 )| ≥ 4−d|B(x0, 1)| > 0 and hence |M | = ∞. This is a contradiction that
proves the claim.

Estimate (2.5) is immediate from (2.1).
To prove (b), we first note that if {x} = B(x, r) for some r > 0, then (1.1)

implies µ({x}) > 0. For the other implication, let µ({x}) > 0 and assume that
{x} 6= B(x, r) for all r > 0. Then we use this to construct inductively a sequence
{x1, x2, . . . } ⊂ M such that if dj := ρ(x, xj), then d1 > d2 > · · · > 0 and dj+1 <

dj

3 ,
j ≥ 1. Clearly, the latter inequality yields B(xj ,

dj

2 ) ∩ B(xk, dk

2 ) = ∅ if j 6= k. On
the other hand by our assumption, (1.1), and the fact that x ∈ B(xj , 2dj) we infer

0 < µ({x}) ≤ |B(xj , 2dj)| ≤ 4d|B(xj , dj/2)|.
Now, as above we conclude that |M | = ∞ which is a contradiction. ¤

We next show that the reverse doubling condition (1.2) is not quite restrictive.

Proposition 2.2. If M is connected, then the reverse doubling condition holds,
i.e. there exists β > 0 such that

|B(x, 2r)| ≥ 2β |B(x, r)| for x ∈ M and 0 < r < diam M
3 .
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Proof. Suppose 0 < r < diam M
3 . Then there exists y ∈ M such that d(x, y) = 3r/2,

for otherwise B(x, 3r/2) = B(x, 3r/2) 6= M is simultaneously open and close,
which contradicts the connectedness of M . Evidently, B(x, r) ∩ B(y, r/2) = ∅ and
B(y, r/2) ⊂ B(x, 2r), which yields |B(x, 2r)| ≥ |B(y, r/2)|+ |B(x, r)|. On the other
hand B(x, r) ⊂ B(y, 5r/2) which along with (2.1) implies |B(x, r)| ≤ 10dB(y, r/2)
and hence |B(x, 2r)| ≥ (10−d + 1)|B(x, r)| = 2β |B(x, r)|. ¤

2.2. Useful notation and estimates. The localization of various operator kernels
in what follows will be governed by symmetric functions of the form

(2.6) Dδ,σ(x, y) :=
(|B(x, δ)||B(y, δ)|)−1/2

(
1 +

ρ(x, y)
δ

)−σ

, x, y ∈ M.

Here δ, σ > 0 are parameters that will be specified in every particular case.
We next give several simple properties of Dδ,σ(x, y) which will be instrumental

in various proofs in the sequel. Note first that (2.1)-(2.2) readily yield

(2.7) Dδ,σ(x, y) ≤ 2d/2|B(x, δ)|−1
(
1 +

ρ(x, y)
δ

)σ−d/2

,

(2.8) Dλδ,σ(x, y) ≤ (2/λ)dDδ,σ(x, y), 0 < λ < 1,

(2.9) Dλδ,σ(x, y) ≤ λσDδ,σ(x, y), λ > 1.

Furthermore, for 0 < p < ∞ and σ > d(1/2 + 1/p)

(2.10) ‖Dδ,σ(x, ·)‖p =
(∫

M

[
Dδ,σ(x, y)

]p
dµ(y)

)1/p

≤ c(p)|B(x, δ)|1/p−1,

where c(p) =
(

2dp/2

2−d−2−(σ−d/2)p

)1/p is decreasing as a function of p, and

(2.11)
∫

M

Dδ,σ(x, u)Dδ,σ(u, y)dµ(u) ≤ cDδ,σ(x, y) if σ > 2d,

with c = 2σ+d+1

2−d−2d−σ .
The above two estimates follow readily by the following lemma which will be

needed as well.

Lemma 2.3. (a) If σ > d, then for δ > 0

(2.12)
∫

M

(1+δ−1ρ(x, y))−σdµ(y) ≤ c1|B(x, δ)|, x ∈ M,
(
c1 = (2−d−2−σ)−1

)
.

(b) If σ > d, then for x, y ∈ M and δ > 0
∫

M

1
(1 + δ−1ρ(x, u))σ(1 + δ−1ρ(y, u))σ

dµ(u) ≤ 2σc1
|B(x, δ)|+ |B(y, δ)|
(1 + δ−1ρ(x, y))σ

≤ 2σ(2d + 1)c1
|B(x, δ)|

(1 + δ−1ρ(x, y))σ−d
.(2.13)

(c) If σ > 2d, then for x, y ∈ M and δ > 0
∫

M

1
|B(u, δ)|(1 + δ−1ρ(x, u))σ(1 + δ−1ρ(y, u))σ

dµ(y) ≤ c2

(1 + δ−1ρ(x, y))σ
,(2.14)

with c2 = 2σ+d+1

2−d−2d−σ .
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Proof. Denote briefly E0 := {y ∈ M : ρ(x, y) < δ} = B(x, δ) and

Ej := {y ∈ M : 2j−1δ ≤ ρ(x, y) < 2jδ} = B(x, 2jδ) \B(x, 2j−1δ), j ≥ 1.

Then using (1.1) we get
∫

M

(1 + δ−1ρ(x, y))−σdµ(y) =
∑

j≥0

∫

Ej

(1 + δ−1ρ(x, y))−σdµ(y)

≤ |B(x, δ)|+ (2d − 1)
∑

j≥0

|B(x, 2jδ)|
(1 + 2j)σ

≤ |B(x, δ)|
(
1 + (2d − 1)

∑

j≥0

2jd

(1 + 2j)σ

)
≤ |B(x, δ)|

2−d − 2−σ
,

which gives (2.12).
For the proof of (2.13), we note that the triangle inequality implies

1 + δ−1ρ(x, y)
(1 + δ−1ρ(x, u))(1 + δ−1ρ(y, u))

≤ 1
1 + δ−1ρ(x, u)

+
1

1 + δ−1ρ(y, u)

and hence
(2.15)

(1 + δ−1ρ(x, y))σ

(1 + δ−1ρ(x, u))σ(1 + δ−1ρ(y, u))σ
≤ 2σ

(1 + δ−1ρ(x, u))σ
+

2σ

(1 + δ−1ρ(y, u))σ
.

We now integrate and use (2.12) to obtain (2.13).
For the proof of (2.14), we use the above inequality and (2.2) to obtain

(1 + δ−1ρ(x, y))σ

|B(u, δ)|(1 + δ−1ρ(x, u))σ(1 + δ−1ρ(y, u))σ
(2.16)

≤ 2σ+d

|B(x, δ)|(1 + δ−1ρ(x, u))σ−d
+

2σ+d

|B(y, δ)|(1 + δ−1ρ(y, u))σ−d

and integrating and applying again (2.12) we arrive at (2.14). ¤

2.3. Maximal δ-nets. For the construction of decomposition systems (frames) we
shall need maximal δ-nets on M .

Definition 2.4. We say that X ⊂ M is a δ-net on M (δ > 0) if ρ(ξ, η) ≥ δ for all
ξ, η ∈ X , and X ⊂ M is a maximal δ-net on M if X is a δ-net on M that cannot
be enlarged, i.e. there does not exist x ∈ M such that ρ(x, ξ) ≥ δ for all ξ ∈ X and
x 6∈ X .

We collect some simple properties of maximal δ-nets in the following proposition.

Proposition 2.5. Suppose (M, ρ, µ) is a metric measure space obeying the doubling
condition (1.1) and let δ > 0.

(a) A maximal δ-net on M always exists.
(b) If X is a maximal δ-net on M , then

(2.17) M = ∪ξ∈XB(ξ, δ) and B(ξ, δ/2) ∩B(η, δ/2) = ∅ if ξ 6= η, ξ, η ∈ X .

(c) Let X be a maximal δ-net on M . Then X is countable or finite and there
exists a disjoint partition {Aξ}ξ∈X of M consisting of measurable sets such that

(2.18) B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ X .
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Proof. For (a) observe that a maximal δ-net is a maximal set in the collection of
all δ-net on M with respect to the natural ordering of sets (by inclusion) and hence
by Zorn’s lemma a maximal δ-net on M exists.

Part (b) is immediate from the definition of maximal δ-nets.
To prove (c) we first fix y ∈ M and observe that for any n > δ , n ∈ N, by

(2.1)-(2.2) it follows that |B(y, n)| ≤ c(n, δ)|B(ξ, δ/2)| for ξ ∈ X ∩ B(y, n), where
c(n, δ) is a constant depending on n and δ. On the other hand, by (2.17)

∑

ξ∈X∩B(y,n)

|B(ξ, δ/2)| ≤ |B(y, 2n)| ≤ 2d|B(y, n)|.

Therefore, #(X ∩B(y, n)) ≤ 2dc(n, δ) < ∞, which readily implies that X is count-
able or finite.

Let us order the elements of X in a sequence: X = {ξ1, ξ2, . . . }. We now define
the sets Aξ of the claimed cover of M inductively. We set

Aξ1 := B(ξ1, δ) \ ∪η∈X ,η 6=ξ1B(η, δ/2)

and if Aξ1 , Aξ2 , . . . , Aξj−1 have already been defined, we set

Aξj := B(ξj , δ) \
[ ∪ν≤j−1 Aξν ∪η∈X ,η 6=ξj B(η, δ/2)

]
.

It is easy to see that the sets Aξ1 , Aξ2 , . . . have the claimed properties. ¤
Discrete versions of estimates (2.11) and (2.12) will be needed. Suppose X is

a maximal δ-net on M and {Aξ}ξ∈X is a companion disjoint partition of M as in
Proposition 2.5. Then

(2.19)
∑

ξ∈X
|Aξ|

(
1 + δ−1ρ(x, ξ)

)−d−1 ≤ 22d+2|B(x, δ)|

and

(2.20)
∑

ξ∈X

(
1 + δ−1ρ(x, ξ)

)−2d−1 ≤ 23d+2.

Furthermore, for any δ? ≥ δ

(2.21)
∑

ξ∈X

|Aξ|
|B(ξ, δ?)|

(
1 + δ?

−1ρ(x, ξ)
)−2d−1 ≤ 23d+2,

and if σ ≥ 2d + 1

(2.22)
∑

ξ∈X
|Aξ|Dδ?,σ(x, ξ)Dδ?,σ(y, ξ) ≤ 2σ+3d+3Dδ?,σ(x, y).

Also, for σ ≥ 2d + 1

(2.23)
∑

ξ∈X

(
1 + δ−1ρ(x, ξ)

)−σ(
1 + δ−1ρ(y, ξ)

)−σ ≤ 2σ+2d+3
(
1 + δ−1ρ(x, y)

)−σ
.

We next prove (2.21). The proofs of (2.19) and (2.20) are similar. Observe first
that by (2.2) |B(x, δ?)| ≤ 2d(1 + δ?

−1ρ(x, ξ))d|B(ξ, δ?)|. On the other hand, for
u ∈ Aξ ⊂ B(ξ, δ)

1 + δ?
−1ρ(x, u) ≤ 1 + δ?

−1ρ(x, ξ) + δ?
−1ρ(ξ, u) ≤ 2

(
1 + δ?

−1ρ(x, ξ)
)
.
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Therefore,

|Aξ|
|B(ξ, δ?)|

(
1 + δ?

−1ρ(x, ξ)
)−2d−1 ≤ 2d|Aξ|

|B(x, δ?)|
(
1 + δ?

−1ρ(x, ξ)
)−d−1

≤ 22d+1

|B(x, δ?)|
∫

Aξ

(
1 + δ?

−1ρ(x, u)
)−d−1

dµ(u).

This leads to
∑

ξ∈Xj

|Aξ|
|B(ξ, δ?)|

(
1 + δ?

−1ρ(x, ξ)
)−2d−1

≤ 22d+1

|B(x, δ?)|
∫

M

(
1 + δ?

−1ρ(x, u)
)−d−1

dµ(u) ≤ 23d+2,

where for the last inequality we used (2.12). Thus (2.21) is established.
For the proof of (2.22), we observe that using (2.15)

|Aξ|Dδ?,σ(x, ξ)Dδ?,σ(y, ξ) = Dδ?,σ(x, y)
|Aξ|(1 + δ?

−1ρ(x, y))σ

|B(ξ, δ)|(1 + δ?
−1ρ(x, ξ))σ(1 + δ?

−1ρ(y, ξ))σ

≤ Dδ?,σ(x, y)
[ 2σ|Aξ|
|B(ξ, δ?)|(1 + δ?

−1ρ(x, ξ))σ
+

2σ|Aξ|
|B(ξ, δ?)|(1 + δ?

−1ρ(y, ξ))σ

]
.

Now, summing up and applying (2.21) we arrive at (2.22).
Estimate (2.23) follows in a similar manner from (2.15) and (2.20).

2.4. Integral operators. We shall mainly deal with integral (kernel) operators.
The kernels of many operators will be controlled by the quantities Dδ,σ(x, y), in-

troduced in (2.6). Our first order of business is to establish a Young-type inequality
for such operators.

Proposition 2.6. Let H be an integral operator with kernel H(x, y), i.e.

Hf(x) =
∫

M

H(x, y)f(y)dµ(y), and let |H(x, y)| ≤ c′Dδ,σ(x, y)

for some 0 < δ ≤ 1 and σ ≥ 2d + 1. If 1 ≤ p ≤ q ≤ ∞, then

(2.24) ‖Hf‖q ≤ cδd( 1
q− 1

p )‖f‖p, f ∈ Lp,

where c = c′ĉd(1/r−1)22d+1 with ĉ being the constant from (2.4) .

This result is immediate from the following well-known lemma.

Lemma 2.7. Suppose 1
p − 1

q = 1 − 1
r , 1 ≤ p, q, r ≤ ∞, and let H(x, y) be a mea-

surable kernel, verifying the conditions

(2.25) ‖H(·, y)‖r ≤ K and ‖H(x, ·)‖r ≤ K.

If Hf(x) =
∫

M
H(x, y)f(y)dµ(y), then

‖Hf‖q ≤ K‖f‖p for f ∈ Lp.

For the proof, see e.g. [19, Theorem 6.36].
Proof of Proposition 2.6. Pick 1 ≤ r ≤ ∞ so that 1/p − 1/q = 1 − 1/r. By
(2.10) and (2.4) we obtain

‖H(·, y)‖r ≤ c′c(r)|B(y, δ)|1/r−1 ≤ c′c(1)(ĉδ)d(1/r−1)
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and a similar estimate holds for ‖H(x, ·)‖r. These estimates and the above lemma
imply (2.24). ¤

We shall frequently use the following well-known result ([16], Theorem 6, p. 503).

Proposition 2.8. An operator T : L1 → L∞ is bounded if and only if T is an
integral operator with kernel K ∈ L∞(M ×M), i.e.

Tf(x) =
∫

M
K(x, y)f(y)dµ(y) a.e. on M ,

and if this is the case ‖T‖1→∞ = ‖K‖L∞ . Moreover, the boundedness of T can be
expressed in the bilinear form |〈Tf, g〉| ≤ c‖f‖L1‖g‖L1 , ∀f, g ∈ L1.

We next use this to derive a useful result for products of integral and non-integral
operators.

Proposition 2.9. In the general setting of a doubling metric measure space (M,ρ, µ),
let U, V : L2 → L2 be integral operators and suppose that for some 0 < δ ≤ 1 and
σ ≥ d + 1 we have

(2.26) |U(x, y)| ≤ c1Dδ,σ(x, y) and |V (x, y)| ≤ c2Dδ,σ(x, y).

Let R : L2 → L2 be a bounded operator, not necessarily an integral operator. Then
URV is an integral operator with the following upper bound on its kernel

(2.27) |URV (x, y)| ≤ ‖U(x, ·)‖2‖R‖2→2‖V (·, y)‖2 ≤ c‖R‖2→2√
|B(x, δ)||B(y, δ)|

with c := c1c222d+1.

Proof. By Proposition 2.6 we get

‖URV ‖1→∞ ≤ ‖U‖2→∞‖R‖2→2‖V ‖1→2 ≤ cδ−d‖R‖2→2

and, therefore, URV is a kernel operator. Formally, we have

(URV )f =
∫

M

U(x, u)(RV )f(u)dµ(u)

=
∫

M

U(x, u)
∫

M

R[V (·, y)](u)f(y)dµ(y)dµ(u)(2.28)

=
∫

M

( ∫

M

U(x, u)R[V (·, y)](u)dµ(u)
)
f(y)dµ(y)

and hence the kernel of URV is given by

(2.29) H(x, y) =
∫

M

U(x, u)R[V (·, y)](u)dµ(u) =
〈
U(x, ·), R[V (·, y)]

〉
.

This along with (2.26) and (2.10) leads to

|H(x, y)| ≤ ‖U(x, ·)‖2‖R[V (·, y)]‖2 ≤ c1c2[c(2)]2‖R‖2→2

|B(x, δ)|1/2|B(y, δ)|1/2
,

which confirms (2.27), taking into account that [c(2)]2 ≤ 22d+1 by (2.10) if σ ≥ d+1.
It remains to justify the manipulations in (2.28). Observe first that in order

to prove (2.29) it suffices to establish identities (2.28) for all f ∈ L2 such that
supp f ⊂ B(a, R) an arbitrary ball on M . To this end we shall need Bochner’s
integral. In particular, we shall use the following results (e.g. [62], pp. 131–133):
Suppose B is a separable Banach space and F : (M, µ, Σ) 7→ B is measurable in
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the following sense: ∀` ∈ B∗, x 7→ `(F (x)) is measurable. Then Bochner’s integral∫ (B)

M
F (x)dµ(x) is well defined and takes its value in B if and only if

∫

M

‖F (x)‖Bdµ(x) < ∞.

Furthermore, if
∫ (B)

M
F (x)dµ(x) exists, then `

( ∫ (B)

M
F (x)dµ(x)

)
=

∫
M

`(F (x))dµ(x)
for any ` ∈ B∗. Also, if T : B → B is a bounded linear operator, then

(2.30) T
( ∫ (B)

M

F (x)dµ(x)
)

=
∫ (B)

M

T (F (x))dµ(x).

We shall utilize Bochner’s integral in our setting with B = L2.
Suppose f ∈ L2 and supp f ⊂ B(a,R), a ∈ M , R > 0. Then using (2.26), (2.10),

and (2.2) we obtain
∫

M

‖V (·, y)f(y)‖2dµ(y) ≤ c

∫

B(a,R)

|f(y)||B(y, δ)|−1/2dµ(y)

≤ c‖f‖2
( ∫

B(a,R)

|B(y, δ)|−1dµ(y)
)1/2

(2.31)

≤ c‖f‖2√
|B(a, δ)|

( ∫

B(a,R)

(
1 + δ−1ρ(y, a)

)d
dµ(y)

)1/2

< ∞.

Therefore,
∫ (B)

M
V (·, y)f(y)dµ(y) exists and for any g ∈ L2

〈 ∫ (B)

M

V (·, y)f(y)dµ(y), g
〉

=
∫

M

( ∫

M

g(x)V (x, y)dµ(x)
)
f(y)dµ(y)

=
∫

M

g(x)
(∫

M

V (x, y)f(y)dµ(y)
)
dµ(x)) = 〈V f, g〉.

Here the shift of the order of integration is justified by Fubini’s theorem and the
fact that∫

M

∫

M

|V (x, y)||f(y)||g(x)|dµ(x)dµ(y) ≤ ‖g‖2
∥∥∥

∫

M

|V (·, y)||f(y)|dµ(y)
∥∥∥

2

≤ ‖g‖2
∫

M

‖V (·, y)f(y)‖2dµ(y) < ∞,

where we used (2.31). Therefore, V f =
∫ (B)

M
V (·, y)f(y)dµ(y). We now use (2.30)

to obtain

RV f = R
[ ∫ (B)

M

V (·, y)f(y)dµ(y)
]

=
∫ (B)

M

R[V (·, y)]f(y)dµ(y),

which implies

(URV )f(x) =
∫

M

U(x, u)(RV )f(u)dµ(u) =
〈 ∫ (B)

M

R[V (·, y)]f(y)dµ(y), U(x, ·)〉

=
∫

M

( ∫

M

U(x, u)R[V (·, y)](u)dµ(u)
)
f(y)dµ(y).

Consequently, H(x, y) is given by (2.29) and the proof is complete. ¤
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3. Functional calculus

The aim of this section is to develop the functional calculus of operators of the
form f(

√
L) associated with smooth and non-smooth functions f . The calculus of

smooth operators is in the spirit of [17, 45] and will be needed in most part of this
article, including the construction of frames and the Littlewood-Paley theory, while
the non-smooth calculus will be needed for estimation of the kernels of the spectral
projectors and lower bound estimates.

3.1. Smooth functional calculus. We shall be operating in the setting described
in §1.1. More precisely, we assume that (M, ρ, µ) is a metric measure space obeying
conditions (1.1)-(1.3) and L is an essentially self-adjoint positive operator on L2

such that the semi-group e−tL, t > 0, has a kernel pt(x, y) verifying (1.4)-(1.8).

Theorem 3.1. Let g : R→ C be a measurable function such that for some σ > 2d

(3.1) ‖g‖∗ :=
∫

R
|ĝ(ξ)|(1 + |ξ|)σdξ < ∞, where ĝ(ξ) :=

∫

R
g(x)e−ixξdx

is the Fourier transform of g. Then g(δ2L)e−δ2L, 0 < δ ≤ 1, is an integral operator
with kernel g(δ2L)e−δ2L(x, y) satisfying

(3.2)
∣∣g(δ2L)e−δ2L(x, y)

∣∣ ≤ cσ‖g‖?Dδ,σ(x, y), ∀x, y ∈ M,

and

(3.3)
∣∣g(δ2L)e−δ2L(x, y)− g(δ2L)e−δ2L(x, y′)

∣∣ ≤ cσ‖g‖?

(ρ(y, y′)
δ

)α

Dδ,σ(x, y),

for all x, y, y′ ∈ M , if ρ(y, y′) ≤ δ. Here α > 0 is the constant from (1.6), Dδ,σ(x, y)
is defined in (2.6), and cσ > 0 is a constant depending only on σ and the structural
constants from (1.5)− (1.6). Moreover,

(3.4)
∫

M

g(δ2L)e−δ2L(x, y)dµ(y) = g(0).

Proof. To prove (3.2) we first show that g(δ2L)e−δ2L is a kernel operator. From
(3.1) it follows that ‖ĝ‖1 < ∞ which implies g(x) = 1

2π

∫
R ĝ(ξ)eixξdx and hence

‖g‖∞ ≤ 1
2π‖ĝ‖1. Then by the spectral theorem

∥∥g(δ2L)e−δ2L
∥∥

2→2
=

∥∥g(δ2·)e−δ2·∥∥
∞ ≤ (2π)−1‖ĝ‖1.

Therefore, invoking Proposition 2.8, in order to show that g(δ2L)e−δ2L is a kernel
operator it suffices to prove that

∣∣〈g(δ2L)e−δ2Lϕ,ψ〉
∣∣ ≤ c‖ϕ‖1‖ψ‖1, ∀ϕ,ψ ∈ L1 ∩ L2.

Let Eλ, λ ≥ 0, be the spectral resolution associated with the operator L, then
L =

∫∞
0

λdEλ. Writing the spectral decomposition of g(δ2L)e−δ2L and using the
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Fourier inversion identity, we obtain for ϕ,ψ ∈ L1 ∩ L2

〈
g(δ2L)e−δ2Lϕ,ψ

〉
=

∫ ∞

0

g(δ2λ)e−δ2λd〈Eλϕ,ψ〉

=
∫ ∞

0

1
2π

(∫

R
ĝ(ξ)eiδ2λξdξ

)
e−δ2λd〈Eλϕ,ψ〉

=
1
2π

∫

R
ĝ(ξ)

(∫ ∞

0

e−δ2λ(1−iξ)d
〈
Eλϕ, ψ

〉)
dξ

=
1
2π

∫

R
ĝ(ξ)〈e−δ2(1−iξ)Lϕ,ψ〉dξ.

The above shift of the order of integration is justified by Fubini’s theorem and the
fact that for any h ∈ L2

∫

R

∫ ∞

0

|ĝ(ξ)|
∣∣e−δ2λ(1−iξ)

∣∣d‖Eλh‖22dξ =
∫

R
|ĝ(ξ)|dξ

∫ ∞

0

e−δ2λd‖Eλh‖22 ≤ ‖ĝ‖1‖h‖22.

To go further, we use that e−δ2(1−iξ)L is an integral operator with kernel pz(x, y),
z = δ2(1− iξ), and ‖pz‖∞ ≤ c to obtain for ϕ,ψ ∈ L1 ∩ L2

〈
g(δ2L)e−δ2Lϕ, ψ̄

〉
=

1
2π

∫

R
ĝ(ξ)

(∫

M

∫

M

pδ2(1−iξ)(x, y)φ(x)ψ(y)dµ(x)dµ(y)
)
dξ

=
∫

M

∫

M

[ 1
2π

∫

R
ĝ(ξ)pδ2(1−iξ)(x, y)dξ

]
φ(x)ψ(y)dµ(x)dµ(y).(3.5)

To justify the above shift of order of integration we again use Fubini’s theorem and
the fact that∫

R

∫

M

∫

M

|ĝ(ξ)||pδ2(1−iξ)(x, y)||φ(x)||ψ(y)|dµ(x)dµ(y)dξ ≤ c‖ĝ‖1‖ϕ‖1‖ψ‖1 < ∞.

This also implies |〈g(δ2L)e−δ2Lϕ, ψ̄
〉| ≤ c‖ĝ‖1‖ϕ‖1‖ψ‖1 for all ϕ,ψ ∈ L1 ∩ L2.

Therefore, g(δ2L)e−δ2L is a kernel operator and by (3.5)

(3.6) g(δ2L)e−δ2L(x, y) =
1
2π

∫

R
ĝ(u)pδ2(1−iu)(x, y)du.

From this and (1.5) we infer
(3.7)

|g(δ2L)e−δ2L(x, y)| ≤ c′
(|B(x, δ)||B(y, δ)|)−1/2

∫

R
|ĝ(u)| exp

{
− cρ2(x, y)

δ2(1 + u2)

}
du.

Assume ρ(x, y)/δ ≥ 1. Clearly, supx≥0 xβe−x = (β
e )β for β > 0. Using this with

β = σ/2 we obtain

exp
{
− cρ2(x, y)

δ2(1 + u2)

}
≤ exp

{
−

(
1 +

ρ2(x, y)
δ2

) c

2(1 + u2)

}

≤ c′
(
1 +

ρ2(x, y)
δ2

)−σ/2

(1 + u2)σ/2 ≤ c′′
(
1 +

ρ(x, y)
δ

)−σ

(1 + |u|)σ.

Therefore,

|g(δ2L)e−δ2L(x, y)| ≤ c(1 + ρ(x,y)
δ )−σ

(|B(x, δ)||B(y, δ|)1/2

∫

R
|ĝ(u)|(1 + |u|)σdu

= c

∫

R
|ĝ(u)|(1 + |u|)σdu Dσ,δ(x, y),
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which confirms (3.2).
If ρ(x, y)/δ < 1, then by (3.7)

|g(δ2L)e−δ2L(x, y)| ≤ c′
(|B(x, δ)||B(y, δ)|)−1/2

∫

R
|ĝ(u)|du

≤ c

∫

R
|ĝ(u)|(1 + |u|)σdu Dσ,δ(x, y).

This completes the proof of (3.2).
We now take on (3.3). As g(δ2L)e−δ2L = g(δ2L)e−

1
2 δ2Le−

1
2 δ2L, the kernels of

these operators are related by

g(δ2L)e−δ2L(x, y) =
∫

M

g(δ2L)e−
1
2 δ2L(x, u)e−

1
2 δ2L(u, y)dµ(u),

which implies
∣∣g(δ2L)e−δ2L(x, y)− g(δ2L)e−δ2L(x, y′)

∣∣

≤
∫

M

∣∣g(δ2L)e−
1
2 δ2L(x, u)

∣∣∣∣pδ2/2(u, y)− pδ2/2(u, y′)
∣∣dµ(u).

We use (3.2) with δ replaced by δ/
√

2 and g(λ) by g(2λ) to estimate the first
term under the integral and (1.6) for the second term, taking into account that
exp

{− cρ2(x,y)
δ2

} ≤ cσ

(
1 + ρ(x,y)

δ

)−σ
. Thus we get

∣∣g(δ2L)e−δ2L(x, y)− g(δ2L)e−δ2L(x, y′)
∣∣

≤ c‖g‖?

(ρ(y, y′)
δ

)α
∫

M

Dδ,σ(x, u)Dδ,σ(u, y)dµ(u) ≤ c‖g‖?

(ρ(y, y′)
δ

)α

Dδ,σ(x, y).

Here for the latter estimate we used (2.11) and that σ > 2d.
It remains to prove (3.4). By (1.8), i.e.

∫
M

pδ2−iu(x, y)dy ≡ 1, and (3.6) we get
∫

M

g(δ2L)e−δ2L(x, y)dy =
1
2π

∫

R
ĝ(u)

∫

M

pδ2−iu(x, y)dµ(y)du

=
1
2π

∫

R
ĝ(u)du = g(0).

Here the justification of the shift of order of integration is by straightforward ap-
plication of Fubini’s theorem. ¤

Some remarks are in order. Condition (3.1) is apparently a smoothness condition
on g. By Cauchy-Schwartz it follows that

∫

R
|ĝ(ξ)|(1 + |ξ|2)σ/2dξ ≤ c

( ∫

R
|ĝ(ξ)|2(1 + |ξ|2)σ+1dξ

)1/2

= c‖g‖Hσ+1

and hence (3.1) holds if ‖g‖Hσ+1 < ∞. However, it will be more convenient to us
to replace (3.1) by a condition in terms of derivatives of g that is easier to verify.
From ξkĝ(ξ) = (−i)kĝ(k)(ξ) we get |ξ|k|ĝ(ξ)| ≤ ‖g(k)‖L1 . Also, |ĝ(ξ)| ≤ ‖g‖L1 . Pick
k ≥ σ > 2d. Then using the above we obtain

(1 + |ξ|)k+2|ĝ(ξ)| ≤ 2k+1
(|ĝ(ξ)|+ |ξ|k+2|ĝ(ξ)|) ≤ 2k+1

(‖g‖L1 + ‖g(k+2)‖L1

)
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that implies

‖g‖∗ :=
∫

R
|ĝ(ξ)|(1 + |ξ|)kdξ =

∫

R
|ĝ(ξ)|(1 + |ξ|)k+2(1 + |ξ|)−2dξ

≤ c
(‖g‖L1 + ‖g(k+2)‖L1

)
.

Thus we arrive at the following

Remark 3.2. For the norm ‖g‖∗ from condition (3.1) we have ‖g‖∗ ≤ c‖g‖Hσ+1

and ‖g‖∗ ≤ c
(‖g‖L1 + ‖g(k+2)‖L1

)
if k ≥ σ > 2d.

Corollary 3.3. For any m ∈ N and σ > 0 there exists a constant cσ,m > 0 such
that the kernel of the operator Lme−δ2L, 0 < δ ≤ 1, satisfies

(3.8)
∣∣Lme−δ2L(x, y)

∣∣ ≤ cσ,mδ−2mDδ,σ(x, y) and

(3.9)
∣∣Lme−δ2L(x, y)− Lme−δ2L(x, y′)

∣∣ ≤ cσ,mδ−2m
(ρ(y, y′)

δ

)α

Dδ,σ(x, y),

if ρ(y, y′) ≤ δ.

Proof. Set g(λ) := λmθ(λ)e−λ for λ ≥ 0, where θ ∈ C∞(R), supp θ ⊂ [−1,∞),
and θ(λ) = 1 for λ ≥ 0. Since L ≥ 0, we can write

Lme−δ2L = 2mδ−2mg
(
δ2
∗L

)
e−δ2

∗L with δ∗ := 2−1/2δ

and the corollary follows by Theorem 3.1 and (2.8). ¤
We next use Theorem 3.1 and Remark 3.2 to obtain some important kernel

localization results. Our main interest is in operators of the form f(δ
√

L).

Theorem 3.4. Let f ∈ C2k+4(R+), k > 2d, supp f ⊂ [0, R] for some R ≥ 1,
and f (2ν+1)(0) = 0 for ν = 0, . . . , k + 1. Then f(δ

√
L), 0 < δ ≤ 1, is an integral

operator with kernel f(δ
√

L)(x, y) satisfying

(3.10)
∣∣f(δ

√
L)(x, y)

∣∣ ≤ ckDδ,k(x, y) and

(3.11)
∣∣f(δ

√
L)(x, y)− f(δ

√
L)(x, y′)

∣∣ ≤ c′k
(ρ(y, y′)

δ

)α

Dδ,k(x, y) if ρ(y, y′) ≤ δ,

where ck = ck(f) = c̃kR2k+d+4
(‖f‖L∞ + ‖f (2k+4)‖L∞ + maxν≤2k+4 |f (ν)(0)|) with

c̃k > 0 a constant depending only on k, d, and the constants in (1.5) − (1.6), and
c′k = ckRα; as before α > 0 is the constant from (1.6). Furthermore,

(3.12)
∫

M

f(δ
√

L)(x, y)dµ(y) = f(0).

Proof. We first observe that it suffices to only prove the theorem when R = 1,
then in the general case it follows by rescaling. Indeed, assume that f satisfies the
hypotheses of the theorem and set h(λ) := f(Rλ), λ ∈ R+. Then h verifies the
assumptions with R = 1 and if the theorem holds for R = 1 we obtain, using (2.8),
(3.13)
|f(δ

√
L)(x, y)| = |h(δR−1

√
L)(x, y)| ≤ ck(h)Dδ/R,k(x, y) ≤ (2R)dck(h)Dδ,k(x, y)

and similarly
∣∣f(δ

√
L)(x, y)−f(δ

√
L)(x, y′)

∣∣ ≤ (2R)d+αc′k(h)
(ρ(y, y′)

δ

)α

Dδ,k(x, y) if ρ(y, y′) ≤ δ
R .
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For δ
R < ρ(y, y′) ≤ δ, the last estimate follows by (3.13). It remains to observe that

ck(h) = c̃k

(‖f‖L∞ + R2k+4‖f (2k+4)‖L∞ + max
ν≤2k+4

Rν |f (ν)(0)|)

≤ c̃R2k+4
(‖f‖L∞ + ‖f (2k+4)‖L∞ + max

ν≤2k+4
|f (ν)(0)|)

and hence the theorem holds in general.
We now prove the theorem in the case when R = 1. Choose θ ∈ C∞(R) so that

θ is even, supp θ ⊂ [−1, 1], θ(λ) = 1 for λ ∈ [−1/2, 1/2], and 0 ≤ θ ≤ 1. Denote
Pk(λ) :=

∑k+2
j=0

f(2j)(0)
(2j)! λ2j and let f1(λ), g0(λ), and g1(λ) be defined for λ ∈ R+

from

f(λ) = θ(λ)Pk(λ) + f1(λ), θ(λ)Pk(λ) = g0(λ2)e−λ2
, f1(λ) = g1(λ2)e−λ2

.

Thus g0(λ) = Pk(
√
|λ|)θ(

√
|λ|)eλ for λ ∈ R+, and we use this to define g0(λ) for

λ < 0. Clearly, g0 ∈ C∞(R), supp g0 ⊂ [−1, 1] and

‖g0‖L1 + ‖g(k+2)
0 ‖L1 ≤ c(k) sup

ν≤2k+4
|f (ν)(0)|.

Therefore, by Theorem 3.1 the kernel of the operator θ(δ
√

L)Pk(δ
√

L) satisfies the
desired inequalities (3.10)-(3.11) with R = 1.

On the other hand, g1(λ) = f1

(√|λ|)eλ for λ ∈ R+ and we use this to define
g1(λ) for λ < 0. Observe that f1(δ

√
L) = g1(δ2L)e−δ2L and supp g1 ⊂ [−1, 1].

Furthermore, f1 ∈ C2k+4(R+), f
(ν)
1 (0) = 0, ν = 0, . . . , 2k + 4, and

(3.14) ‖f (j)
1 ‖L∞ ≤ ‖f (j)‖L∞ + c max

ν≤2k+4
|f (ν)(0)|, 0 ≤ j ≤ 2k + 4.

We next show that g1 ∈ Ck+2(R) and estimate the derivatives of g1. We have for
1 ≤ m ≤ k + 2 and λ > 0

g
(m)
1 (λ) =

m∑
ν=0

(
m

ν

)
eλ

( d

dλ

)ν[
f1(
√

λ)
]

and a little calculus shows that for ν ≥ 1 and λ > 0
( d

dλ

)ν[
f1(
√

λ)
]

=
ν∑

j=1

cjλ
−ν+j/2f

(j)
1 (

√
λ), where |cj | ≤ ν!.

On the other hand, by Taylor’s theorem |f (j)
1 (

√
λ)| ≤ |λ|(2m−j)/2‖f (2m)

1 ‖L∞ and
hence ∣∣∣

( d

dλ

)ν[
f1(

√
|λ|)]

∣∣∣ ≤ c|λ|m−ν‖f (2m)
1 ‖∞, 1 ≤ ν ≤ m.

Exactly in the same way we obtain the same estimate for λ < 0. Denote briefly
h(λ) := f1(

√
|λ|). Observe that since f1 ∈ C2k+4(R+) we have h(k+2)(λ) = o(1)

as λ → 0. This and the above inequalities yield h(ν)(0) = 0, ν = 0, . . . , k + 2, and
hence h ∈ Ck+2(R), which implies g1 ∈ Ck+2(R). From the above we also obtain

|g(m)
1 (λ)| ≤ c

m∑
ν=0

eλ|λ|m−ν‖f (2m)
1 ‖L∞ ≤ c(m + 1)‖f (2m)

1 ‖L∞ , λ ∈ R.

This in turn (with m = k + 2) implies ‖g(k+2)
1 ‖L1 ≤ c(k + 3)‖f (2k+4)

1 ‖L∞ and,
evidently, ‖g1‖L1 ≤ e‖f1‖L∞ . We now apply Theorem 3.1 to conclude that f1(δ

√
L)
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is an integral operator with kernel f1(δ
√

L)(x, y) satisfying (3.10)-(3.11), where, in
view of Remark 3.2 and (3.14), the constants ck, c′k are of the claimed form.

Putting the above together we conclude that f(δ
√

L) is an integral operator with
kernel f(δ

√
L)(x, y) satisfying (3.10)-(3.11) with R = 1.

Identity (3.12) follows by (3.4). ¤
Corollary 3.5. Let f : R+ → C be as in the hypothesis of Theorem 3.4. Then
for any m ∈ N and 0 < δ ≤ 1 the operator Lmf(δ

√
L) is an integral operator with

kernel Lmf(δ
√

L)(x, y) such that

(3.15)
∣∣Lmf(δ

√
L)(x, y)

∣∣ ≤ ck,mδ−2mDδ,k(x, y) and

(3.16)
∣∣Lmf(δ

√
L)(x, y)− Lmf(δ

√
L)(x, y′)

∣∣ ≤ c′k,mδ−2m
(ρ(y, y′)

δ

)α

Dδ,k(x, y)

whenever ρ(y, y′) ≤ δ. Here the constants ck,m, c′k,m are as the constants ck, c′k
in Theorem 3.4 with R2k+d+4 replaced by R2k+d+4+2m and c̃k depending on m as
well.

Proof. Let h(λ) := λ2mf(λ). Then h(δ
√

L) = δ2mLmf(δ
√

L) and observe that
h(2ν+1)(0) = 0 for ν = 0, . . . , k + 1. Consequently, the corollary follows by Theo-
rem 3.4 applied to h. ¤
Corollary 3.6. Let f : R+ → C be as in the hypothesis of Theorem 3.4. Then
there exists a constant c > 0 such that for any 0 < δ ≤ 1

‖f(δ
√

L)φ‖q ≤ cδ1/p−1/q‖φ‖p, ∀φ ∈ Lp, 1 ≤ p ≤ q ≤ ∞,

and

|f(δ
√

L)φ(x)− f(δ
√

L)φ(y)| ≤ c‖φ‖∞
(ρ(x, y)

δ

)α

, x, y ∈ M, ∀φ ∈ L∞.

This corollary is an immediate consequence of Theorem 3.4 and Proposition 2.6.

3.2. Non-smooth functional calculus. We need to establish some properties of
operators of the form f(

√
L) and their kernels in the case of non-smooth compactly

supported functions f . These are kernel operators with not necessarily well localized
kernels.

Theorem 3.7. Let f be a bounded measurable function on R+ with supp f ⊂ [0, τ ]
for some τ ≥ 1. Then f(

√
L) is an integral operator with kernel f(

√
L)(x, y)

satisfying

(3.17) |f(
√

L)(x, y)| ≤ c‖f‖∞√
|B(x, τ−1)||B(y, τ−1)| , x, y ∈ M,

and for x, y, y′ ∈ M
(3.18)

|f(
√

L)(x, y)− f(
√

L)(x, y′)| ≤ c[τρ(y, y′)]α‖f‖∞√
|B(x, τ−1)||B(y, τ−1)| if ρ(y, y′) ≤ τ−1.

Furthermore, if 1 ≤ p ≤ 2 ≤ q ≤ ∞,

(3.19) ‖f(
√

L)‖p→q ≤ cτd(1/p−1/q)‖f‖∞,

(3.20) ‖f(
√

L)(., x)‖22 = |f |2(
√

L)(x, x) ≤ c|B(x, τ−1)|−1‖f‖2∞, and
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(3.21) ‖|f |2(
√

L)‖1→∞ = sup
x∈M

|f |2(
√

L)(x, x).

Above the constants depend only on d and the constants in (1.5) and (1.6); the con-
stant in (3.19) depends in addition on p, q.

Proof. Pick a function θ ∈ C∞(R+) so that supp θ ⊂ [0, 2], θ(x) = 1 for x ∈ [0, 1],
and 0 ≤ θ ≤ 1. Then by Theorem 3.4

(3.22) |θ(τ−1
√

L)(x, y)| ≤ cσDτ−1,σ(x, y) for any σ > 0.

Choose σ > 3d/2. We have

f(
√

L) =
∫ ∞

0

f(
√

λ)dEλ =
∫ ∞

0

θ(τ−1
√

λ)f(
√

λ)θ(τ−1
√

λ)dEλ

= θ(τ−1
√

L)f(
√

L)θ(τ−1
√

L).(3.23)

Now, (3.17) follows by Proposition 2.9, using the above, (3.22), and the fact that
‖f(

√
L)‖2→2 ≤ ‖f‖∞.

From (3.22)-(3.23) and Proposition 2.9 we also obtain for 1 ≤ p ≤ 2 ≤ q ≤ ∞

‖f(
√

L)‖p→q ≤ ‖θ(τ−1
√

L)‖p→2‖f(
√

L)‖2→2‖θ(τ−1
√

L)‖2→q

≤ c‖f‖∞τ−d(1/q−1/p),

which confirms (3.19).
For the proof of (3.18), we first observe that

f(
√

L) =
∫ ∞

0

f(
√

λ)eτ−2(
√

λ)2e−τ−2λdEλ =
∫ ∞

0

g(
√

λ)e−τ−2λdEλ = g(
√

L)e−τ−2L,

where g(u) := f(u)eτ−2u2
, ‖g‖∞ ≤ e‖f‖∞, and hence

f(
√

L)(x, y)− f(
√

L)(x, y′) =
∫

M

g(
√

L)(x, u)
[
e−τ−2L(u, y)− e−τ−2L(u, y′)

]
dµ(u).

We now use (3.17), applied to g(
√

L), and (1.6) to obtain

|f(
√

L)(x, y)− f(
√

L)(x, y′)|

≤ c(τρ(y, y′))α‖g‖∞
∫

M

1√
|B(x, τ−1)||B(u, τ−1)|

e−(τρ(u,y))2

√
|B(u, τ−1)||B(y, τ−1)|dµ(u)

≤ c(τρ(y, y′))α‖f‖∞√
|B(x, τ−1)||B(y, τ−1)|

∫

M

e−(τρ(u,y))2

|B(u, τ−1)|dµ(u).

However, using (2.2) we have
∫

M

e−(τρ(u,y))2

|B(u, τ−1)|dµ(u) ≤ 2d

|B(y, τ−1)|
∫

M

(1 + τρ(u, y))de−(τρ(u,y))2dµ(u) ≤ c < ∞,

where for the latter inequality we used (2.12). This completes the proof of (3.18).
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We now turn to the proof of (3.20). We have

‖f(
√

L)(., y)‖22 =
∫

M

|f(
√

L)(x, y)|2dy =
∫

M

f(
√

L)(x, y)f(
√

L)(x, y)dµ(y)

=
∫

M

f(
√

L)(x, y)f(
√

L)(y, x)dµ(y) = |f |2(
√

L)(x, x)

≤ c|B(x, τ−1)|−1‖f‖2∞,

which proves (3.20). Here for the latter estimate we used (3.17).
Finally, using the above we have

|f |2(
√

L)(x, y) =
∫

M

f(
√

L)(x, u)f(
√

L)(y, u)dµ(u)

≤
(∫

M

|f(
√

L)(x, u)|2dµ(u)
)1/2( ∫

M

|f(
√

L)(y, u)|2dµ(u)
)1/2

=
(|f |2(

√
L)(x, x)

)1/2(|f |2(
√

L)(y, y)
)1/2

and hence ‖|f |2(√L)‖1→∞ = supx,y ||f |2(
√

L)(x, y)| = supx |f |2(
√

L)(x, x), which
confirms (3.21). ¤
3.3. Approximation of the identity and Littlewood-Paley decomposition.
We first give a convenient approximation of the identity in Lp statement.

Proposition 3.8. Let ϕ ∈ C∞(R+), suppϕ ⊂ [0, R], R > 0, ϕ(0) = 1, and
ϕ(2ν+1)(0) = 0 for ν = 0, 1, . . . . Then for any f ∈ Lp, 1 ≤ p ≤ ∞, (L∞ := UCB)
one has

f = lim
δ→0

ϕ(δ
√

L)f in Lp.

Proof. By Theorem 3.4 it follows that ϕ(δ
√

L) is an integral operator with kernel
ϕ(δ

√
L)(x, y) satisfying for any k > 2d

(3.24) |ϕ(δ
√

L)(x, y)| ≤ ckDδ,k(x, y) ≤ c|B(x, δ)|−1
(
1 + δ−1ρ(x, y)

)−k+d/2
,

where for the last inequality we used (2.2). Now, just as in the proof of (2.12) we
obtain for k > 3d/2 and r > 0∫

M\B(x,r)

|ϕ(δ
√

L)(x, y)|dµ(y) ≤ c(δ/r)k−3d/2 → 0 as δ → 0.

Indeed, suppose 2`−1δ ≤ r < 2`δ and denote Ej := B(x, 2jδ) \ B(x, 2j−1δ). Then
using (3.24) and (2.1) we get∫

M\B(x,r)

|ϕ(δ
√

L)(x, y)|dµ(y) ≤ c|B(x, δ)|−1
∑

j≥`

∫

Ej

(1 + δ−1ρ(x, y))−k+d/2dµ(y)

≤ c|B(x, δ)|−1
∑

j≥`

|B(x, 2jδ)|
(1 + 2j)k−d/2

≤ c2−`(k−3d/2) ≤ c(δ/r)k−3d/2.

On the other hand, from (3.12) and ϕ(0) = 1 we have
∫

M
ϕ(δ

√
L)(x, y)dµ(y) = 1.

Using the above and the fact that the vector lattice set of all boundedly supported
uniformly continuous functions on M is dense in Lp (by the Stone-Daniell theorem)
one proves as usual the claimed convergence. ¤

We next give precise meaning to what we call Littlewood-Paley decomposition of
Lp-functions in this article.
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Corollary 3.9. Let ϕ0, ϕ ∈ C∞(R+), supp ϕ0 ⊂ [0, b] and supp ϕ ⊂ [b−1, b] for
some b > 1, ϕ(0) = 1, ϕ(2ν+1)(0) = 0 for ν ≥ 0, and ϕ0(λ) +

∑
j≥1 ϕ(b−jλ) = 1

for λ ∈ R+. Then for any f ∈ Lp, 1 ≤ p ≤ ∞, (L∞ := UCB)

(3.25) f = ϕ0(
√

L) +
∑

j≥1

ϕ(b−j
√

L)f in Lp.

Proof. Let θ(λ) := ϕ0(λ) + ϕ(b−1λ) and observe that
∑j

k=0 ϕk(λ) = θ(b−jλ) for
j ≥ 1. Then the result follows by Proposition 3.8. ¤

3.4. Spectral spaces. We adhere to the setting of this article, described in the
introduction. As before Eλ, λ ≥ 0, is the spectral resolution associated with the
self-adjoint positive operator L on L2 := L2(M,µ). As elsewhere we shall be dealing
with operators of the form f(

√
L). We denote by Fλ, λ ≥ 0, the spectral resolution

associated with
√

L, that is, Fλ = Eλ2 . Then f(
√

L) =
∫∞
0

f(λ)dFλ and the
spectral projectors are defined by Eλ = 1[0,λ](L) :=

∫∞
0
1[0,λ](u)dEu and

(3.26) Fλ = 1[0,λ](
√

L) :=
∫ ∞

0

1[0,λ](u)dFu =
∫ ∞

0

1[0,λ](
√

u)dEu.

We next list some properties of Fλ which follow readily from Theorem 3.7:
The operator Fλ is a kernel operator whose kernel Fλ(x, y) is a real symmetric
nonnegative function on M ×M . Also,

(3.27) Fλ(x, y) ≤ c|B(x, λ−1)|−1/2|B(y, λ−1)|−1/2

and Fλ(x, y) is in Lip α for some α > 0, see (3.18). The mapping property of Fλ

on Lp spaces is given by

(3.28) ‖Fλf‖q ≤ cλd(1/p−1/q)‖f‖p, 1 ≤ p ≤ 2 ≤ q ≤ ∞.

We define the spectral spaces Σp
λ for 1 ≤ p ≤ 2 by

Σp
λ = {f ∈ Lp : Fλf = f}.

Notice that Fλ is not necessarily a continuous operator on Lp if p > 2 and, therefore,
Σp

λ cannot be defined as above for 2 < p ≤ ∞. Instead, we shall use the following
characterization of Σp

λ: A function f ∈ Σp
λ for 1 ≤ p ≤ 2 if and only if θ(

√
L)f = f

for all θ ∈ C∞0 (R+) such that θ ≡ 1 on [0, λ]. This characterization follows by the
fact that Σp

λ ⊂ Σ2
λ for 1 ≤ p ≤ 2 and the boundedness of the operator θ(

√
L) with

θ as above.

Definition 3.10. For 1 ≤ p ≤ ∞ we define

Σp
λ := {f ∈ Lp : θ(

√
L)f = f for all θ ∈ C∞0 (R+), θ ≡ 1 on [0, λ]}.

Furthermore, for any compact K ⊂ [0,∞) we define

Σp
K := {f ∈ Lp : θ(

√
L)f = f for all θ ∈ C∞0 (R+), θ ≡ 1 on K}.

Proposition 3.11. For any λ ≥ 1 and 1 ≤ p ≤ ∞
(3.29) Σp

λ = ∩ε>0Σ
p
λ+ε.

Proof. Suppose f ∈ ∩ε>0Σ
p
λ+ε and let θ ∈ C∞0 (R+), supp θ ⊂ [0, R], and θ ≡ 1 on

[0, λ]. By Definition 3.10 f = θ(r−1
√

L)f for each r > 1 and hence

(3.30) ‖f − θ(
√

L)f‖p = ‖θ(r−1
√

L)f − θ(
√

L)f‖p, r > 1.
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Assuming that 1 < r ≤ 2, Theorem 3.4 implies

|θ(r−1
√

L)(x, y)− θ(
√

L)(x, y)| ≤ CrD1,k(x, y),

where Cr = ckR2k+d+4
(‖θ(r−1·) − θ(·)‖∞ + ‖(d/dλ)2k+4[θ(r−1·) − θ(·)]‖∞

)
. We

now choose k ≥ 2d + 1 and apply Proposition 2.6 to obtain

(3.31) ‖θ(r−1
√

L)− θ(
√

L))‖p→p ≤ cCr.

Clearly, for any ν ≥ 0 we have limr→1 ‖(d/dλ)ν [θ(r−1·)−θ(·)]‖∞ = 0 and, therefore,
limr→1 Cr = 0. This along with (3.30)-(3.31) yields ‖f − θ(

√
L)f‖p = 0, which

completes the proof. ¤
With the next claim we establish a Nikolski’s type inequality that relates different

Lp-norms on spectral spaces.

Proposition 3.12. If 1 ≤ p ≤ q ≤ ∞, then Σp
λ ⊂ Σq

λ, Σq
λ ∩ Lp = Σp

λ, and there
exists a constant c > 0 such that

(3.32) ‖g‖q ≤ cλd(1/p−1/q)‖g‖p, g ∈ Σp
λ, λ ≥ 1.

Furthermore, for any g ∈ Σ∞λ , λ ≥ 1,

(3.33) |g(x)− g(y)| ≤ c
(
λρ(x, y)

)α‖g‖∞, x, y ∈ M,

with α > 0 the constant from (1.6).

Proof. Let g ∈ Σp
λ, λ ≥ 1, and set δ := λ−1. Choose θ ∈ C∞0 (R+) so that θ ≡ 1

on [0, 1]. Then g = θ(δ
√

L)g and (3.32)-(3.33) follow readily by Corollary 3.6. ¤

3.5. Linear approximation from spectral spaces. The purpose of this subsec-
tion is to give a short account of linear approximation from Σp

t in Lp, 1 ≤ p ≤ ∞.
Let Et(f)p denote the best approximation of f ∈ Lp (L∞ := UCB) from Σp

t , that
is,

(3.34) Et(f)p := inf
g∈Σp

t

‖f − g‖p.

Our goal is to characterize the approximation space As
pq, s > 0, 0 < q ≤ ∞,

defined as the set of all functions f ∈ Lp such that

(3.35) ‖f‖As
pq

:= ‖f‖p +
(∑

j≥0

(
2sjE2j (f)p

)q
)1/q

< ∞ if q < ∞, and

(3.36) ‖f‖As
p∞ := ‖f‖p + sup

j≥0
2sjE2j (f)p < ∞ if q = ∞.

Due to the monotonicity of Et(f)p we have ‖f‖As
pq
∼ ‖f‖p+

( ∫∞
1

(tsEt(f)p)qdt/t
)1/q

,
when q < ∞, and ‖f‖As

p∞ := ‖f‖p + supt≥1 tsEt(f)p < ∞ if q = ∞.
To characterize As

pq we shall use the well-known machinery of Bernstein and
Jackson estimates and interpolation. In §6.1 it will be shown that As

pq can be
identified as a certain Besov space.
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3.5.1. Bernstein and Jackson estimates. Characterization of spectral spaces. We
begin by proving a Bernstein estimate.

Theorem 3.13. Let 1 ≤ p ≤ ∞ and m ∈ N. Then there exists a constant c? =
c?(m) > 0, independent of p, such that for any g ∈ Σp

λ, λ ≥ 1,

(3.37) ‖Lmg‖p ≤ c?λ2m‖g‖p.

Proof. As in the proof of Proposition 3.12, pick θ ∈ C∞0 (R+) so that θ ≡ 1 on [0, 1].
Then for any g ∈ Σp

λ we have g = θ(δ
√

L)g with δ := λ−1 and, therefore, Lmg =
Lmθ(δ

√
L)g. Then (3.37) follows by applying Corollary 3.5 and Proposition 2.6.

¤
Observe that from spectral theory it readily follows that when p = 2 the Bern-

stein estimate (3.37) holds with constant c? = 1.
Our next aim is to show that the spectral spaces Σp

λ can be characterized by
means of Bernstein estimates, in the spirit of the previous theorem, but with a
constant (cν below) independent of m.

Theorem 3.14. Let 1 ≤ p ≤ ∞ and λ > 0. Then the following assertions are
equivalent:

(a) f ∈ Σp
λ.

(b) f ∈ ∩m∈ND(Lm) and for any ν > λ there exists a constant cν > 0 such that

‖Lmf‖p ≤ cνν2m‖f‖p, ∀m ≥ 1.

(c)

z ∈ C 7→ e−zLf =
∑

k≥0

(−z)k

k!
Lkf

is an entire function of exponential type λ2.

Proof. Clearly, (b) ⇐⇒ (c) using the Paley-Wiener theorem.
To prove that (a) =⇒ (b) we shall show that the constant c? in (3.37) can be

specified as follows: For any 0 < ε < 1 there exists a constant c(ε, d) > 0 such that

(3.38) c? = c(ε, d)m4d+8(1 + ε)2m.

Indeed, let θ ∈ C∞0 (R) be so that θ ≡ 1 on [−1, 1], supp θ ⊂ [−1 − ε, 1 + ε],
and also 0 ≤ θ ≤ 1. With δ := λ−1 we have f = θ(δ

√
L)f for any f ∈ Σp

λ

and we shall estimate ‖Lmθ(δ
√

L)f‖p. Denote briefly h(u) := u2mθ(u). Then
h(δ

√
L) = δ2mLmθ(δ

√
L). To go further, set k := b2dc+2, hence 2d+1 < k ≤ 2d+2.

It is readily seen that

‖h‖∞ ≤ (1 + ε)2m and ‖h(2k+4)‖∞ ≤ c1(ε, d)m4d+8(1 + ε)2m.

Now, by Theorem 3.4 we infer

|Lmθ(δ
√

L)(x, y)| = δ−2m|h(δ
√

L)(x, y)| ≤ c2(ε, d)m4d+8(1 + ε)2mλ2mDδ,k(x, y)

and applying Proposition 2.6 (k > 2d + 1) we arrive at

‖Lmf‖p = ‖Lmθ(δ
√

L)f‖p ≤ c(ε, d)m4d+8(1 + ε)2mλ2m‖f‖p for f ∈ Σp
λ,

which confirms (3.38).
Given ν > λ, choose 0 < ε < 1 so that (1 + ε)2λ ≤ ν. Then from above and the

obvious fact that supm≥1 m4d+8(1 + ε)−2m ≤ c′(ε, d) we get

‖Lmf‖p ≤ c(ε, d)m4d+8(1 + ε)−2mν2m‖f‖p ≤ c′′(ε, d)ν2m‖f‖p ∀f ∈ Σp
λ.
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Thus (a) =⇒ (b).
Now, to prove that (b) =⇒ (a), suppose (b) holds for some function f ∈ Lp and

let θ ∈ C∞0 (R+), θ ≡ 1 on [0, λ], as in Definition 3.10. Assume supp θ ⊂ [0, R]. Let
ε > 0. We shall show that ‖f − θ(

√
L)f‖p < ε, which implies f ∈ Σp

λ. Indeed, for
0 < δ < r < 1 we have

‖f−θ(
√

L)f‖p ≤ ‖f−θ(δ
√

L)f‖p+‖θ(δ
√

L)f−θ(r
√

L)f‖p+‖θ(r
√

L)f−θ(
√

L)f‖p.

By Proposition 3.8, ‖f − θ(δ
√

L)f‖p → 0 as δ → 0 and hence there exists δ > 0
such that ‖f − θ(δ

√
L)f‖p < ε/2. Clearly, ‖θ(r√L)f − θ(

√
L)f‖p → 0 as r → 1

and hence there exists r < 1 such that ‖θ(r√L)f − θ(
√

L)f‖p < ε/2.
It remains to show that ‖θ(δ√L)f − θ(r

√
L)f‖p = 0. Let λ < ν < λ/r and

denote briefly h(u) :=
[
θ(δu) − θ(ru)

]
u−2m. Note that supp h ⊂ [λ/r,R/δ]. Then

using our assumption we have

‖θ(δ
√

L)f − θ(r
√

L)f‖p = ‖h(
√

L)Lmf‖p ≤ ‖h(
√

L)‖p→p‖Lmf‖p

≤ cν‖h(
√

L)‖p→pν
2m‖f‖p, ∀m ≥ 1.

As above, set k := b2dc+ 2, then 2d + 1 < k ≤ 2d + 2. Now, applying Theorem 3.4
and Proposition 2.6 it follows that

‖h(
√

L)‖p→p ≤ c(R/δ)2k+d+4
[‖h‖∞ + ‖h(2k+4)‖∞

]

≤ c′m2k+4(λ/r)−2m

and hence
‖θ(δ

√
L)f − θ(r

√
L)f‖p ≤ cm4d+8(rν/λ)2m‖f‖p.

Here the constant c depends on δ, r,R, d, λ, ν, but is independent of m. Since
0 < rν/λ < 1 by letting m →∞ we obtain ‖θ(δ√L)f −θ(r

√
L)f‖p = 0. Therefore,

(b) =⇒ (a). ¤
We now establish a Jackson estimate for approximation from Σp

t .

Theorem 3.15. Let 1 ≤ p ≤ ∞. Then for any m ∈ N there exists a constant
cm > 0 such that for any t ≥ 1

(3.39) Et(f)p ≤ cmt−2m‖Lmf‖p for f ∈ D(Lm) ∩ Lp.

Proof. Let θ ∈ C∞(R), θ(u) = 1 for u ∈ [0, 1], 0 ≤ θ ≤ 1, and supp θ ⊂ [0, 2]. Set
ϕ(u) := θ(u/2) − θ(u). Then 1 − θ(u) =

∑
j≥0 ϕ(2−ju), u ∈ R+. Given t > 0, set

δ := 2/t. Assume f ∈ D(Lm) ∩ Lp. Clearly, θ(δ
√

L)f ∈ Σp
t and hence

Et(f)p ≤ ‖f − θ(δ
√

L)f‖p ≤
∑

j≥0

‖ϕ(2−jδ
√

L)f‖p.

Denote briefly h(u) := ϕ(u)u−2m. Then ϕ(2−jδ
√

L)L−m = (2−jδ)2mh(2−jδ
√

L)
and, therefore,

‖ϕ(2−jδ
√

L)f‖p ≤ ‖ϕ(2−jδ
√

L)L−mLmf‖p ≤ (2−jδ)2m‖h(2−jδ
√

L)‖p→p‖Lmf‖p.

By Theorem 3.4 and Proposition 2.6 it follows that ‖h(2−jδ
√

L)‖p→p ≤ c(d, m)
and hence

Et(f)p ≤ ct−2m‖Lmf‖p

∑

j≥0

2−2mj ≤ c′t−2m‖Lmf‖p,

which gives (3.39). ¤
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3.5.2. Characterization of approximation spaces. Once the Bernstein and Jack-
son estimates are established, the approximation spaces As

pq, defined in (3.35)-
(3.36), can be characterized by interpolation. In the following we shall denote by(
X0, X1

)
θ,q

the real interpolation space between the normed spaces X0, X1, see
e.g. [4, 3].

Theorem 3.16. Let s > 0, 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. Then for any r > s

(3.40) As
pq =

(
Lp, D

(√
L

)r)
θ,q

, s = θr.

Proof. A classical argument (e.g. [15]) using the Jackson and Bernstein estimates
from (3.39) and (3.37) implies the following characterization of the spaces As

pq:
If 2m > s, then

(3.41) As
pq =

(
Lp, D(Lm)

)
θ,q

=
(
Lp, D(

√
L)2m

)
θ,q

, s = 2θm.

Thus (3.40) holds for r = 2m. On the other hand, −√L is the infinitesimal gener-

ator of the subordinate semigroup Qtf =
∫∞
0

te−t2/4s

2s
√

πs
e−sLfdµ(s) on Lp, and by a

well-known result (e.g. [4]) if 1 ≤ r < k, then

(
Lp, D

(√
L

)k)
θ,1
⊂ D

(√
L

)r ⊂ (
Lp, D

(√
L

)k)
θ,∞, θ = r/k.

Therefore, if 1 ≤ r < 2m and θ0 = r
2m , then

Ar
p1 =

(
Lp, D

(√
L

)2m)
θ0,1

⊂ D
(√

L
)r ⊂ (

Lp, D
(√

L
)2m)

θ0,∞ = Ar
p∞

This along with (3.41) implies

(
Lp,

(
Lp, D

(√
L

)2m)
θ0,1

)
θ,q
⊂ (
Lp, D

(√
L

)r)
θ,q
⊂ (
Lp,

(
Lp, D

(√
L

)2m)
θ0,∞

)
θ,q

and by the reiteration theorem (e.g. [3]) this leads to

(
Lp, D

(√
L

)r)
θ,q

=
(
Lp, D

(√
L

)2m)
θθ0,q

= As
pq, s = 2θθ0m = θr.

The proof is complete. ¤

Remark 3.17. From the above, As
pq =

(
Lp, D(Lm)

)
θ,q

, s = 2θm, 0 < s < 2m, but
then as is well-known (e.g. [4])

‖f‖As
pq
∼ ‖f‖p +

( ∫ 1

0

(
t−s/2‖(e−tL − Id)mf‖p

)q dt

t

)1/q

with the usual modification for q = ∞. Moreover, since e−tL is a holomorphic
semigroup, we also have

‖f‖As
pq
∼ ‖f‖p +

( ∫ 1

0

(
t−s/2‖(tL)me−tLf‖p

)q dt

t

)1/q

with the usual modification for q = ∞.
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3.6. Kernel norms. Here we derive bounds on the Lp-norms of the kernels of
operators of the form θ(δ

√
L), which will be important for the development of

frames.

Theorem 3.18. Let θ ∈ C∞(R+), θ ≥ 0, supp θ ⊂ [0, R] for some R > 1, and
θ(2ν+1)(0) = 0, ν = 0, 1, . . . . Suppose that either

(i) θ(u) ≥ 1 for u ∈ [0, 1], or
(ii) θ(u) ≥ 1 for u ∈ [1, b], where b > 1 is a sufficiently large constant.

Then for 0 < p ≤ ∞, 0 < δ ≤ min{1, diam M
3 }, and x ∈ M we have

(3.42) c1|B(ξ, δ)|1/p−1 ≤ ‖θ(δ
√

L)(x, .)‖p ≤ c2|B(x, δ)|1/p−1,

where c1 > 0 depends only on p and the parameters of the space, and c2 > 0 depends
on p and the smoothness and the support of θ similarly as in Theorem 3.4.

Proof. By Theorem 3.4 we have |θ(δ√L)(x, y)| ≤ cσDδ,σ(x, y) for any σ > 0. Pick
σ > d(1/2 + 1/p). Then the upper bound estimate in (3.42) follows readily by
estimate (2.10).

It is not hard to see that to prove the lower bound estimate in (2.10) it suffices
to have it for p = 2 and p = ∞ and use the already established upper bound.
However, clearly

‖θ(δ
√

L)(x, .)‖22 = θ2(δ
√

L)(x, x) and ‖θ(δ
√

L)(x, .)‖∞ ≥ θ(δ
√

L)(x, x),

and it boils down to establishing lower bounds on θ2(δ
√

L)(x, x) and θ(δ
√

L)(x, x).
Further, let f, g ∈ L∞(R+) be bounded, supp f, g ⊂ [0, R], and 0 ≤ g ≤ f . Then

f = g + h for some h ≥ 0, and hence f(
√

L)(x, x) = g(
√

L)(x, x) + h(
√

L)(x, x).
On the other hand, by (3.20) f(

√
L)(x, x) =

∫
M
|√f(

√
L)(x, y)|2dµ(y) ≥ 0, and we

have similar representations of g(
√

L)(x, x) and h(
√

L)(x, x). Therefore,

(3.43) 0 ≤ g ≤ f =⇒ 0 ≤ g(
√

L)(x, x) ≤ f(
√

L)(x, x).

This allows to compare the kernels of different operators and we naturally come to
the next lemma which is interesting in their own right.

Lemma 3.19. (a) There exist constants c3, c4 > 0 such that for any τ ≥ 1

(3.44) c3|B(x, τ−1)|−1 ≤ 1[0,τ ]

(√
L

)
(x, x)) ≤ c4|B(x, τ−1)|−1.

(b) There exists b > 1 such that if τ ≥ 1 and τ−1 ≤ diam M
3 , then

(3.45) c5|B(x, τ−1)|−1 ≤ 1[τ,bτ ](
√

L)(x, x) ≤ c6|B(x, τ−1)|−1,

where c5, c6 > 0 depend only on the parameters of the space.

Proof. We first show that

(3.46) pt(x, y) = lim
τ→∞

1[0,τ ](
√

L)pt(x, y), t > 0.

Indeed, we have

1[0,τ ](
√

L)e−tL + 1(τ,∞)(
√

L)e−tL = e−tL,

and since 1[0,τ ](
√

L)e−tL is a kernel operator (Theorem 3.7), then 1(τ,∞)(
√

L)e−tL

is also a kernel operator and

(3.47) 1[0,τ ](
√

L)pt(x, y) + 1(τ,∞)(
√

L)pt(x, y) = e−tL(x, y).
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On the other hand,

1(τ,∞)(
√

L)e−tL = e−
t
4 L

[
1(τ,∞)(

√
L)e−

t
2 L

]
e−

t
4 L,

and by spectral theory ‖1(τ,∞)(
√

L)e−
t
2 L‖2→2 = e−

t
2 τ2

. Therefore, applying Propo-
sition 2.9 we arrive at

1(τ,∞)(
√

L)pt(x, y) ≤ c
e−

t
2 τ2

√
|B(x,

√
t/2)||B(y,

√
t/2)|

→ 0 as τ →∞.

This and (3.47) imply (3.46).
We also need these bounds on the heat kernel:

(3.48) c′|B(x,
√

t)|−1 ≤ pt(x, x) ≤ c|B(x,
√

t)|−1, 0 < t ≤ 1.

The upper bound is immediate from (1.4). For the lower bound we have for ` > 1,
using (1.7),

pt(x, x) =
∫

M

[pt/2(x, y)]2dµ(y) ≥
∫

B(x,2`
√

t)

[pt/2(x, y)]2dµ(y)

≥ 1
|B(x, 2`

√
t)|

[ ∫

B(x,2`
√

t)

pt/2(x, y)dµ(y)
]2

≥ 2−`d

|B(x,
√

t)|
[
1−

∫

M\B(x,2`
√

t)

pt/2(x, y)dµ(y)
]2

.

However, by (1.4) pt/2(x, y) ≤ cσD√
t,σ(x, y) for any σ > 0 hence, just as in the

proof of Proposition 3.8,
∫

M\B(x,2`
√

t)

e−t/2L(x, y)dµ(y) ≤ c2−` ≤ 1
2

for a sufficiently large ` (the constant c is independent of `). This completes the
proof of the lower bound estimate in (3.48).

We now turn to the proof of (3.44). Since 1[0,τ ](u) ≤ ee−τ−2u2
we obtain, using

(3.43) and (3.48)

1[0,τ ](
√

L)(x, x) ≤ ee−τ−2(
√

L)2(x, x) ≤ c|B(x, τ−1)|−1,

which gives the right-hand side estimate in (3.44).
For the proof of the left-hand side estimate in (3.44), we first note that for any

t > 0

e−tu2
= 1[0,τ ](u)e−tu2

+
∑

k≥0

1(2kτ,2k+1τ ](u)e−tu2

≤ 1[0,τ ](u) +
∑

k≥0

1[0,2k+1τ ](u)e−t22kτ2
.
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From this, (3.43), (3.46), (3.48), and the right-hand side estimate in (3.44) we
obtain

c′|B(x,
√

t)|−1 ≤ pt(x, x)

≤ 1[0,τ ](
√

L)(x, x) +
∑

k≥1

1[0,2k+1τ ](
√

L)(x, x)e−t22kτ2

≤ 1[0,τ ](
√

L)(x, x) + c4

∑

k≥1

e−t22kτ2 |B(x, 2−k−1τ−1)|−1

≤ 1[0,τ ](
√

L)(x, x) + c4|B(x, τ−1)|−1
∑

k≥1

e−t22kτ2
2(k+1)d.

Here for the latter inequality we used (2.1). Given τ ≥ 1 and r ∈ N we choose t so
that τ

√
t = 2r. Then from above

c′2−rd

|B(x, τ−1)| ≤
c′

|B(x,
√

t)| ≤ 1[0,τ ](
√

L)(x, x) +
c42d2−rd

|B(x, τ−1)|
∑

k≥0

e−22k22r

2(k+r)d

≤ 1[0,τ ](
√

L)(x, x) +
c42d2−rd

|B(x, τ−1)|
∑

k≥r

e−22k

2kd.

Hence,
2−rd

|B(x, τ−1)|
(
c′ − c42d

∑

k≥r

e−22k

2kd
)
≤ 1[0,τ ](

√
L)(x, x).

Taking r ∈ N sufficiently large, this implies the left-hand side estimate in (3.44).
We now take on (3.45). The right-hand side estimate follows by from the right-

hand side estimate in (3.44). Using (3.44) and the reverse doubling condition (1.2)
with τ−1 ≤ diam M

3 , we obtain for l ∈ N
1[τ,2lτ ](

√
L)(x, x) = 1[0,2lτ ](

√
L)(x, x)− 1[0,τ ](

√
L)(x, x)

≥ c3

|B(x, 2−lτ−1)| −
c4

|B(x, τ−1)| ≥
c32lβ − c4

|B(x, τ−1)| ,

which leads to (3.45) with b = 2l for sufficiently large l. ¤
Completion of the proof of Theorem 3.18. We now focus on the left-hand side
estimate in (3.42). Suppose θ obeys condition (ii) from the hypothesis of the the-
orem, i.e. θ(u) ≥ 1 on [1, b], where b > 1 is the same as in Lemma 3.19, (b) (the
proof in the other case is the same). Then by (3.43) and Lemma 3.19 we have for
0 < δ ≤ min{1, diam M

3 }
‖θ(δ

√
L)(x, .)‖∞ ≥ θ(δ

√
L)(x, x) ≥ 1[1,b](δ

√
L)(x, x)

= 1[δ−1,δ−1b](
√

L)(x, x) ≥ c5|B(x, δ)|−1.

On the other hand

‖θ(δ
√

L)(x, .)‖22 = θ2(δ
√

L)(x, x) ≥ c5|B(x, δ)|−1,

where for the last estimate we proceeded as above. Thus so far we have

(3.49)
‖θ(δ

√
L)(x, .)‖p ≤ c2|B(x, δ)|1/p−1, 0 < p ≤ ∞,

‖θ(δ
√

L)(x, .)‖∞ ≥ c5|B(x, δ)|−1 and ‖θ(δ
√

L)(x, .)‖22 ≥ c5|B(x, δ)|−1.
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Now, for 0 < p < ∞ the left-hand side estimate in (3.42) follows from the estimates
in (3.49) in a standard manner. Indeed, set f := θ(δ

√
L)(x, .). If 0 < p < 2, then

using (3.49) we get

c5|B(x, δ)|−1 ≤ ‖f‖22 ≤ ‖f‖p
p‖f‖2−p

∞ ≤ c‖f‖p
p|B(x, δ)|−2+p,

which implies ‖f‖p ≥ c′|B(x, δ)|1/p−1. If 2 < p < ∞, we use (3.49) and Hölder’s
inequality to obtain

c5|B(x, δ)|−1 ≤ ‖f‖22 ≤ ‖f‖p‖f‖p′ ≤ c‖f‖p
p|B(x, δ)|1/p′−1 (1/p + 1/p′ = 1).

This leads again to ‖f‖p ≥ c′|B(x, δ)|1/p−1. ¤

3.7. Finite dimensional spectral spaces. It is easy to see that in the case when
µ(M) < ∞ the spectrum of L is discrete and the respective eigenspaces are finitely
dimensional. This and some other related simple facts are collected in the following
statement, where we adhere to the notation from the previous subsections.

Proposition 3.20. The following claims are equivalent:
(a) diam M < ∞.
(b) µ(M) < ∞.
(c) There exists δ > 0 such that

∫
M

µ(B(x, δ))−1dµ(x) < ∞ and hence we have∫
M

µ(B(x, r))−1dµ(x) < ∞ for all r > 0.
(d) The spectrum of the operator L is discrete and of the form 0 ≤ λ1 < λ2 < . . . ,

L2 =
∑⊕

j

Hλj , where Hλj = Ker (L− λjId), and dim(Hλj ) < ∞.

(e) There exists t > 0 such that

‖e−tL‖2HS =
∫

M

∫

M

|pt(x, y)|2dµ(x)dµ(y) =
∫

M

p2t(x, x)dµ(x) < ∞,

and hence this is true for all t > 0.
(f) There exists λ ≥ 1 (and hence ∀λ ≥ 1) Σ∞λ = Σ1

λ (= Σp
λ for all 1 ≤ p ≤ ∞).

Furthermore, if one of the above holds, then for λ ≥ 1

(3.50) dim(Σλ) ∼
∫

M

µ(B(x, λ−1))−1dµ(x) and dim(Σ√λ) ∼ ‖e−λL‖2HS ,

where Σλ =
∑⊕√

λj≤λ
Hλj . In addition,

(3.51) pt(x, y) =
∑

j≥1

e−λj PHj (x, y), PHj (x, y) =
dim(Hj)∑

l=1

el
j(x)el

j(y),

where {el
j : l = 1, . . . , dim(Hj)} is an orthonormal basis for Hj, Lel

j = λje
l
j.

The convergence is uniform and pt(x, y) is a positive definite kernel.

Proof. As already shown in Proposition 2.1, (a) and (b) are equivalent. Note that,
since in our setting closed balls are compact, (a) or (b) is also equivalent to the
compactness of M .

Clearly (b) implies (f) as Σ1
λ ⊂ Σ∞λ ⊂ L∞ ⊂ L1 and Σ∞λ ∩ L1 = Σ1

λ.
To show that (f) implies (b), assume Σ∞λ = Σ1

λ. Then if θ ∈ C∞0 (R+), θ ≡ 1 in
the neighborhood of 0 and supp θ ⊂ [0, λ] we have θ(

√
L)f ∈ Σ∞λ = Σ1

λ ∀f ∈ L∞.
Hence 1 = θ(

√
L)(1) ∈ L1, which implies µ(M) < ∞.
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Assume that (a)-(b) hold and fix x0 ∈ M . Then using (2.1)-(2.2) we get

|B(x0, 1)| ≤ 2d(1 + ρ(x0, x))d|B(x, 1)| ≤ (4/δ)d(1 + ρ(x0, x))d|B(x, δ)|, 0 < δ ≤ 1,

which readily implies∫

M

|B(x, δ)|−1dµ(x) ≤ (4/δ)d|B(x0, 1)|(1 + D)|M | < ∞.

Thus (a)-(b) imply (c).
For the other direction, assume that (c) holds and let Xδ be a maximal δ-net on

M with a companion disjoint partition {Aξ}ξ∈Xδ
of M as in Proposition 2.5. Then

we use (2.1)-(2.2) again to obtain

#Xδ ≤ 2d
∑

ξ∈Xδ

|Aξ|
|B(ξ, δ)| ≤ 8d

∑

ξ∈Xδ

∫

Aξ

1
|B(x, δ)|dµ(x) = 8d

∫

M

|B(x, δ)|−1dµ(x).

Hence #Xδ < ∞, which readily implies diam (M) < ∞. So, (c) implies (a).
Since

∫
M

pt(x, y)2dµ(y) = pt(x, x), the equivalence of (c) and (e) is immediate
from (1.4).

It remains to show that (c) and (d) are equivalent. Suppose (c) holds true. Since
E2

λ = Eλ, we have

(3.52)
∫

M

|Eλ(x, y)|2dµ(y) =
∫

M

Eλ(x, y)Eλ(y, x)dµ(y) = E2
λ(x, x) = Eλ(x, x)

and hence, using Lemma 3.19,∫

M

∫

M

|Eλ(x, y)|2dµ(x)dµ(y) =
∫

M

Eλ(x, x)dx =
∫

M

1[0,
√

λ](
√

L)(x, x)dµ(x)

≤ c

∫

M

|B(x, λ−1/2)|−1dµ(x) < ∞, λ ≥ 1.

Therefore, Eλ (λ ≥ 1) is a Hilbert-Schmidt operator on L2 and hence its spectrum
is discrete. Suppose {ej}j∈J is an orthonormal family, verifying Eλej = ej , and
put

H(x, y) =
∑

j∈J

ej(x)ej(y).

Evidently, H2 = H and as in (3.52)
∫

M
|H(x, y)|2dµ(y) = H(x, x) =

∑
j∈J |ej(x)|2.

On the other hand EλH = HEλ = H and hence

H(x, x) =
∫

M

Eλ(x, y)H(y, x)dµ(y)

≤
( ∫

M

|Eλ(x, y)|2dµ(y)
)1/2( ∫

M

|H(y, x)|2dµ(y)
)1/2

≤
√

Eλ(x, x)
√

H(x, x).

Consequently, H(x, x) ≤ Eλ(x, x). Thus

#J =
∫

M

∑

j∈J

|ej(x)|2dµ(x) =
∫

M

H(x, x)dx ≤
∫

M

Eλ(x, x)dx

=
∫

M

1[0,
√

λ](
√

L)(x, x)dx ≤ c

∫

M

|B(x, λ−1/2)|dµ(x) < ∞.

Therefore, dim(Σ√λ) ≤ c
∫

M
|B(x, λ−1/2)|dµ(x) < ∞, which shows that (c) im-

plies (d).
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Finally, assume that (d) holds true. Let {ej}j∈J be an orthonormal basis of
Σλ, λ ≥ 1. Then Eλ(x, y) =

∑
j∈J ej(x)ej(y), where #J = dim(Σλ). Now, using

Lemma 3.19 we infer

c3

∫

M

|B(x, λ−1/2)|dµ(x) ≤
∫

M

1[0,
√

λ](
√

L)(x, x)dx

=
∫

M

Eλ(x, x)dµ(x) = dim(Σ√λ) < ∞.

Thus (d) implies (c).
The estimates in (3.50) follow from above. The last assertion of the theorem is

Mercer’s theorem (see [18]). ¤

4. Sampling theorem and cubature formula

Basic tools for constructing decomposition systems (frames) for various spaces
will be a sampling theorem for Σp

λ and a cubature formula for Σ1
λ. In turn these

results will rely on the nearly exponential localization of operator kernels induced
by smooth cut-off functions ϕ (Theorem 3.4): If ϕ ∈ C∞(R+), supp ϕ ⊂ [0, b],
b > 1, 0 ≤ ϕ ≤ 1, and ϕ = 1 on [0, 1], then there exists a constant α > 0 such that
for any δ > 0 and x, y, x′ ∈ M

|ϕ(δ
√

L)(x, y)| ≤ K(σ)Dδ,σ(x, y) and(4.1)

|ϕ(δ
√

L)(x, y)− ϕ(δ
√

L)(x′, y)| ≤ K(σ)
(ρ(x, x′)

δ

)α

Dδ,σ(x, y), ρ(x, x′) ≤ δ.(4.2)

Here K(σ) > 1 depends on ϕ, σ and the other parameters, but is independent of
x, y, x′ and δ.

The main ingredient in our constructions will be the following Marcinkiewicz-
Zygmund inequality for Σ1

λ, where maximal δ−nets (see §2.3) will be utilized.

Proposition 4.1. Given λ ≥ 1, let Xδ be a maximal δ−net on M with δ :=
γ
λ , where 0 < γ ≤ 1. Suppose {Aξ}ξ∈Xδ

is a companion disjoint partition of M
consisting of measurable sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ. Then for
any f ∈ Σp

λ, 1 ≤ p < ∞,

(4.3)
∑

ξ∈Xδ

∫

Aξ

|f(x)− f(ξ)|pdx ≤ [K(σ∗)γαc¦]p‖f‖p
p,

and for any f ∈ Σ∞λ

(4.4) sup
ξ∈Xδ

sup
x∈Aξ

|f(x)− f(ξ)| ≤ K(σ∗)γαc¦‖f‖∞,

where K(σ∗) is the constant from (4.1)− (4.2) with σ∗ := 2d + 1 and c¦ = 22d+1.

Proof. Suppose ϕ is a cut-off function as in (4.1)-(4.2). Then we have f =∫
M

ϕ(λ−1
√

L)(·, y)f(y)dy for f ∈ Σp
λ, 1 ≤ p ≤ ∞, and using (4.2) with δ = λ−1 we

obtain for 1 ≤ p < ∞
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∑

ξ∈Xδ

∫

Aξ

|f(x)− f(ξ)|pdx

=
∑

ξ∈Xδ

∫

Aξ

∣∣∣
∫

M

[
ϕ(λ−1

√
L)(x, y)− ϕ(λ−1

√
L)(ξ, y)

]
f(y)dy

∣∣∣
p

dx

≤ K(σ∗)
p

∑

ξ∈Xdd

∫

Aξ

( ∫

M

(λρ(x, ξ))αDδ,σ∗(x, y)|f(y)|dy
)p

dx

≤ K(σ∗)
p
γαp

∫

M

( ∫

M

Dδ,σ∗(x, y)|f(y)|dy
)p

dx ≤ [K(σ∗)γαc¦]p‖f‖p
p,

where for the last inequality we used Proposition 2.6. The proof of (4.4) is similar.
¤

4.1. The sampling theorem. The following sampling theorem will play an im-
portant role in the sequel.

Theorem 4.2. Let 0 < γ < 1 and

(4.5) K(σ∗)γαc¦ ≤ 1
2
,

where K(σ∗) is the constant from (4.2) with σ∗ := 2d + 1 and c¦ = 22d+1. For
a given λ ≥ 1 let Xδ be a maximal δ−net on M with δ := γ

λ and suppose {Aξ}ξ∈Xδ

is a companion disjoint partition of M consisting of measurable sets such that
B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ. Then for any f ∈ Σp

λ, 1 ≤ p < ∞,

(4.6)
1
2
‖f‖p ≤

( ∑

ξ∈Xδ

|Aξ||f(ξ)|p
)1/p

≤ 2‖f‖p

and for f ∈ Σ∞λ

(4.7)
1
2
‖f‖∞ ≤ sup

ξ∈Xδ

|f(ξ)| ≤ ‖f‖∞.

Furthermore, if 0 < γ < 1 is selected so that

(4.8) K(σ∗)γ
αc¦ ≤ ε

3
,

(instead of (4.5)) for a given 0 < ε < 1, then for any f ∈ Σp
λ, 1 ≤ p ≤ 2,

(4.9) (1− ε)‖f‖p
p ≤

∑

ξ∈Xδ

|Aξ||f(ξ)|p ≤ (1 + ε)‖f‖p
p.

Proof. We first prove (4.9). It is easy to see that

(4.10)
1

(1 + δ)p−1
|a|p ≤ 1

δp−1
|a− b|p + |b|p if 0 < δ < 1, a, b ∈ C and 1 ≤ p.

which implies :

(4.11) (1− δ)|a|p ≤ 1
δp−1

|a− b|p + |b|p if 0 < δ < 1, a, b ∈ C and 1 ≤ p ≤ 2.
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This inequality with δ := ε/3 implies

(1− ε/3)
∫

Aξ

|f(x)|pdx ≤ 1
(ε/3)p−1

∫

Aξ

|f(x)− f(ξ)|pdx + |Aξ||f(ξ)|p,(4.12)

(1− ε/3)|Aξ||f(ξ)|p ≤ 1
(ε/3)p−1

∫

Aξ

|f(x)− f(ξ)|pdx +
∫

Aξ

|f(x)|pdx.(4.13)

Summing up estimates (4.12) over ξ ∈ Xδ, we get

(1− ε/3)‖f‖p
p ≤

1
(ε/3)p−1

∑

ξ∈Xδ

∫

Aξ

|f(x)− f(ξ)|pdx +
∑

ξ∈Xδ

|Aξ||f(ξ)|p

≤ 1
(ε/3)p−1

[K(σ∗)γαc¦]p‖f‖p
p +

∑

ξ∈Xδ

|Aξ||f(ξ)|p

≤ ε

3
‖f‖p

p +
∑

ξ∈Xδ

|Aξ||f(ξ)|p,

which implies the left-hand side estimate in (4.9). Here for the second estimate we
used (4.3).

Similarly, we sum up estimates (4.13) and use again (4.3) to obtain

(1− ε/3)
∑

ξ∈Xδ

|Aξ||f(ξ)|p ≤ 1
(ε/3)p−1

∑

ξ∈Xδ

∫

Aξ

|f(x)− f(ξ)|pdx + ‖f‖p
p

≤ 1
εp−1

[K(σ∗)γαc¦]p‖f‖p
p + ‖f‖p

p ≤ (1 + ε/3)‖f‖p
p,

which readily yields the right-hand side estimate in (4.9).
To establish (4.6) note that (using (4.10)) 1

2p−1 |a|p ≤ |a− b|p + |b|p for a, b ∈ C
and 1 ≤ p < ∞, which leads to

1
2p−1

∫

Aξ

|f(x)|pdx ≤
∫

Aξ

|f(x)− f(ξ)|pdx + |Aξ||f(ξ)|p,

1
2p−1

|Aξ||f(ξ)|p ≤
∫

Aξ

|f(x)− f(ξ)|pdx +
∫

Aξ

|f(x)|pdx.

Then one proceeds exactly as above and obtains (4.6). The proof of (4.7) is simpler
and will be omitted. ¤

Remark 4.3. Observe that under the assumptions of Theorem 4.2 one has, using
(1.1) and (2.1),

(4/γ)−d|B(ξ, λ−1)| ≤ 2−d|B(ξ, γλ−1)| ≤ |Aξ| ≤ |B(ξ, γλ−1)| ≤ |B(ξ, λ−1)|, ξ ∈ Xδ.

Then estimates (4.6) imply that for f ∈ Σp
λ, 1 ≤ p < ∞,

(4.14)
1

2
(γ/4)d/p

( ∑

ξ∈Xδ

|B(ξ, λ−1)||f(ξ)|p
)1/p

≤ ‖f‖p ≤ 2
( ∑

ξ∈Xδ

|B(ξ, λ−1)||f(ξ)|p
)1/p

.

Also, note that estimates (4.9) are immediate for p = ∞ with the usual modification
and hold when 2 < p < ∞ with some modification of the constant in (4.8) (γ depends
on p). We do not elaborate on this since we shall only need (4.9) for p = 2.
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4.2. Cubature formula for Σ1
λ. In this subsection we utilize the Marcinkiewicz-

Zygmund inequality from Proposition 4.1 for the construction of a cubature formula
on Σ1

λ.

Theorem 4.4. Let 0 < γ < 1 and

(4.15) K(σ∗)γαc¦ =
1
4
.

Let λ ≥ 1 and suppose Xδ is a maximal δ-net on M with δ := γλ−1. Then there
exist positive constants (weights) {wλ

ξ }ξ∈Xδ
such that

(4.16)
∫

M

f(x)dµ(x) =
∑

ξ∈Xδ

wλ
ξ f(ξ), f ∈ Σ1

λ,

and

(4.17)
2

3
|B(ξ, δ/2)| ≤ wλ

ξ ≤ 2|B(ξ, δ)|, ξ ∈ Xδ.

We shall derive this theorem from Proposition 4.1 and a version of the Hahn-
Banach theorem for ordered linear spaces. We next give a theorem of Bauer of this
sort (adapted to the case of linear normed spaces) that best serves our purposes
and refer the reader to [1] for its proof.

Theorem 4.5 (Bauer). Suppose E is a linear normed space, F ⊂ E is a subspace
of E, and C is a convex cone in E, which determines an order on E (f ≤ g if
g − f ∈ C). Set V := {f ∈ E : ‖f‖ ≤ 1}. Let Λ : F → R be a linear functional
on F . Then Λ can be extended to a linear functional Λ̃ on E which is (i) positive,
i.e. Λ̃(f) ≥ 0 if f ∈ C, and (ii) |Λ̃(f)| ≤ ‖f‖ for f ∈ E, if and only if

(4.18) Λ(f) ≥ −1 for all f ∈ F ∩ (V + C).

A simple rescaling shows that the theorem holds if the condition in (ii) above is
replaced by Λ̃(f) ≤ c?‖f‖ and the condition in (4.18) by Λ(f) ≥ −c?, where c? > 0
is a constant.

We next show how the Marcinkiewicz-Zygmund inequality implies the existence
of a quadrature rule in a general setting and then apply the result to our particular
case.

Proposition 4.6. Suppose (X,µ) is a measure space and let H be a space of
µ−integrable functions defined everywhere on X. Suppose {Ai}i∈I is a finite or
countable disjoint partition of X, i.e. X = ∪i∈IAi and Ai ∩ Aj = ∅ if i 6= j, con-
sisting of measurable subsets of X of finite measure (0 < µ(Ai) < ∞). Let ξi ∈ Ai,
i ∈ I. Also, assume that there exists a constant α < 1

2 such that

(4.19)
∑

i∈I

∫

Ai

|f(x)− f(ξi)|dµ(x) ≤ α

∫

X

|f(x)|dµ(x), f ∈ H.

Then there exist positive constants {γi}i∈I such that

(4.20)
∫

X

f(x)dµ(x) =
∑

i∈I

γif(ξi) for f ∈ H,

and

(4.21)
1− 2α

1− α
µ(Ai) ≤ γi ≤ 1 + 2α

1− α
µ(Ai), i ∈ I.
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Proof. Consider the discrete positive measure dν :=
∑

i∈I µ(Ai)δξi on X, sup-
ported on the set X := {ξi : i ∈ I}, and let L1(ν) be the respective (weighted
discrete) L1-space. By (4.19) we obtain for f ∈ H

∣∣∣
∫

X

fdµ−
∫

X

fdν
∣∣∣ ≤ α

∫

X

|f |dµ,

and

(4.22) (1− α)‖f‖L1(µ) ≤ ‖f‖L1(ν) ≤ (1 + α)‖f‖L1(µ),

Hence ∫

X

fdµ−
∫

X

fdν ≥ −α

∫

X

|f |dµ ≥ − α

1− α

∫

X

|f |dν,

which readily implies

(4.23)
∫

X

fdµ− 1− 2α

1− α

∫

X

fdν ≥ − α

1− α

∫

X

(|f | − f)dν.

On the other hand, (4.22) yields that the operator J : f ∈ H 7→ {f(ξi)}i∈I ∈ L1(ν)
is continuous and, moreover, if J(H) = H̃ ⊂ L1(ν), then the operator

J−1 : g ∈ H̃ 7→
∫

X

J−1(g)dµ

is well-defined and continuous, and by (4.23)

(4.24)
∫

X

J−1(g)dµ− 1− 2α

1− α

∫

X

g dν ≥ − 2α

1− α

∫

X

(|g| − g)dν.

Let the linear functional Λ : H̃ 7→ R be defined by

(4.25) Λ : g ∈ H̃ 7→ Λ(g) :=
∫

X

J−1(g)dµ− 1− 2α

1− α

∫

X

gdν.

We next apply Theorem 4.5 with E = L1(ν), F = H̃,

C = {f ∈ L1(ν) : f(ξ) ≥ 0, ξ ∈ X}, V = {f ∈ L1(ν) : ‖f‖L1(ν) ≤ 1},
and the linear functional Λ from (4.25). Evidently, in this case, f ∈ F ∩ (V + C)
if and only if f ∈ H̃ and f can be represented in the form f = g + h, where
‖g‖L1(ν) ≤ 1 and h ≥ 0. Then by (4.24) it follows that

Λ(f) = Λ(g + h) ≥ − 2α

1− α

∫

X

(|g + h| − g − h)dν

≥ − 2α

1− α

∫

X

(|g| − g)dν ≥ − 4α

1− α

∫

X

|g|dν ≥ − 4α

1− α
=: −c?.

Applying now Theorem 4.5 we conclude that there exists a positive continuous
extension Λ̃ of Λ to L1(ν) such that ‖Λ̃‖ ≤ c? = 4α

1−α . However, as is well-known
(see e.g. [16]) (L1(ν))∗ = L∞(ν). Therefore, there exists a sequence β ∈ L∞(ν),
β = {βi}i∈I , such that ‖β‖∞ = supi∈I βi ≤ 4α

1−α and

Λ̃(f) =
∑

i∈I

f(ξi)βiµ(Ai), f ∈ L1(ν).

Since Λ̃ is positive, we have βi ≥ 0, i ∈ I. Consequently, for any f ∈ H
Λ(f) =

∫

X

fdµ− 1− 2α

1− α

∑

i

µ(Ai)f(ξi) =
∑

i

βiµ(Ai)f(ξi),
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where 0 ≤ βi ≤ 2α
1−α , which leads to

∫
X

f(x)dµ(x) =
∑

i∈I γif(ξi) for f ∈ H, where

1− 2α

1− α
µ(Ai) ≤ γi ≤ 1− 2α

1− α
µ(Ai) +

4α

1− α
µ(Ai) =

1 + 2α

1− α
µ(Ai).

The proof is complete. ¤

Proof of theorem 4.4. Let Xδ be a maximal δ−net on M with δ = γ
λ . Then by

Proposition 4.1 we have
∑

ξ∈Xδ

∫

Aξ

|f(x)− f(ξ)|dµ(x) ≤ K(σ∗)γαc¦‖f‖L1 .

If γ > 0 and K(σ∗)γαc¦ ≤ 1
4 , then Theorem 4.4 follows at once from Proposition 4.6.

¤

5. Construction of frames

An important part of our development in this article is the construction of well-
localized decomposition systems for spaces of functions or distributions in the gen-
eral setting of this article. The goal will be to construct a pair of dual frames,
where the elements of both frames are band limited and have nearly exponential
space localization.

5.1. A natural (Littlewood-Paley type) frame for L2. We begin with the
construction of a well-localized frame based on the kernels of spectral operators
considered in §3.1.

Let Φ ∈ C∞(R+), Φ(u) = 1 for u ∈ [0, 1], 0 ≤ Φ ≤ 1, and suppΦ ⊂ [0, b], where
b > 1 is the constant from Theorem 3.18. Set Ψ(u) := Φ(u)−Φ(bu) and note that
0 ≤ Ψ ≤ 1 and supp Ψ ⊂ [b−1, b]. We shall also assume that Φ is selected so that
Ψ(u) ≥ c > 0 for u ∈ [b−3/4, b3/4]. We set

(5.1) Ψ0(u) := Φ(u) and Ψj(u) := Ψ(b−ju), j ≥ 1.

Clearly, Ψj ∈ C∞(R+), 0 ≤ Ψj ≤ 1, supp Ψ0 ⊂ [0, b], supp Ψj ⊂ [bj−1, bj+1],
j ≥ 1, and

∑
j≥0 Ψj(u) = 1 for u ∈ R+. By Corollary 3.9 we have the following

Littlewood-Paley decomposition

(5.2) f =
∑

j≥0

Ψj(
√

L)f for f ∈ Lp, 1 ≤ p ≤ ∞. (L∞ := UCB)

From above it follows that

(5.3)
1
2
≤

∑

j≥0

Ψ2
j (u) ≤ 1, u ∈ R+,

and since ‖Ψj(
√

L)f‖22 = 〈Ψj(
√

L)f, Ψj(
√

L)f〉 = 〈Ψ2
j (
√

L)f, f〉, we get

∑

j≥0

‖Ψj(
√

L)f‖22 =
∫ ∞

0

∑

j≥0

Ψ2
j (u)d〈Fuf, f〉,

and using (5.3) we arrive at

(5.4)
1
2
‖f‖22 ≤

∑

j≥0

‖Ψj(
√

L)f‖22 ≤ ‖f‖22, f ∈ L2.
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Here we introduce a constant 0 < ε < 1 that is sufficiently small and will be
specified later on in (5.16). Choose 0 < γ < 1 so that

(5.5) K(σ∗)γαc¦ = ε/3,

where K(σ∗) is the constant from (4.1)-(4.2) with σ∗ := 2d + 1, and c¦ := 22d+1.
For any j ≥ 0 let Xj ⊂ M be a maximal δj−net on M (see Proposition 2.5)
with δj := γb−j−2 and suppose {Aj

ξ}ξ∈Xj
is a companion disjoint partition of M

consisting of measurable sets such that B(ξ, δj/2) ⊂ Aj
ξ ⊂ B(ξ, δj), ξ ∈ Xj , as in

Proposition 2.5. By Theorem 4.2 we have

(5.6) (1− ε)‖f‖22 ≤
∑

ξ∈Xj

|Aj
ξ||f(ξ)|2 ≤ (1 + ε)‖f‖22 for f ∈ Σ2

bj+2 .

By the definition of Ψj it follows that Ψj(
√

L)f ∈ Σ2
bj+1 for f ∈ L2, and hence (5.4)

and (5.6) imply

(5.7)
1
4
‖f‖22 ≤

∑

j≥0

∑

ξ∈Xj

|Aj
ξ||Ψj(

√
L)f(ξ)|2 ≤ 2‖f‖22, f ∈ L2.

Note that

Ψj(
√

L)f(ξ) =
∫

M

f(u)Ψj(
√

L)(ξ, u)dµ(u)

=
∫

M

f(u)Ψj(
√

L)(u, ξ)dµ(u) = 〈f, Ψj(
√

L)(., ξ)〉.

Consider the system {ψjξ} defined by

(5.8) ψjξ(x) := |Aj
ξ|1/2Ψj(

√
L)(x, ξ), ξ ∈ Xj , j ≥ 0.

From the above observation and (5.7) it follows that {ψjξ : ξ ∈ Xj , j ≥ 0} is a
frame for L2.

We next record the main properties of this system.

Proposition 5.1. (a) Localization: For any σ > 0 there exist a constant cσ > 0
such that for any ξ ∈ Xj, j ≥ 0, we have

(5.9) |ψjξ(x)| ≤ cσ|B(ξ, b−j)|−1/2(1 + bjρ(x, ξ))−σ

and if ρ(x, y) ≤ b−j

(5.10) |ψjξ(x)−ψjξ(y)| ≤ cσ|B(ξ, b−j)|−1/2(bjρ(x, y))α(1 + bjρ(x, ξ))−σ, α > 0.

(b) Norms:

(5.11) ‖ψjξ‖p ∼ |B(ξ, b−j)| 1p− 1
2 , 0 < p ≤ ∞.

The constants involved in the previous equivalence depend of p.
(c) Spectral localization: ψ0ξ ∈ Σp

b if ξ ∈ X0 and ψjξ ∈ Σp
[bj−1,bj+1] if ξ ∈ Xj,

j ≥ 1, 0 < p ≤ ∞.
(d) The system {ψjξ} is a frame for L2, namely,

(5.12) 4−1‖f‖22 ≤
∑

j≥0

∑

ξ∈Xj

|〈f, ψjξ〉|2 ≤ 2‖f‖22, ∀f ∈ L2.

Proof. Estimates (5.9) and (5.10) follow by Theorem 3.4; (5.11) follows by Theo-
rem 3.18. The spectral localization is obvious by the definition. Estimates (5.12)
follow by (5.7). ¤
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5.2. Dual frame. Our next (nontrivial) step is to construct a dual frame {ψ̃jξ}
to {ψjξ} with elements of similar space and spectral localization. We begin this
construction by introducing two new cut-off functions by “stretching” Ψ0 and Ψ1

from §5.1:

(5.13) Γ0(u) := Φ(b−1u) and Γ1(u) := Φ(b−2u)−Φ(bu) = Γ0(b−1u)−Γ0(b2u).

Note that supp Γ0 ⊂ [0, b2], Γ0(u) = 1 for u ∈ [0, b], suppΓ1 ⊂ [b−1, b3], Γ1(u) = 1
for u ∈ [1, b2], and 0 ≤ Γ0, Γ1 ≤ 1. Therefore,

(5.14) Γ0(u)Ψ0(u) = Ψ0(u), Γ1(u)Ψ1(u) = Ψ1(u).

We shall also use the cut-off function Θ(u) := Φ(b−3u). Note that suppΘ ⊂ [0, b4],
Θ(u) = 1 for u ∈ [0, b3], and Θ ≥ 0. Hence, Θ(u)Γj(u) = Γj(u), j = 0, 1.
Parameter σ: The dual frame under construction will depend on a parameter
σ > 2d + 1 that can be selected as large as we wish. It will govern the localization
properties of the dual frame elements.

With σ > 2d + 1 already selected we next record the localization properties of
the operators generated by the above selected functions. Let f = Γ0 or f = Γ1 or
f = Θ. Then by Corollary 3.5 there exists a constant cσ > 1 such that for δ > 0
and 0 ≤ m ≤ σ we have

(5.15) |Lmf(δ
√

L)(x, y)| ≤ cσδ−2mDδ,2σ(x, y).

We now select the constant 0 < ε < 1 so that

(5.16)
1
2ε

= c3
σ28σ+9d+10.

Recall that the constant γ, which depends on ε, was defined in (5.5) so that
K(σ∗)γαc¦ = ε/3.

The next lemma will be instrumental in the construction of the dual frame.

Lemma 5.2. Given λ ≥ 1, let Xδ be a maximal δ−net on M with δ := γλ−1b−3 and
suppose {Aξ}ξ∈Xδ

is a companion disjoint partition of M consisting of measurable
sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ, just as in Proposition 2.5. Set
κξ := 1

1+ε |Aξ| ∼ |B(ξ, δ)|. Let Γ = Γ0 or Γ = Γ1. Then there exists an operator
Tλ : L2 → L2 of the form Tλ = Id + Sλ such that

(a)

‖f‖2 ≤ ‖Tλf‖2 ≤ 1
1− 2ε

‖f‖2 ∀f ∈ L2.

(b) LmSλ with 0 ≤ m ≤ σ is an integral operator with kernel LmSλ(x, y) verifying

|LmSλ(x, y)| ≤ cλ2mDλ−1,σ(x, y), x, y ∈ M.

(c) Sλ(L2) ⊂ Σ2
λb2 if Γ = Γ0 and Sλ(L2) ⊂ Σ2

[λb−1,λb3] if Γ = Γ1.

(d) For any f ∈ L2 such that Γ(λ−1
√

L)f = f we have

(5.17) f(x) =
∑

ξ∈Xδ

κξf(ξ)Tλ[Γλ(·, ξ)](x), x ∈ M,

where Γλ(·, ·) is the kernel of the operator Γλ := Γ(λ−1
√

L).

Proof. By Theorem 4.2 we have

(1− ε)‖f‖22 ≤
∑

ξ∈Xδ

|Aξ||f(ξ)|2 ≤ (1 + ε)‖f‖22 for f ∈ Σ2
λb3 ,
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and setting κξ := 1
1+ε |Aξ| we get

(5.18) (1− 2ε)‖f‖22 ≤
∑

ξ∈Xδ

κξ|f(ξ)|2 ≤ ‖f‖22 for f ∈ Σ2
λb3 .

Denote briefly Θλ := Θ(λ−1
√

L) and let Θλ(·, ·) be the kernel of this operator.
Consider now the positive self-adjoint operator Uλ with kernel

Uλ(x, y) =
∑

ξ∈Xδ

κξΘλ(x, ξ)Θλ(ξ, y).

By (5.15) |Θλ(x, y)| ≤ cσDλ−1,2σ(x, y) for x, y ∈ M . Therefore, taking into account
that δ = γλ−1b−3 < λ−1 and 2σ > 2d + 1 we can apply (2.22) to obtain

(5.19) |Uλ(x, y)| ≤ cσc]Dλ−1,2σ(x, y), c] := 22σ+3d+3

Also, if f ∈ Σ2
λb3 , then 〈Uλf, f〉 =

∑
ξ∈Xδ

κξ |f(ξ)|2 and hence, using (5.18),

(5.20) (1− 2ε)‖f‖22 ≤ 〈Uλf, f〉 ≤ ‖f‖22 for f ∈ Σ2
λb3 .

Denote briefly Γλ := Γ(λ−1
√

L) and let Γλ(·, ·) be the kernel of this operator (recall
that Γ = Γ0 or Γ = Γ1). We define yet another self-adjoint kernel operator by

Rλ := Γλ(Id− Uλ)Γλ = Γ2
λ − ΓλUλΓλ.

Set Vλ := ΓλUλΓλ and denote by Vλ(·, ·) its kernel. Since Θ(u)Γ(u) = Γ(u), we
have

Vλ(x, y) =
∑

ξ∈Xδ

κξ

∫

M

∫

M

Γλ(x, u)Θλ(u, ξ)Θλ(ξ, v)Γλ(v, y)dudv

=
∑

ξ∈Xδ

κξΓλ(x, ξ)Γλ(ξ, y).

Now, by (5.15), (2.11), and (5.19) it follows that for 0 ≤ m ≤ σ

|LmRλ(x, y)| ≤ c2
σc?λ

2mDλ−1,2σ(x, y) + c3
σc]c

2
?λ

2mDλ−1,2σ(x, y)

≤ 2c3
σc]c

2
?λ

2mDλ−1,2σ(x, y).

Here c? := 22σ+2d+2 and as above c] := 22σ+3d+3. To simplify our notation we set
Cσ := 2c3

σc]c
2
? = c3

σ26σ+7d+8. Thus we have

(5.21) |LmRλ(x, y)| ≤ Cσλ2mDλ−1,2σ(x, y), 0 ≤ m ≤ σ.

By the definition of Rλ we have

〈Rλf, f〉 = ‖Γλf‖22 − 〈UλΓλf, Γλf〉 for f ∈ L2.

Since Γλ(L2) ⊂ Σ2
λb3 , then ΘλΓλf = Γλf , and by (5.20)

(1− 2ε)‖Γλf‖22 ≤ 〈UλΓλf, Γλf〉 ≤ ‖Γλf‖22, f ∈ L2.

Therefore,
0 ≤ 〈Rλf, f〉 ≤ 2ε‖Γλf‖22 ≤ 2ε‖f‖22, f ∈ L2,

where for the last inequality we used that ‖Γ‖∞ ≤ 1. Consequently,

‖Rλ‖2→2 ≤ 2ε < 1 and (1− 2ε)‖f‖2 ≤ ‖(Id−Rλ)f‖2 ≤ ‖f‖2, f ∈ L2.

We now define Tλ := (Id−Rλ)−1 = Id +
∑

k≥1 Rk
λ =: Id + Sλ. Clearly

(5.22) ‖f‖2 ≤ ‖Tλf‖2 ≤ 1
1− 2ε

‖f‖2 ∀f ∈ L2.



44 T. COULHON, G. KERKYACHARIAN, AND P. PETRUSHEV

If Γλf = f , then

f = Tλ(f −Rλf) = Tλ

(
f − Γλf + Vλf

)
= TλVλf.

On the other hand, if Γλf = f , then (Vλf)(x) =
∑

ξ∈Xδ
κξf(ξ)Γλ(x, ξ) and hence

(5.23) f(x) =
∑

ξ∈Xδ

κξf(ξ)Tλ[Γλ(·, ξ)](x).

Note that by construction

(5.24) Sλ : L2 7→ Σ2
λb3 if Γ = Γ0 and Sλ : L2 7→ Σ2

[λb−1,λb3] if Γ = Γ1.

It remains to establish the space localization of the kernel LmSλ(x, y) of the
operator LmSλ. Our method borrows from [37]. Consider first the case m = 0.
Denoting by Rk

λ(x, y) the kernel of Rk
λ, we have

|Sλ(x, y)| ≤
∑

k≥1

|Rk
λ(x, y)|.

But since Rk
λ = ΘλRk

λΘλ we get by (5.15) with f = Θ and the fact that ‖Rλ‖2→2 ≤
2ε, applying Proposition 2.9,

(5.25) |Rk
λ(x, y)| ≤ cdc

2
σ‖Rλ‖k

2→2√
|B(x, λ−1)||B(y, λ−1)| ≤

(2ε)kcdc
2
σ√

|B(x, λ−1)||B(y, λ−1)| ,

where cd := 24d+4. On the other hand, applying repeatedly estimate (2.11) k times
using (5.21) with m = 0 we obtain

(5.26) |Rk
λ(x, y)| ≤ Ck

σck−1
? Dλ−1,2σ(x, y), c? = 22σ+2d+2.

Therefore, for any K ∈ N

|Sλ(x, y)| ≤
K∑

k=1

Ck
σck−1

? Dλ−1,2σ(x, y) +
∑

k>K

(2ε)kcdc
2
σ√

|B(x, λ−1)||B(y, λ−1)|

≤ Cσ√
|B(x, λ−1)||B(y, λ−1)|

{ 1
(1 + λρ(x, y))2σ

K∑

k=1

(c?Cσ)k−1 +
(2ε)K+1

1− 2ε

}

≤ Cσ√
|B(x, λ−1)||B(y, λ−1)|

{ 1
(1 + λρ(x, y))2σ

(c?Cσ)K

c?Cσ − 1
+

(2ε)K+1

1− 2ε

}

≤ 2Cσ√
|B(x, λ−1)||B(y, λ−1)|

{ (c?Cσ)K−1

(1 + λρ(x, y))2σ
+ (2ε)K+1

}
.

Choose K ≥ 1 so that ( 1
2ε )K−1 ≤ (1+λρ(x, y))σ < ( 1

2ε )K and note that 1
2ε = c?Cσ

by (5.16). Then from above we get

(5.27) |Sλ(x, y)| ≤ 4Cσ√
|B(x, λ−1)||B(y, λ−1)|

1
(1 + λρ(x, y))σ

= 4CσDλ−1,σ(x, y).

Let 1 ≤ m ≤ σ. Since LmRk
λ = LmΘλRk

λΘλ, with slight modification of the
argument above, (5.15) implies that (5.25) holds for the kernel LmRk(·, ·) with
an additional factor λ2m to the right. On the other hand (5.21) implies that estimate
(5.26) also holds for LmRk(·, ·) with an additional factor λ2m to the right. Then
proceeding exactly as above it follows that estimate (5.27) holds for LmS(·, ·) with
an additional factor λ2m to the right. This completes the proof of the lemma. ¤
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Armed with this lemma we can now complete the construction of the dual frame.
We shall utilize the functions and operators introduced in §5.1 and above.

Denote briefly Γλ0 := Γ0(
√

L) and Γλj := Γ1(b−j+1
√

L) for j ≥ 1, λj := b−j+1.
Observe that since Γ0(u) = 1 for u ∈ [0, b] and Γ1(u) = 1 for u ∈ [1, b2], then
Γλ0(Σ

2
b) = Σ2

b and Γλj (Σ
2
[bj−1,bj+1]) = Σ2

[bj−1,bj+1], j ≥ 1. On the other hand, it
is readily seen that Ψ0(·, y) ∈ Σ2

b and Ψj(·, y) ∈ Σ2
[bj−1,bj+1] if j ≥ 1. Therefore,

we can apply Lemma 5.2 with Xj and {Aj
ξ}ξ∈Xj from §5.1, and λ = λj = bj−1 to

obtain

(5.28) Ψj(
√

L)(x, y) =
∑

ξ∈Xj

κξΨj(ξ, y)Tλj
[Γλj

(·, ξ)](x), κξ = (1 + ε)−1|Aξ|.

By (5.8) we have ψjξ(x) = |Aj
ξ|1/2Ψj(ξ, x) and we now set

(5.29) ψ̃jξ(x) := cε|Aj
ξ|1/2Tλj

[Γλj
(·, ξ)](x), ξ ∈ Xj , cε := (1 + ε)−1.

Thus {ψ̃jξ : ξ ∈ Xj , j ≥ 0} is the desired dual frame. Observe immediately that
(5.28) takes the form

(5.30) Ψj(
√

L)(x, y) =
∑

ξ∈Xj

ψjξ(y)ψ̃jξ(x).

We next record the main properties of the dual frame {ψ̃jξ}.
Theorem 5.3. (a) Representation: For any f ∈ Lp, 1 ≤ p ≤ ∞, we have

(5.31) f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ〉ψjξ =
∑

j≥0

∑

ξ∈Xj

〈f, ψjξ〉ψ̃jξ in Lp.

(b) Frame: The system {ψ̃jξ} as well as {ψjξ} is a frame for L2, namely, there
exists a constant c > 0 such that

(5.32) c−1‖f‖22 ≤
∑

j≥0

∑

ξ∈Xj

|〈f, ψ̃jξ〉|2 ≤ c‖f‖22, ∀f ∈ L2.

(c) Space localization: For any ξ ∈ Xj, j ≥ 0, and 0 ≤ m ≤ σ

(5.33) |Lmψ̃jξ(x)| ≤ cσb2jm|B(ξ, b−j)|−1/2(1 + bjρ(x, ξ))−σ,

and if ρ(x, y) ≤ b−j

(5.34) |ψ̃jξ(x)− ψ̃jξ(y)| ≤ cσ|B(ξ, b−j)|−1/2(bjρ(x, y))α(1 + bjρ(x, ξ))−σ.

Here σ > 2d+1 is the parameter of the dual frame selected in the beginning of §5.2.
(d) Spectral localization: ψ̃0ξ ∈ Σp

b if ξ ∈ X0 and ψ̃jξ ∈ Σp
[bj−2,bj+2] if ξ ∈ Xj,

j ≥ 1, d/σ < p ≤ ∞.
(e) Norms:

(5.35) ‖ψ̃jξ‖p ∼ |B(ξ, b−j)| 1p− 1
2 for d/σ < p ≤ ∞.

Proof. By the definition of ψ̃jξ in (5.29) and Lemma 5.2 we have

ψ̃jξ(x) := cε|Aj
ξ|1/2Tλj [Γλj (·, ξ)](x) = cε|Aj

ξ|1/2
[
Γλj (x, ξ) + Sλj [Γλj (·, ξ)](x)

]
.

Then estimate (5.33) follows from the localization of LmΓλj (·, ·) given by (5.15),
Lemma 5.2 (b), and (2.11). Estimate (5.34) follows by the fact Γλj (·, ·) is Lip α,
given by Theorem 3.4, and the localization of Sλj (·, ·), given in Lemma 5.2 (b),
exactly as in the proof of Theorem 3.1.
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To establish representation (5.31) we note that (5.30), (5.33), and (2.22) readily
imply

∑
ξ∈Xj

|ψjξ(y)||ψ̃jξ(x)| ≤ cDb−j ,σ−d(x, y). Then (5.31) follows by (5.2) and
(5.30).

The estimate

(5.36) ‖ψ̃jξ‖p ≤ c|B(ξ, b−j)| 1p− 1
2 for d/σ < p ≤ ∞

follows by (5.33) and (2.12). On the other hand, Lemma 5.2 (a) and Theorem 3.18
yield

‖ψ̃jξ‖2 ≥ c|B(ξ, b−j)|‖Γλj (·, ξ)‖2 ≥ c′ > 0.

From this and (5.36) one easily derives ‖ψ̃jξ‖p ≥ c|B(ξ, b−j)| 1p− 1
2 for 0 < p ≤ ∞

(see the proof of Theorem 3.18).
For the proof of (5.32) we shall employ the following lemma which will be in-

strumental in the development of Besov spaces later on as well.

Lemma 5.4. (a) For any f ∈ Lp, 1 ≤ p ≤ ∞,

(5.37)
( ∑

ξ∈Xj

‖〈f, ψ̃jξ〉ψjξ‖p
p

)1/p

≤ c‖f‖p, ∀ j ≥ 0.

(b) For any sequence of complex numbers {aξ}ξ∈Xj , j ≥ 0, and 1 ≤ p ≤ ∞,

(5.38)
∥∥ ∑

ξ∈Xj

aξψjξ

∥∥
p
≤ c

( ∑

ξ∈Xj

‖aξψjξ‖p
p

)1/p

.

Above each of the `p-norms is replaced by the sup-norm when p = ∞. Also (a)
and (b) hold with the roles of {ψjξ} and {ψ̃jξ} interchanged. The constant c > 0 is
independent of f , {aξ}, and j.

Proof. We shall need the following simple inequalities

(5.39)
∑

ξ∈Xj

|ψ̃jξ(x)|‖ψjξ‖1 ≤ c and
∑

ξ∈Xj

|ψjξ(x)|‖ψjξ‖1 ≤ c, x ∈ M,

where the roles of {ψjξ} and {ψ̃jξ} can be switched. Using (5.33) with m = 0 and
(5.11) we obtain

∑

ξ∈Xj

|ψ̃jξ(x)|‖ψjξ‖1 ≤ c
∑

ξ∈Xj

(1 + bjρ(x, ξ))−σ ≤ c < ∞,

where for the last inequality we used (2.20) and the fact that σ ≥ 2d + 1. This
gives the left-hand side inequality in (5.39). The proof of the other inequality is
the same.

Estimate (5.37) is immediate from (5.39) when p = 1. In the case p = ∞ (5.37)
follows readily by the inequality ‖ψ̃jξ‖1‖ψjξ‖∞ ≤ c < ∞ which is a consequence of
(5.11) and (5.35).
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To prove (5.37) in the case 1 < p < ∞ we just apply Hölder’s inequality (1/p +
1/p′ = 1) and obtain

‖〈f, ψ̃jξ〉ψjξ‖p
p ≤

(∫

M

|f(x)|ψ̃jξ(x)|dµ(x)
)p

‖ψjξ‖p
p

=
(∫

M

|f(x)|ψ̃jξ(x)|1/p|ψ̃jξ(x)|1/p′dµ(x)
)p

‖ψjξ‖p
p

≤
∫

M

|f(x)|p|ψ̃jξ(x)|dµ(x)‖ψ̃jξ‖p−1
1 ‖ψjξ‖p

p.

This coupled with the obvious inequality

‖ψ̃jξ‖p−1
1 ‖ψjξ‖p

p ≤ (‖ψ̃jξ‖1‖ψjξ‖∞)p−1‖ψjξ‖1 ≤ c‖ψjξ‖1,
using ‖ψ̃jξ‖1‖ψjξ‖∞ ≤ c < ∞ as above, leads to

∑

ξ∈Xj

‖〈f, ψ̃jξ〉ψjξ‖p
p ≤ c

∫

M

|f(x)|p
∑

ξ∈Xj

|ψ̃jξ(x)|‖ψjξ‖1dµ(x) ≤ c‖f‖p
p.

Here we used (5.39). This confirms the validity of (5.37).
We now turn to the proof of (5.38). This inequality is obvious when p = 1. In

the case p = ∞ inequality (5.38) follow easily from the right-hand side inequality
in (5.39) and the fact that ‖ψjξ‖1‖ψjξ‖∞ ≤ c < ∞, see (5.11).

To prove (5.38) in the case 1 < p < ∞ we apply the discrete Hölder inequality
and the right-hand side inequality in (5.39) to obtain

∣∣ ∑

ξ∈Xj

aξψjξ(x)
∣∣p ≤

[ ∑

ξ∈Xj

|aξ|‖ψjξ‖−1
1

(|ψjξ(x)|‖ψjξ‖1
)1/p(|ψjξ(x)|‖ψjξ‖1

)1/p′
]p

≤
∑

ξ∈Xj

|aξ|p‖ψjξ‖−p
1 |ψjξ(x)|‖ψjξ‖1

( ∑

ξ∈Xj

|ψjξ(x)|‖ψjξ‖1
)p−1

≤ c
∑

ξ∈Xj

|aξ|p‖ψξ‖1−p
1 |ψjξ(x)|.

Integrating both sides we get
∥∥ ∑

ξ∈Xj

aξψjξ

∥∥p

p
≤ c

∑

ξ∈Xj

|aξ|p‖ψjξ‖2−p
1 ≤ c

∑

ξ∈Xj

|aξ|p‖ψjξ‖p
p.

Here we used that ‖ψjξ‖2−p
1 ∼ ‖ψjξ‖p

p, which follows by (5.11). The proof of
Lemma 5.4 is complete. ¤

We are now in a position to complete the proof of Theorem 5.3. From (5.4)
applying (5.38) we get

‖f‖22 ≤ 2
∑

j≥0

‖Ψj(
√

L)f‖22 ≤ 2
∑

j≥0

∥∥∥
∑

ξ∈Xj

〈f, ψ̃jξ〉ψjξ

∥∥∥
2

2
≤ c

∑

j≥0

∑

ξ∈Xj

|〈f, ψ̃jξ〉|2,

which confirms the left-hand side inequality in (5.32). For the other direction, we
first note that since supp Ψj ⊂ [bj−1, bj+1] and ψ̃jξ ∈ Σ[bj−2,bj+2] we have by (5.2)
〈f, ψ̃jξ〉 =

∑j+2
ν=j−2

〈
Ψν(

√
L)f, ψ̃jξ

〉
(here Ψν := 0 if ν < 0) and hence

∑

ξ∈Xj

|〈f, ψ̃jξ〉|2 ≤ 5
j+2∑

ν=j−2

∑

ξ∈Xj

|〈Ψν(
√

L)f, ψ̃jξ〉|2 ≤ c

j+2∑

ν=j−2

‖Ψν(
√

L)f‖22.
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Here we used (5.37). Summing up the above inequalities and using (5.4) we obtain
the right-hand side inequality in (5.32). This completes the proof of Theorem 5.3.
¤

5.3. Frames in the case when {Σ2
λ} possess the polynomial property.

The construction of frames with the desired excellent space and spectral localization
is simple and elegant in the case when the spectral spaces Σ2

λ have the polynomial
property in the sense of the following

Definition 5.5. Let {Fλ, λ ≥ 0} be the spectral resolution associated with the
operator

√
L; then

√
L =

∫∞
0

λdFλ. We say that the associated spectral spaces

Σ2
λ = {f ∈ L2 : Fλf = f}

have the polynomial property if there exists a constant κ > 1 such that

(5.40) Σ2
λ · Σ2

λ ⊂ Σ1
κλ, i.e. f, g ∈ Σ2

λ =⇒ fg ∈ Σ1
κλ.

The construction begins with two pairs of cut-off functions Ψ0, Ψ, Ψ̃0, Ψ̃ ∈ C∞(R+)
with the following properties:

suppΨ0, Ψ̃0 ⊂ [0, b], suppΨ, Ψ̃ ⊂ [b−1, b], 0 ≤ Ψ0, Ψ, Ψ̃0, Ψ̃ ≤ 1,

Ψ0(u), Ψ̃0(u) ≥ c > 0, u ∈ [0, b3/4], Ψ(u), Ψ̃(u) ≥ c > 0, u ∈ [b−3/4, b3/4],

Ψ0(u) = 1 and Ψ̃0(u) = 1, u ∈ [0, 1], and

Ψ0(u)Ψ̃0(u) +
∑

j≥1

Ψ(b−ju)Ψ̃(b−ju) = 1, u ∈ R+.

As in §5.1, here b > 1 is the constant from Theorem 3.18. The construction of
functions with these properties is quite simple and well-known and will be omitted.
It is worth pointing out that given Ψ0,Ψ, then Ψ̃0, Ψ̃ can be easily constructed with
the above properties (see e.g. [23], Lemma (6.9)).

Denote Ψj(u) := Ψ(b−ju) and Ψ̃j(u) := Ψ̃(b−ju). Then from above we have

(5.41)
∑

j≥0

Ψj(u)Ψ̃j(u) = 1, u ∈ R+.

This and Proposition 3.8 imply the following Calderón type decomposition

(5.42) f =
∑

j≥0

Ψj(
√

L)Ψ̃j(
√

L)f, f ∈ Lp, 1 ≤ p ≤ ∞.

The key idea is that the polynomial property (5.40) of the spectral spaces can be
used to discretize the above expansion and as a result to obtain the desired frames.
Indeed, observe first that supp Ψ0, Ψ̃0 ⊂ [0, b] and supp Ψj , Ψ̃j ⊂ [bj−1, bj+1],
j ≥ 1. From this and above it follows that Ψj(

√
L), Ψ̃j(

√
L) are kernel opera-

tor whose kernels have nearly exponential localization and Ψj(
√

L)(x, ·) ∈ Σbj+1

and Ψ̃j(
√

L)(·, y) ∈ Σbj+1 . We now invoke the cubature formula from Theorem 4.4.
With 0 < γ < 1 the constant from (4.15) and κ > 1 from (5.40), we select a
maximal δ-net, say Xj , on M with δ := γκ−1b−j−1 ∼ b−j . Theorem 4.4 provides
a cubature formula of the form∫

M

f(x)dµ(x) =
∑

ξ∈Xj

wjξf(ξ) for f ∈ Σ1
κbj+1 ,
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where 2
3 |B(ξ, δ/2)| ≤ wjξ ≤ 2|B(ξ, δ)|. Since Ψj(

√
L)(x, ·)Ψ̃j(

√
L)(·, y) ∈ Σ1

κbj+1

due to (5.40), we get

Ψj(
√

L)Ψ̃j(
√

L)(x, y) =
∫

M

Ψj(
√

L)(x, u)Ψ̃j(
√

L)(u, y)dµ(u)(5.43)

=
∑

ξ∈Xj

wjξΨj(
√

L)(x, ξ)Ψ̃j(
√

L)(ξ, y).

We now define the frame elements by
(5.44)

ψjξ(x) :=
√

wjξΨj(
√

L)(x, ξ), ψ̃jξ(x) :=
√

wjξΨ̃j(
√

L)(x, ξ), ξ ∈ Xj , j ≥ 0.

We next present the main properties of the system {ψjξ}, {ψ̃jξ}.
Proposition 5.6. (a) Frame property: For any f ∈ Lp, 1 ≤ p ≤ ∞, (L∞ := UCB)
we have

(5.45) f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ〉ψjξ =
∑

j≥0

∑

ξ∈Xj

〈f, ψjξ〉ψ̃jξ in Lp

and

(5.46) ‖f‖22 =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ〉〈f, ψjξ〉 ∀f ∈ L2.

(b) Space localization: For any σ > 0 there exists a constant cσ > 0 such that
for any ξ ∈ Xj, j ≥ 0,

(5.47) |ψjξ(x)|, |ψ̃jξ(x)| ≤ cσ|B(ξ, b−j)|−1/2(1 + bjρ(x, ξ))−σ,

and if ρ(x, y) ≤ b−j

(5.48) |ψjξ(x)− ψjξ(y)| ≤ cσ|B(ξ, b−j)|−1/2(bjρ(x, y))α(1 + bjρ(x, ξ))−σ.

Here α > 0 is the global parameter from (1.6) and the same inequality hold for ψ̃jξ

in place of ψjξ.
(c) Spectral localization: ψ0ξ, ψ̃0ξ ∈ Σp

b if ξ ∈ X0 and ψjξ, ψ̃jξ ∈ Σp
[bj−1,bj+1] if

ξ ∈ Xj, j ≥ 1, 0 < p ≤ ∞.
(d) Norms:

(5.49) ‖ψjξ‖p ∼ ‖ψ̃jξ‖p ∼ |B(ξ, b−j)| 1p− 1
2 , 0 < p ≤ ∞.

Proof. Identities (5.45) follow immediately from (5.42) and (5.43). For the proof
of (5.46), denote SNf =

∑N
j=0

∑
ξ∈Xj

〈f, ψ̃jξ〉ψjξ and observe that

‖f‖22 = lim
N→∞

〈f, SNf〉 = lim
N→∞

N∑

j=0

∑

ξ∈Xj

〈f, ψ̃jξ〉〈f, ψjξ〉 =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ〉〈f, ψjξ〉.

The localization and Lipschitz property of the frame elements given in (5.47)
and (5.48) follow by Theorem 3.4. The claimed spectral localization is obvious.
The norm bounds in (5.49) follow by Theorem 3.18. ¤

An interesting special case of the above construction occurs when we choose
Ψ0 = Ψ̃0 and Ψ = Ψ̃. Then ψjξ = ψ̃jξ and {ψjξ} is a tight frame for L2, i.e.

‖f‖22 =
∑

j≥0

∑

ξ∈Xj

|〈f, ψjξ〉|2, ∀f ∈ L2.
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Remark. The polynomial property (5.40) of the spectral spaces apparently is valid
when the spectral functions are polynomials. This simple fact has been utilized for
construction of frames on the sphere [42], on the interval with Jacobi weights [47],
on the ball [48], and in the context of Hermite [49] and Laguerre [34] expansions.

6. Besov spaces

We shall follow the general idea of using spectral decompositions, e.g. [46, 59, 60],
to introduce (inhomogeneous) Besov spaces in the general set-up of this paper. As
explained in the introduction, we shall only consider Besov spaces Bs

pq with s > 0
and 1 ≤ p ≤ ∞. The Besov spaces Bs

pq with full range of indices are treated in
the follow-up paper [33]. For another approach to Besov spaces under heat kernel
estimates, but a polynomial upper bound on the volume instead of the volume
doubling condition, see [7].

To introduce Besov spaces we assume that there are given two (Littlewood-Paley)
functions ϕ0, ϕ ∈ C∞(R+) such that

suppϕ0 ⊂ [0, 2], ϕ
(ν)
0 (0) = 0 for ν ≥ 1, |ϕ0(λ)| ≥ c > 0 for λ ∈ [0, 23/4],(6.1)

suppϕ ⊂ [1/2, 2], |ϕ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4].(6.2)

Then |ϕ0(λ)| + ∑
j≥1 |ϕ(2−jλ)| ≥ c > 0 for λ ∈ [0,∞). Set ϕj(λ) := ϕ(2−jλ) for

j ≥ 1.

Definition 6.1. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The Besov space
Bs

pq = Bs
pq(L) is defined as the set of all f ∈ Lp such that

(6.3) ‖f‖Bs
pq

:=
( ∑

j≥0

(
2sj‖ϕj(

√
L)f(·)‖Lp

)q)1/q

< ∞.

Here the `q-norm is replaced by the sup-norm if q = ∞.

Note that by Proposition 6.2 below it follows that the definition of the Besov
spaces Bs

pq is independent of the specific selection of ϕ0, ϕ satisfying (6.1)-(6.2).
Also, Bs

pq are (quasi-)Banach spaces, which are continuously embedded in Lp as
will be seen below.

6.1. Characterization of Besov spaces via linear approximation from {Σp
t }.

Here we show that the Besov spaces Bs
pq with s > 0 and p ≥ 1 are in fact the ap-

proximation spaces of linear approximation from Σp
t , t ≥ 1. As in §3.5, we let

Et(f)p denote the best approximation of f ∈ Lp from Σp
t and As

pq will denote the
associated approximation spaces, defined in (3.35)-(3.36).

Proposition 6.2. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then f ∈ Bs
pq if and

only if f ∈ As
pq. Moreover,

(6.4) ‖f‖Bs
pq
∼ ‖f‖As

pq
:= ‖f‖p +

( ∑

j≥0

(
2sjE2j (f)p

)q
)1/q

.

Proof. Let ϕj be as in the definition of the Besov spaces with the additional
property:

∑
j≥0 ϕj(λ) = 1 for λ ∈ [0,∞) (see §3.3). Suppose f ∈ Lp. Then by

Corollary 3.9 we have f =
∑

j≥0 ϕj(
√

L)f and since ϕj(
√

L)f ∈ Σp
[2j−1,2j+1] we

obtain
E2m(f)p ≤

∑

j≥m

‖ϕj(
√

L)f‖p
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and the standard Hardy inequality

(6.5)
∑

m≥0

(
2sm

∑

j≥m

bj

)q

≤ c
∑

m≥0

(
2smbm

)q

, bj ≥ 0, s > 0, 0 < q ≤ ∞,

leads to the estimate ‖f‖As
pq
≤ c‖f‖Bs

pq
.

For the estimate in the other direction, we note that for any g ∈ Σp
2j−1 we have

ϕj(
√

L)f = ϕj(
√

L)(f − g) and hence

‖ϕj(
√

L)f‖p = ‖ϕj(
√

L)(f − g)‖p ≤ c‖f − g‖p,

where we used the boundedness of the operator ϕj(
√

L) on Lp. This implies
‖ϕj(

√
L)f‖p ≤ cE2j−1(f)p, j ≥ 1, and obviously ‖ϕ0(

√
L)f‖p ≤ c‖f‖p. We use

these estimates in the definition of Bs
pq to obtain ‖f‖Bs

pq
≤ c‖f‖As

pq
. ¤

We next record the heat kernel characterization of Besov spaces. Denote

(6.6) ‖f‖Bs
pq(H) := ‖f‖p +

(∫ 1

0

(
t−s/2‖(tL)me−tLf‖p

)q dt

t

)1/q

with the usual modification for q = ∞.

Corollary 6.3. For admissible indices s, p, q a function f ∈ Bs
pq if and only if

‖f‖Bs
pq(H) < ∞ and if f ∈ Bs

pq, then ‖f‖Bs
pq
∼ ‖f‖Bs

pq(H).

This corollary follows readily by Proposition 6.2 taking into account Remark 3.17.

6.2. Comparison of Lipschitz spaces and Bs
∞∞. The Lipschitz space Lip γ,

γ > 0, is defined as the set of all f ∈ L∞ such that

(6.7) ‖f‖Lip γ := ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
ργ(x, y)

< ∞.

We would like to record next the fact that in the setting of this article the spaces
Lip s and Bs

∞∞ coincide provided 0 < s < α, where α is the structural constant
from (1.6).

Proposition 6.4. The following continuous embeddings hold: (a) For any s > 0

Lip s ⊂ Bs
∞∞.

(b) For any 0 < s < α
Bs
∞∞ ⊂ Lip s.

Proof. (a) Let f ∈ Lip s and choose θ ∈ C∞[0,∞) so that θ ≥ 0, θ ≡ 1 on
[0, 1] supp θ ⊂ [0, 2]. Then using Theorem 3.4 and (2.10) we obtain for t ≥ 1 and
k > s + 3d/2

|θ(t−1
√

L)f(x)− f(x)| =
∣∣∣
∫

M

θ(t−1
√

L))(x, y)[f(y)− f(x)]dµ(y)
∣∣∣

≤ c‖f‖Lip s

∫

M

Dt−1,k(x, y)ρs(x, y)dµ(y)

≤ ct−s‖f‖Lip s

∫

M

Dt−1,k−s(x, y)dµ(y) ≤ ct−s‖f‖Lip s.

On the other hand θ(t−1
√

L)f ∈ Σ∞2t and hence E2t(f)∞ ≤ ‖θ(t−1
√

L)f − f‖∞.
From this and above we infer E2t(f)∞ ≤ ct−s‖f‖Lip s, which implies (a).

(b) Let ϕ0 := θ with θ the function from above. Set ϕ(λ) := θ(λ) − θ(2λ)
and ϕj(λ) := ϕ(2−jλ). Then

∑
j≥0 ϕj(λ) = 1 for λ ≥ 0, supp ϕ0 ⊂ [0, 2] and
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supp ϕj ⊂ [2j−1, 2j+1], j ≥ 1. Now, assuming that f ∈ Bs
∞∞ we apparently have

ϕ0(
√

L)f ∈ Σ∞2 , ϕj(
√

L)f ∈ Σ∞2j+1 , and by the Littlewood-Paley decomposition
(Corollary 3.9) f =

∑
j≥0 ϕj(

√
L)f . Evidently, Bs

∞∞ can be defined using the
above constructed functions {ϕj} and hence ‖ϕj(

√
L)f‖∞ ≤ c2−js‖f‖Bs∞∞ , j ≥ 0.

Therefore, using (3.33) we have for 0 < s < α and any J ≥ 1

|f(x)− f(y)| ≤
∑

j≥0

|ϕj(
√

L)f(x)− ϕj(
√

L)f(y)|

≤ c

J∑

j=0

‖ϕj(
√

L)f‖∞
(
2jρ(x, z)

)α + 2
∑

j>J

‖ϕj(
√

L)f‖∞

≤ c‖f‖Bs∞∞

( J∑

j=0

2−js
(
2jρ(x, z)

)α +
∑

j>J

2−js
)

≤ c‖f‖Bs∞∞

(
2J(α−s)ρ(x, z)α + 2−Js

)
.

Assuming that 0 < ρ(x, y) ≤ 1 we choose J ≥ 1 so that 2−J ∼ ρ(x, y) and the above
yields |f(x) − f(y)| ≤ c‖f‖Bs∞∞ρ(x, y)s. If ρ(x, y) > 1 this estimate is immediate
from ‖f‖∞ ≤ c‖f‖Bs∞∞ , which follows trivially using the decomposition of f from
above. This completes the proof of (b). ¤
6.3. Frame decomposition of Besov spaces. Our aim here is to show that the
Besov spaces introduced by Definition 6.1 can be characterized in terms of respective
sequence norms of the frame coefficients of functions, using the frames constructed
in §5. We shall utilize the pair of dual frames {ψjξ}, {ψ̃jξ} constructed in §§5.1-5.2
or in §5.3. To make the idea of frame decomposition of Bs

pq more transparent we
first introduce the sequence B-spaces bs

pq.

Definition 6.5. For s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞ the sequence space bs
pq is

defined as the space of all complex-valued sequences a := {ajξ : j ≥ 0, ξ ∈ X} such
that

(6.8) ‖a‖bs
pq

:=
(∑

j≥0

bjsq
[ ∑

ξ∈Xj

(
|B(ξ, b−j)|1/p−1/2|ajξ|

)p]q/p)1/q

< ∞.

Here b > 1 is the constant from §5, and the `p or `q norm is replaces by the sup-
norm if p = ∞ or q = ∞.

In our further analysis we shall use the “analysis” and “synthesis” operators
defined by

(6.9) Sψ̃ : f → {〈f, ψ̃jξ〉} and Tψ : {ajξ} →
∑

j≥0

∑

ξ∈Xj

ajξψjξ.

Theorem 6.6. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then the operators Sψ̃ :
Bs

pq → bs
pq and Tψ : bs

pq → Bs
pq are bounded and TψSψ̃ = Id on Bs

pq. Consequently,
f ∈ Bs

pq if and only if {〈f, ψ̃jξ〉} ∈ bs
pq. Moreover, if f ∈ Bs

pq, then

(6.10) ‖f‖Bs
pq
∼ ‖{〈f, ψ̃jξ〉}‖bs

pq
∼

( ∑

j≥0

bjsq
[ ∑

ξ∈Xj

‖〈f, ψ̃jξ〉ψjξ‖p
p

]q/p)1/q

with the usual modification when p = ∞ or q = ∞. Above the roles of {ψjξ} and
{ψ̃jξ} can be interchanged.
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Proof. Let Ψj ∈ C∞0 , j ≥ 0, be the functions from the definition of the frames
in §5.1. Recall that supp Ψ0 ⊂ [0, b] and supp Ψj ⊂ [bj−1, bj+1], j ≥ 1. Also,∑

j≥0 Ψj(u) = 1, u ∈ R+, and hence f =
∑

j≥0 Ψj(
√

L)f for f ∈ Lp. It is easy to
see that Proposition 6.2 implies (with the obvious modification when q = ∞)
(6.11)

‖f‖Bs
pq
∼ ‖f‖As

pq
∼ ‖f‖p +

(∑

j≥0

(
bjsEbj (f)p

)q
)1/q

∼
( ∑

j≥0

(
bjs‖Ψj(

√
L)f‖p

)q
)1/q

.

Here the second equivalence follows by the monotonicity of Et(f)p and the last
equivalence follows exactly as in the proof of Proposition 6.2.

Let f ∈ Bs
pq and assume q < ∞ (the case q = ∞ is easier). By (5.11) and (6.8)

it follows that

(6.12) ‖SΨ̃f‖bs
pq

= ‖{〈f, ψ̃jξ〉}‖bs
pq
∼

( ∑

j≥0

bjsq
[ ∑

ξ∈Xj

‖〈f, ψ̃jξ〉ψjξ‖p
p

]q/p)1/q

.

Using that f =
∑

j≥0 Ψj(
√

L)f , Ψj(
√

L)(·, y) ∈ Σ2
[bj−1,bj+1], and ψ̃jξ ∈ Σ2

[bj−2,bj+2]

we obtain

〈f, ψ̃jξ〉ψjξ =
j+2∑

ν=j−2

〈Ψν(
√

L)f, ψ̃jξ〉ψjξ, ξ ∈ Xj ,

where Ψν(
√

L) := 0 if ν < 0. This readily implies

∑

ξ∈Xj

‖〈f, ψ̃jξ〉ψjξ‖p
p ≤ c

j+2∑

ν=j−2

‖〈Ψν(
√

L)f, ψ̃jξ〉ψjξ‖p
p ≤ c

j+2∑

ν=j−2

‖Ψν(
√

L)f‖p
p.

Here for the last inequality we used Lemma 5.4, (a). We insert the above in (6.12)
and use (6.11) to obtain ‖SΨ̃f‖bs

pq
≤ c‖f‖Bs

pq
. Hence the operator Sψ̃ : Bs

pq → bs
pq

is bounded.
To prove the boundedness of Tψ : bs

pq → Bs
pq, we assume that a = {ajξ} ∈ bs

pq

and denote briefly f = Tψa =
∑

j≥0

∑
ξ∈Xj

ajξψjξ. Assume q < ∞ (the case q = ∞
is easier). Using (5.38), Hölder’s inequality if q > 1, and (5.11) we obtain
(6.13)

‖f‖p ≤ c
∑

j≥0

( ∑

ξ∈Xj

‖ajξψjξ‖p
p

)1/p

≤ c
( ∑

j≥0

[
bsj

∑

ξ∈Xj

‖ajξψjξ‖p
p

]q/p)1/q

≤ c‖a‖bs
pq

.

Therefore, Tψa is well-defined. Further, since ψjξ ∈ Σp
bj+1 and applying again (5.38)

we get

Ebj (f)p ≤
∥∥ ∑

m≥j

∑

ξ∈Xm

amξψmξ

∥∥
p
≤ c

∑

m≥j

( ∑

ξ∈Xm

‖amξψmξ‖p
p

)1/p

.

This and the Hardy inequality (6.5) give
( ∑

j≥0

(
bjsEbj (f)p

)q
)1/q

≤ c‖a‖bs
pq

. In
turn, this and (6.11) yield ‖f‖Bs

pq
≤ c‖a‖bs

pq
. Thus the operator Tψ : bs

pq → Bs
pq is

also bounded.
The identity TψSψ̃ = Id on Bs

pq follows by (5.31). ¤
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6.4. Embedding of Besov spaces. Finally we show that the Besov spaces Bs
pq

embed “correctly”.

Proposition 6.7. Let 1 ≤ p ≤ p1 < ∞, 0 < q ≤ q1 ≤ ∞, 0 < s1 ≤ s < ∞. Then
we have the continuous embedding

(6.14) Bs
pq ⊂ Bs1

p1q1
if s/d− 1/p = s1/d− 1/p1.

Proof. This assertion follows easily by Proposition 3.12. Indeed, let {ϕj}j≥0 be
the functions from the definition of Besov spaces (Definition 6.1). Given f ∈ Bs

pq

we evidently have ϕj(
√

L)f ∈ Σp
2j+1 and using (3.32)

‖ϕj(
√

L)f(·)‖p1 ≤ c2jd(1/p1−1/p)‖ϕj(
√

L)f(·)‖p,

which readily implies ‖f‖B
s1
p1q1

≤ c‖f‖Bs
pq

. ¤
Compare the above result with [12], where embeddings between Besov spaces

defined via the heat semigroup are proved under an assumption of polynomial
decay of the heat kernel.

7. Heat kernel on [−1, 1] induced by the Jacobi operator

We consider the case when M = [−1, 1], dµ(x) = wα,β(x)dx, where

wα,β(x) = w(x) = (1− x)α(1 + x)β , α, β > −1,

and

Lf(x) = − [w(x)a(x)f ′(x)]′

w(x)
, a(x) = (1− x2), D(L) = C2[−1, 1].

Integrating by parts we get E(f, g) = 〈Lf, g〉 =
∫ 1

−1
a(x)f ′(x)g′(x)w(x)dx. Clearly,

the domain D(E) of the closure E of E is given by the set of weakly differentiable
functions f on ]− 1, 1[ such that

‖f‖2E =
∫ 1

−1

|f(x)|2w(x)dx +
∫ 1

−1

a(x)|f ′(x)|2w(x)dx < ∞.

Note that D(L) ⊃ P the space of all polynomials, and L(Pk) ⊂ Pk, k ≥ 0, with Pk

being the space of all polynomials of degree k. As is well known [58] the (normalized)
Jacobi polynomials Pk, k = 0, 1, . . . , are eigenfunctions of L, i.e. LPk = λkPk with
λk = k(k + α + β + 1). By the density of polynomials in L2([−1, 1], µ) it follows
that

e−tL̄(f) =
∑

k≥0

e−λkt〈f, Pk〉Pk, t > 0.

We next show that e−tL̄ is submarkovian. Let Φε ∈ C∞(R) and 0 ≤ Φ′ε ≤ 1.
Then for any f ∈ C2[−1, 1] we have (Φε(f))′ = Φ′ε(f)f ′ ∈ C2[−1, 1] and

E(Φε(f), Φε(f)) =
∫ 1

−1

a(x)|(Φε(f))′|2w(x)dx ≤
∫ 1

−1

a(x)|f ′(x)|2w(x)dx = E(f, f).

Hence e−tL̄ is submarkovian (see §1.2).
Moreover, this Dirichlet space is evidently strongly local and regular and also

Γ(f, g)(u) = a(u)f ′(u)g′(u).
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We now compute the intrinsic metric. We have for x, y ∈ [−1, 1], x < y,

ρ(x, y) = sup{u(x)− u(y) : u ∈ C2[−1, 1], a(x)|u′(x)| ≤ 1}

= sup{
∫ y

x

u′(t)dt : u ∈ C2[−1, 1], a(t)|u′(t)|2 ≤ 1}

=
∫ y

x

dt√
a(t)

dt = | arccosx− arccos y|.

Evidently, the topology generated by this metric is the usual topology on [−1, 1],
and [−1, 1] is complete.

It remains to verify the doubling property of the measure and the scale-invariant
Poincaré inequality.

7.1. Doubling property of the measure. The doubling property of the measure
dµ(x) = wα,β(x)dx follows readily by the following estimates on |B(x, r)|: For any
x ∈ [−1, 1] and 0 < r ≤ π

(7.1) c1|B(x, r)| ≤ r(1− x + r2)α+1/2(1 + x + r2)β+1/2 ≤ c2|B(x, r)|,
where c1, c2 > 0 are constants depending only on α and β.

To prove these estimates, assume that x = cos θ, 0 ≤ θ ≤ π. Then evidently
|B(x, r)| = ∫ cos[0∨(θ−r)]

cos[π∧(θ+r)]
wα,β(u)du, where a∨ b := max{a, b} and a∧ b := min{a, b}

as usual. Assume 0 ≤ x ≤ 1 and 0 < r ≤ π/4. The following chain of similarities
with constants depending only on α, β is quite obvious:

|B(x, r)| ∼
∫ cos[0∨(θ−r)]

cos(θ+r)

(1− u)αdu ∼
∫ θ+r

0∨(θ−r)

(1− cos ϕ)α sin ϕdϕ

∼
∫ θ+r

0∨(θ−r)

ϕ2α+1dϕ ∼ r(θ + r)2α+1 ∼ r(sin θ + r)2α+1

∼ r(
√

1− x2 + r)2α+1 ∼ r(1− x + r2)α+1/2,

which implies (7.1). The case when −1 ≤ x < 0 and 0 < r ≤ π/4 is similar and in
the case π/4 < r ≤ π we obviously have |B(x, r)| ∼ 1, which again leads to (7.1).

7.2. Poincaré inequality. As was explained in §1.2 a critical ingredient in estab-
lishing Gaussian bounds for the heat kernel is the scale-invariant Poincaré inequal-
ity, which we establish next.

Theorem 7.1. For any f ∈ D(E) and an interval I = [a, b] ⊂ [−1, 1]

(7.2)
∫

I

|f(x)− fI |2w(x)dx ≤ c(diam ρ(I))2
∫

I

|f ′(x)|2(1− x2)w(x)dx

where diam ρ(I) = arccos a−arccos b, fI = 1
w(I)

∫
I
f(x)w(x)dx with w(I) =

∫
I
w(x)dx,

and c > 0 is a constant depending only on α, β.

Proof. Denote briefly w[c, d] :=
∫ d

c
w(u)du. We have for I = [a, b] ⊂ [−1, 1] and

x ∈ I

f(x)− fI =
1

w(I)

∫

I

(f(x)− f(y))w(y)dy =
1

w(I)

∫

I

∫ x

y

f ′(u)duw(y)dy

=
∫

I

f ′(u)K(x, u)du,
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where K(x, u) := 1
w(I){w[a, u]1[a,x] − w[u, b]1[x,b]}. It is easy to see that

∫

I

|K(x, u)|du =
1

w(I)

∫

I

|x− y|w(y)dy ≤ 1
2
(b− a) and

∫

I

|K(x, u)|w(x)dx =
2w[a, u]w[u, b]

w(I)
.

Using the above we obtain∫

I

|f(x)− fI |2w(x)dx =
∫

I

∣∣∣
∫

I

f ′(u)K(x, u)du
∣∣∣
2

y(x)dx

≤
∫

I

( ∫

I

|f ′(u)|2|K(x, u)|du

∫

I

|K(x, v)|dv
)
w(x)dx

≤ 1
2
(b− a)

∫

I

|f ′(u)|2
( ∫

I

K(x, u)|w(x)dx
)
)du

= (b− a)
∫

I

|f ′(u)|2 w[a, u]w[u, b]
w(I)

du.

Therefore, the theorem will be proved if we show that

(7.3) (b− a)
w[a, u]w[u, b]

w(I)
≤ cw(u)(1− u2)

( ∫ b

a

dz√
1− z2

)2

for some constant c > 0 depending only on α, β.
Suppose [a, b] ⊂ [−1/2, 1]. Then it is readily seen that

(7.4) w(u)(1− u2)
( ∫ b

a

dz√
1− z2

)2

≥ 2−β(1− u)α+1(
√

1− a−
√

1− b)2.

On the other hand, since w(x) ≤ 2|β|(1− x)α, we have

w[a, u]w[u, b]
w(I)

≤ 23|β|

α + 1
[(1− a)α+1 − (1− u)α+1][(1− u)α+1 − (1− b)α+1]

(1− a)α+1 − (1− b)α+1
.

We need the following inequality whose proof is straightforward: If γ > 0 and
0 ≤ A ≤ X ≤ B, then

(7.5)
(Xγ −Aγ)(Bγ −Xγ)

Bγ −Aγ
≤ (γ ∨ 1)Xγ

√
B −√A√
B +

√
A

.

Applying this inequality we get

(b− a)
w[a, u]w[u, b]

w(I)
≤ 23|β|( 1

α + 1
∨ 1

)
(1− u)α+1(b− a)

√
1− a−√1− b√
1− a +

√
1− b

= 23|β|( 1
α + 1

+ 1
)
(1− u)α+1(

√
1− a−

√
1− b)2.

This coupled with (7.4) gives (7.3). The proof of (7.3) in the case when I = [a, b] ⊂
[−1, 1/2] is the same.

Let now −1 ≤ a < −1/2 < 1/2 < b ≤ 1. Suppose u ∈ [0, b] (the case when
u ∈ [a, 0) is similar). Then evidently w[a, u] ∼ 1, w(I) ∼ 1,

∫ b

a
dz√
1−z2 ∼ 1 and (7.3)

follows by

w[u, b] ≤ 2|β|
∫ 1

u

(1− y)αdy ≤ 2|β|

α + 1
(1− u)α+1 and w(u)(1− u2) ∼ (1− u)α+1.

The proof of the theorem is complete. ¤



HEAT KERNEL GENERATED FRAMES 57

7.3. Gaussian bounds on the heat kernel associated with the Jacobi op-
erator. As a consequence of the Poincaré inequality and the doubling property
of the measure, established above, we obtain (§1.2) Gaussian bounds for the heat
kernel pt(x, y) associated with the Jacobi operator:

Theorem 7.2. For any x, y ∈ [−1, 1] and 0 < t ≤ 1,

(7.6)
c′1 exp{− c1ρ2(x,y)

t }√
|B(x,

√
t)||B(y,

√
t)
≤ pt(x, y) ≤ c′2 exp{− c2ρ2(x,y)

t }√
|B(x,

√
t)||B(y,

√
t)

.

Here |B(x,
√

t)| ∼ √
t(1−x+ t)α+1/2(1+x+ t)β+1/2, ρ(x, y) = | arccosx−arccos y|

or ρ(x, y) = |θ − φ| if x = cos θ and y = cos φ, 0 ≤ θ, φ ≤ π, and c1, c2, c
′
1, c

′
2 > 0

are constants depending only on α and β.
Furthermore,

(7.7) pt(x, y) =
∑

k≥0

e−λktPk(x)Pk(y), λk = k(k + α + β + 1),

where the series converges uniformly.

The above results and Theorem 3.4 yield the nearly exponential localization of
kernels as in the following

Corollary 7.3. Let f ∈ C∞0 (R+) and f (2ν+1)(0) = 0, ν ≥ 0 and consider the
kernel Λδ(x, y) =

∑
k≥0 f(δ

√
λk)Pk(x)Pk(y), 0 < δ ≤ 1. Then for any σ > 0 there

exists a constant cσ > 0 such that

(7.8) |Λδ(x, y)| ≤ cσ(|B(x, δ)||B(x, δ)|)1/2
(
1 +

ρ(x, y)
δ

)−σ

,

where |B(·, δ)| and ρ(x, y) are as above.

This result is more complete than the similar estimate (2.14) in [47] (see also
[29, 30]) which is proved under the restriction α, β > −1/2.
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[51] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J.

65, IMRN (1992), 27–38.
[52] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differen-

tial operators, Pot. Anal. 4, 4 (1995) 429–467.
[53] L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lec-

ture Note Series, vol. 289, Cambridge University Press, 2002.
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