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Abstract

We prove an inequality for the entropy numbers in terms of non-
linear Kolmogorov’s widths. This inequality is in a spirit of known
inequalities of this type and it is adjusted to the form convenient in
applications for m-term approximations with respect to a given sys-
tem. Also, we obtain upper bounds for the m-term approximation by
the Weak Relaxed Greedy Algorithm with respect to a system which
is not a dictionary.

1 Introduction

This paper was motivated by the very recent paper [3]. The authors of [3]
study the entropy and best m-term approximation of the `q-hulls of finite
systems of elements in the Lp spaces. They conduct this study by probabilis-
tic methods. In this context probabilistic methods were used in some earlier
papers, for instance, in [2]. Here we demonstrate how known results from
greedy approximation in Banach spaces combined with known technique of
general inequalities for the entropy numbers allow us to obtain similar re-
sults. Moreover, we show that the use of a greedy algorithm allows us to
provide a deterministic construction of good m-term approximants.

∗University of South Carolina and Steklov Institute of Mathematics. Research was
supported by NSF grant DMS-1160841
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A number of different widths are being studied in approximation theory:
Kolmogorov widths, linear widths, Fourier widths, Gel’fand widths, Alexan-
drov widths and others. All these widths were introduced in approximation
theory as characteristics of function classes (more generally compact sets)
which give the best possible accuracy of algorithms with certain restrictions.
For instance, Kolmogorov’s n-width for centrally symmetric compact set F
in a Banach space X is defined as follows

dn(F,X) := inf
L

sup
f∈F

inf
g∈L
‖f − g‖X

where infL is taken over all n-dimensional subspaces of X. In other words
the Kolmogorov n-width gives the best possible error in approximating a
compact set F by n-dimensional linear subspaces.

There has been an increasing interest last decades in nonlinear m-term
approximation with regard to different systems. In [4] we generalized the
concept of classical Kolmogorov’s width in order to use it in estimating best
m-term approximation. For this purpose we introduced a nonlinear Kol-
mogorov’s (N,m)-width:

dm(F,X,N) := inf
LN ,#LN≤N

sup
f∈F

inf
L∈LN

inf
g∈L
‖f − g‖X ,

where LN is a set of at most N m-dimensional subspaces L. It is clear that

dm(F,X, 1) = dm(F,X).

The new feature of dm(F,X,N) is that we allow to choose a subspace L ∈ LN
depending on f ∈ F . It is clear that the bigger N the more flexibility we have
to approximate f . It turns out that from the point of view of our applications
the two cases

N � Km, (1.1)

where K > 1 is a constant, and

N � mam, (1.2)

where a > 0 is a fixed number, play an important role.
It is known (see [6]) that the (N,m)-widths can be used for estimating

from below the best m-term approximations. Let X be a Banach space and
let BX denote the unit ball of X with the center at 0. Denote by BX(y, r) a
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ball with center y and radius r: {x ∈ X : ‖x− y‖ ≤ r}. For a compact set A
and a positive number ε we define the covering number Nε(A,X) as follows

Nε(A,X) := min{n : ∃y1, . . . , yn : A ⊆ ∪nj=1BX(yj, ε)}.

It is convenient to consider along with the entropy Hε(A,X) := logNε(A,X)
(here and later log := log2) the entropy numbers εk(A,X):

εk(A,X) := inf{ε : ∃y1, . . . , y2k ∈ X : A ⊆ ∪2k

j=1BX(yj, ε)}.

There are several general results (see [1]) which give lower estimates of
the Kolmogorov widths dn(F,X) in terms of the entropy numbers εk(F,X).
The Carl’s (see [1]) inequality states: for any r > 0 we have

max
1≤k≤n

krεk(F,X) ≤ C(r) max
1≤m≤n

mrdm−1(F,X). (1.3)

We proved in [4] (see also [7], Section 3.5) the inequality

max
1≤k≤n

krεk(F,X) ≤ C(r,K) max
1≤m≤n

mrdm−1(F,X,Km), (1.4)

where we denote
d0(F,X,N) := sup

f∈F
‖f‖X .

This inequality is a generalization of inequality (1.3). We also discussed in
[4] and in Section 3.5 of [7] the possibility of replacing Km by (Kn/m)m in
(1.4). The corresponding remarks (Remark 2.1 in [4] and Remark 3.5 in [7])
should read as follows.

Remark 1.1. Examining the proof of (1.4) one can check that the following
inequality holds

nrεn(F,X) ≤ C(r,K) max
1≤m≤n

mrdm−1(F,X, (Kn/m)m).

In Section 2 we prove an upper bound for εk(F,X) for all k ≤ n.
In Section 3 we demonstrate how the general inequality from Theorem

2.1 can be used in estimating the entropy numbers of different compacts.
In particular, Corollary 3.3 gives a new proof of the corresponding upper
bounds from Theorem 1 in [3].

In Section 4 we study the Weak Relaxed Greedy Algorithm with respect
to a system which is not a dictionary. In particular, results of Section 4
provide an algorithm which gives the same upper bounds for the best m-
term approximation as those obtained in [3].
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2 A general inequality

Theorem 2.1. Let a compact F ⊂ X and a number r > 0 be such that for
some n ∈ N

dm−1(F,X, (Kn/m)m) ≤ m−r, m ≤ n.

Then for k ≤ n

εk(F,X) ≤ C(r,K)

(
log(2n/k)

k

)r
.

Proof. Let X(N,m) denote the union of not more than N subspaces L with
dimL ≤ m. Consider a collection K(l) := {X((Kn2−s−1)2s+1

, 2s+1)}ls=1,
2l+1 ≤ n and denote

Hr(K(l)) := {f ∈ X : ∃L1(f), . . . , Ll(f) : Ls(f) ∈ X((Kn2−s−1)2s+1

, 2s+1),

and ∃ts(f) ∈ Ls(f) such that

‖ts(f)‖X ≤ 2−r(s−1), s = 1, . . . , l; ‖f −
l∑

s=1

ts(f)‖X ≤ 2−rl}.

Lemma 2.1. We have for r > 0

ε2l(H
r(K(l)), X) ≤ C(r,K)2−rl(log(Kn2−l))r, 2l+1 ≤ n.

Proof. We use a well known result (see, for instance, [7], p. 145) to estimate
εn(BX , X) of the unit ball BX in the d-dimensional space X :

εn(BX , X) ≤ 3(2−n/d). (2.1)

Take any sequence {ns}l(r)s=1 of l(r) ≤ l − 2 nonnegative integers. We will
specify l(r) later. Construct εns-nets consisting of 2ns points each for all unit
balls of the spaces in X((Kn2−s−1)2s+1

, 2s+1). Then the total number of the
elements ysj in these εns-nets does not exceed

Ms := (Kn2−s−1)2s+1

2ns .

We now consider the set A of elements of the form

y1
j1

+ 2−ry2
j2

+ · · ·+ 2−r(l(r)−1)y
l(r)
jl(r)

, js ∈ [1,Ms], s = 1, . . . , l(r).
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The total number of these elements does not exceed

M =

l(r)∏
s=1

Ms, logM ≤
l(r)∑
s=1

2s+1 log(Kn2−s−1) +

l(r)∑
s=1

ns.

It is easy to see that

l(r)∑
s=1

2s+1 log(Kn2−s−1) ≤ C12l(r) log(Kn2−l(r)).

We now set
ns := [(r + 1)(l − s)2s+1], s = 1, . . . , l(r),

where [x] denotes the integer part of a number x. We choose l(r) ≤ l − 2 as
a maximal natural number satisfying

l(r)∑
s=1

ns ≤ 2l−1

and
C12l(r) log(Kn2−l(r)) ≤ 2l−1.

It is clear that
2l(r) ≥ C22l(log(Kn2−l))−1. (2.2)

Then we have
M ≤ 22l .

For the error ε(f) of approximation of f ∈ Hr(K(l)) by elements of A we
have

ε(f) ≤ 2−rl +

l(r)∑
s=1

‖ts(f)− 2−r(s−1)ysjs‖X +
l∑

s=l(r)+1

‖ts(f)‖X

≤ C(r)2−rl(r) +

l(r)∑
s=1

2−r(s−1)εns(BLs(f), X)

≤ C(r)2−rl(r) + 3

l(r)∑
s=1

2−r(s−1)2−ns/2s+1 ≤ C(r)2−rl(r).

Taking into account (2.2) we complete the proof of Lemma 2.1.
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We continue the proof of Theorem 2.1. Without loss of generality assume

max
1≤m≤n

mrdm−1(F,X, (Kn/m)m) < 1/2.

Then for s = 1, 2, . . . , l; l ≤ [log(n− 1)] we have

d2s(F,X, (Kn2−s)2s) < 2−rs−1.

This means that for each s = 1, 2, . . . , l, there is a collection Ls of (Kn2−s)2s

2s-dimensional spaces Lsj , j = 1, . . . , (Kn2−s)2s , such that for each f ∈ F
there exists a subspace Lsjs(f) and an approximant as(f) ∈ Lsjs(f) such that

‖f − as(f)‖ ≤ 2−rs−1.

Consider
ts(f) := as(f)− as−1(f), s = 2, . . . , l. (2.3)

Then we have

ts(f) ∈ Lsjs(f)⊕ Ls−1
js−1

(f), dim(Lsjs(f)⊕ Ls−1
js−1

(f)) ≤ 2s + 2s−1 < 2s+1.

Note that for K large enough

(Kn2−s)2s(Kn2−s+1)2s−1 ≤ (Kn2−s−1)2s+1

.

Let X((Kn2−s−1)2s+1
, 2s+1) denote the collection of all Lsjs⊕L

s−1
js−1

over various

1 ≤ js ≤ (Kn2−s)2s ; 1 ≤ js−1 ≤ (Kn2−s+1)2s−1
. For ts(f) defined by (2.3)

we have
‖ts(f)‖ ≤ 2−rs−1 + 2−r(s−1)−1 ≤ 2−r(s−1).

Next, for a1(f) ∈ L1(f) we have

‖f − a1(f)‖ ≤ 1/2

and from d0(F,X) ≤ 1/2 we get

‖a1(f)‖ ≤ 1.

Take t1(f) = a1(f). Then we have F ⊂ Hr(K(l)) and Lemma 2.1 gives the
required bound

ε2l(F ) ≤ C(r,K)2−rl(log(Kn2−l))r, 1 ≤ l ≤ [log(n− 1)].

It is clear that these inequalities imply the conclusion of Theorem 2.1.
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3 Applications

We begin with an application which motivated a study of dm(F,X,N) with
N = (Kn/m)m. Let D = {gj}nj=1 be a system of normalized elements of car-
dinality |D| = n in a Banach space X. Consider best m-term approximations
of f with respect to D

σm(f,D)X := inf
{cj};Λ:|Λ|=m

‖f −
∑
j∈Λ

cjgj‖.

For a function class F set

σm(F,D)X := sup
f∈F

σm(f,D)X .

Then it is clear that for any system D, |D| = n,

dm(F,X,

(
n

m

)
) ≤ σm(F,D)X .

Next, (
n

m

)
≤ (en/m)m.

Thus Theorem 2.1 implies the following theorem.

Theorem 3.1. Let a compact F ⊂ X be such that there exists a normalized
system D, |D| = n, and a number r > 0 such that

σm(F,D)X ≤ m−r, m ≤ n.

Then for k ≤ n

εk(F,X) ≤ C(r)

(
log(2n/k)

k

)r
. (3.1)

Remark 3.1. Suppose that a compact F from Theorem 3.1 belongs to an
n-dimensional subspace Xn := span(D). Then in addition to (3.1) we have
for k ≥ n

εk(F,X) ≤ C(r)n−r2−k/n. (3.2)

Proof. Inequality (3.2) follows from Theorem 3.1 with X = Xn, k = n,
inequality (2.1) and a simple well known inequality

εk1+k2(A,Xn) ≤ εk1(A,Xn)εk2(BXn , Xn), (3.3)

where A is a compact and BXn is a unit ball of Xn.
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As a corollary of Theorem 3.1 and Remark 3.1 we obtain the following
classical bound.

Corollary 3.1. For any 0 < q ≤ ∞ and max(1, q) ≤ p ≤ ∞ we have

εk(B
n
q , `

n
p ) ≤ C(q, p)

{
( log(2n/k)

k
)1/q−1/p, k ≤ n

2−k/nn1/p−1/q, k ≥ n.

Proof. Indeed, it is well known and easy to check that for a sequence of
nonnegative numbers x1 ≥ x2 ≥ · · · ≥ xn we have for 0 < q ≤ p(

n∑
j=m+1

xpj

)1/p

≤ m
1
p
− 1

q

(
n∑
j=1

xqj

)1/q

. (3.4)

Therefore, for 0 < q ≤ p

σm(Bn
q , {ej}nj=1)`np ≤ m

1
p
− 1

q , m ≤ n,

where {ej}nj=1 is a canonical basis for Rn. Applying Theorem 3.1 and Remark
3.1 we obtain Corollary 3.1.

For a normalized system D define Aq(D), q > 0, as a closure in X of the
set

{x : x =
∑
j

cjgj, gj ∈ D,
∑
j

|cj|q ≤ 1}.

Corollary 3.2. Let 1 < p < ∞. For a normalized system D of cardinality
|D| = n we have

εk(A1(D), Lp) ≤ C(p)

(
log(2n/k)

k

)max( 1
2
, 1
p

)−1

, k ≤ n. (3.5)

Proof. It is known (see [2] and [7]) that

σm(A1(D),D)Lp ≤ C(p)mmax( 1
2
, 1
p

)−1. (3.6)

It remains to apply Theorem 3.1.

Corollary 3.3. Let D be a normalized system of cardinality |D| = n. Then
for 0 < q ≤ 1 and 1 < p <∞ we have

εk(Aq(D), Lp) ≤ C(q, p)

{
( log(2n/k)

k
)1/q−max( 1

2
, 1
p

), k ≤ n

2−k/nnmax( 1
2
, 1
p

)−1/q, k ≥ n.
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Proof. We estimate σm(Aq(D),D)Lp . If q = 1 then the bound is given by
(3.6). If q < 1 then we use (3.4) with p = 1 and by (3.6) we get

σ2m(Aq(D),D)Lp ≤ C(q, p)mmax( 1
2
, 1
p

)− 1
q .

Applying Theorem 3.1 and Remark 3.1 we obtain Corollary 3.3.

We note that Corollary 3.3 gives the same upper bounds as in Theorem 1
of [3]. It is proved in [3] that these bounds are best possible up to a constant.

4 A greedy algorithm

In Section 3 we showed how best m-term approximations can be used for
estimating the entropy numbers. Here we note that m-term approximations
are very important by themselves in the context of sparse approximation. In
this context an important problem is to provide an algorithm that builds a
good m-term approximation. We discuss a greedy algorithm in this section.
The theory of greedy approximation is well developed (see [7]). A typical
problem of greedy approximation is a problem of m-term approximation with
respect to a dictionary. We say that a set of elements (functions) D from a
Banach space X is a dictionary, respectively, symmetric dictionary, if each
g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and the closure of spanD is X. We denote the closure (in X) of the convex
hull of D by A1(D). In this section we discuss greedy algorithms with regard
to a system D that is not a dictionary. Here, we will discuss a variant of the
Weak Relaxed Greedy Algorithm (WRGA). Let X be a real Banach space
and let D := {g} be a system of elements g ∈ X such that ‖g‖ ≤ 1 and
g ∈ D implies −g ∈ D. Usually, in the theory of greedy algorithms we
consider approximation with regard to a dictionary D. One of the properties
of a dictionary D is that the closure of spanD is equal to X. In this section
we do not assume that the system D is a dictionary. In particular, we do
not assume that the closure of spanD is X. This setting is motivated by
applications in Learning Theory (see Chapter 4 of [7]).

For a nonzero element f ∈ X we let Ff denote a norming (peak) func-
tional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.
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The existence of such a functional is guaranteed by Hahn-Banach theorem.
Let τ := {tk}∞k=1 be a given weakness sequence of numbers tk ∈ [0, 1],

k = 1, . . . .
Weak Relaxed Greedy Algorithm (WRGA). We define f r0 := f r,τ0 :=

f and Gr
0 := Gr,τ

0 := 0. Then, for each m ≥ 1 we have the following inductive
definition.

(1) ϕrm := ϕr,τm ∈ D is any element satisfying

Ffrm−1
(ϕrm −Gr

m−1) ≥ tm sup
g∈D

Ffrm−1
(g −Gr

m−1).

(2) Find 0 ≤ λm ≤ 1 such that

‖f − ((1− λm)Gr
m−1 + λmϕ

r
m)‖ = inf

0≤λ≤1
‖f − ((1− λ)Gr

m−1 + λϕrm)‖

and define
Gr
m := Gr,τ

m := (1− λm)Gr
m−1 + λmϕ

r
m.

(3) Let
f rm := f r,τm := f −Gr

m.

For a Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖+ ‖x− uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

The following theorem was proved in [5] (see also Theorem 6.17 on p. 348 in
[7]) for D being a dictionary.

Theorem 4.1. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1,
tk ≤ 1, k = 1, 2, . . . , we have for any f ∈ A1(D) that

‖f r,τm ‖ ≤ C1(q, γ)

(
1 +

m∑
k=1

tpk

)−1/p

, p :=
q

q − 1
,

with a constant C1(q, γ) which may depend only on q and γ.
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We prove here an analog of the above theorem when we do not assume
that D is a dictionary and only assume that D = {g} is a symmetric system
with a property ‖g‖ ≤ 1.

Theorem 4.2. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1,
tk ≤ 1, k = 1, 2, . . . , we have for any f ∈ X that

‖f r,τm ‖ ≤ inf
φ∈A1(D)

‖f − φ‖+ C2(q, γ)

(
1 +

m∑
k=1

tpk

)−1/p

, p :=
q

q − 1
,

with a constant C2(q, γ) which may depend only on q and γ.

Remark 4.1. In case of a Hilbert space H there are stronger results for
similar greedy algorithms with τ = {1} (see [7], p. 99, Theorem 2.28):

‖fm‖2
H ≤

(
inf

φ∈A1(D)
‖f − φ‖H

)2

+ Cm−1.

Proof. Proof of Theorem 4.2 is similar to the proof of Theorem 4.1. Denote

b := inf
φ∈A1(D)

‖f − φ‖.

We use the following lemma.

Lemma 4.1. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u). Then, for a given f ∈ A1(D) we have

‖f r,τm ‖ ≤ inf
0≤λ≤1

(
‖f r,τm−1‖ − λtm(‖f r,τm−1‖ − b)

+2‖f r,τm−1‖ρ
(

2λ

‖f r,τm−1‖

))
, m = 1, 2, . . . .

Proof. We have

f rm := f − ((1− λm)Gr
m−1 + λmϕ

r
m) = f rm−1 − λm(ϕrm −Gr

m−1)

and
‖f rm‖ = inf

0≤λ≤1
‖f rm−1 − λ(ϕrm −Gr

m−1)‖.
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We have from the definition of the modulus of smoothness for any λ

‖f rm−1 − λ(ϕrm −Gr
m−1)‖+ ‖f rm−1 + λ(ϕrm −Gr

m−1)‖ ≤

2‖f rm−1‖(1 + ρ(
λ‖ϕrm −Gr

m−1‖
‖f rm−1‖

)). (4.1)

Next we get for λ ≥ 0

‖f rm−1 + λ(ϕrm −Gr
m−1)‖ ≥ Ffrm−1

(f rm−1 + λ(ϕrm −Gr
m−1)) =

‖f rm−1‖+ λFfrm−1
(ϕrm −Gr

m−1) ≥ ‖f rm−1‖+ λtm sup
g∈D

Ffrm−1
(g −Gr

m−1).

Using Lemma 6.10, p. 343, from [7] we continue

= ‖f rm−1‖+ λtm sup
φ∈A1(D)

Ffrm−1
(φ−Gr

m−1) ≥ ‖f rm−1‖+ λtm(‖f rm−1‖ − b).

Using the trivial estimate ‖ϕrm −Gr
m−1‖ ≤ 2 we obtain from (4.1)

‖f rm−1 − λ(ϕrm −Gr
m−1)‖

≤ ‖f rm−1‖ − λtm(‖f rm−1‖ − b) + 2‖f rm−1‖ρ(
2λ

‖f rm−1‖
)), (4.2)

which proves Lemma 4.1.

Set
am := ‖f rm‖ − b.

Note that
0 ≤ am ≤ 2.

Using monotonicity of ρ(u)/u we derive from Lemma 4.1

am ≤ am−1 inf
λ∈[0,1]

(1− λtm + 2ρ(2λ/am−1)). (4.3)

For ρ(u) ≤ γuq it gives

am ≤ am−1 inf
λ∈[0,1]

(1− λtm + 2γ(2λ/am−1)q). (4.4)

Denote λ1 the solution of the equation

1

2
λtm = 2γ

(
2λ

am−1

)q
, λ1 =

(
tma

q
m−1

2q+2γ

) 1
q−1

.
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If λ1 ≤ 1 then

inf
λ∈[0,1]

(1− λtm + 2γ(2λ/am−1)q) ≤ 1− λ1tm + 2γ(2λ1/am−1)q)

= 1− 1

2
λ1tm = 1− C3(q, γ)tpma

p
m−1, p :=

q

q − 1
.

If λ1 > 1 then for all λ ≤ λ1 we have

1

2
λtm ≥ 2γ

(
2λ

am−1

)q
.

Specifying λ = 1 we get

inf
λ∈[0,1]

(1− λtm + 2γ(2λ/am−1)q) ≤ 1− 1

2
tm ≤ 1− C4(q, γ)tpma

p
m−1.

Setting C5 := C5(q, γ) := min(C3(q, γ), C4(q, γ)) we obtain

am ≤ am−1(1− C5t
p
ma

p
m−1). (4.5)

It is known (see [7], p. 345) that inequalities (4.5) imply

am ≤ C6(q, γ)

(
1 +

m∑
n=1

tpn

)1/p

.

This completes the proof of Theorem 4.2.

It is known (see, for instance, [2], Lemma B.1) that in the case X = Lp
we have

ρ(u) ≤ up/p if 1 ≤ p ≤ 2 and ρ(u) ≤ (p− 1)u2/2 if 2 ≤ p <∞.

Therefore, in this case Theorem 4.2 gives: for any f ∈ Lp

‖f r,τm ‖Lp ≤ inf
φ∈A1(D)

‖f − φ‖Lp + C(p)

(
1 +

m∑
k=1

tsk

)−1/s

, (4.6)

where s := max( p
p−1

, 2). It was proved in [3] that for 0 < v ≤ 1,

σm(f,D)Lp ≤ inf
φ∈Av(D)

‖f − φ‖Lp + C(p)mmax(1/p,1/2)−1/v. (4.7)

The proof in [3] is probabilistic and does not provide a deterministic algo-
rithm for constructing a good m-term approximation. We note that inequal-
ity (4.6) shows that in case v = 1 the greedy algorithm WRGA with τ = {t}
provides the rate of approximation as in (4.7).
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