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COMPACTLY SUPPORTED FRAMES FOR SPACES OF

DISTRIBUTIONS IN THE FRAMEWORK OF DIRICHLET

SPACES

S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

Abstract. A small perturbation method is developed and deployed to the
construction of compactly supported frames for Besov and Triebel-Lizorkin in

the general setting of Dirichlet space with a doubling measure and local scale-

invariant Poincaré inequality. This allows, in particular, to develop compactly
supported frames for Besov and Triebel-Lizorkin spaces in the context of Lie

groups, Riemannian manifolds, and various other settings. The compactly

supported frames are utilized for the development of atomic Hardy spaces Hp
A

in the general framework of Dirichlet spaces.

1. Introduction

Compactly supported frames and bases are an important tool in Harmonic anal-
ysis and its applications in allowing to represent functions and distributions in
terms of building blocks of small supports. The atomic decompositions exhibit
another side of the same idea. The purpose of this study is to construct frames
with compactly supported frame elements of small shrinking supports in the gen-
eral framework of Dirichlet spaces, described in [2, 12]. More explicitly, compactly
supported frames will be developed in the general setting of strictly local regular
Dirichlet spaces with doubling measure and local scale-invariant Poincaré inequal-
ity, leading to a Markovian heat kernel with small time Gaussian bounds and Hölder
continuity. In particular, this theory allows to develop compactly supported frames
on Lie groups or homogeneous spaces with polynomial volume growth, complete
Riemannian manifolds with Ricci curvature bounded from below and satisfying the
volume doubling condition, and in various other nonclassical setups. Naturally,
it covers the more classical cases on the sphere, interval, ball, and simplex with
weights.

Compactly supported frames have already been constructed on the sphere in
[16] and on the ball with weight wµ(x) = (1 − |x|)µ−1/2, where µ is a half integer
and µ ≥ 0 in [17]. One of the strengths of our method is that although it is
general it allows to obtain in particular settings better results than the existing
ones. For example, combining results from this article and [13] enable us to improve
the results on the ball from [17] by relaxing the condition on µ from a half integer
and µ ≥ 0 to any µ > −1/2. Another application of the results from the current
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2 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

paper and [13] is to the development of compactly supported frames on the interval
with Jacobi weights and on the simplex with weights.

A key feature of the new frames is that they can be used for decomposition of
the Besov and Triebel-Lizorkin spaces in the general framework of Dirichlet spaces
developed in [12], and therefore, in many particular settings of interest.

An important application of the compactly supported frames from this article is
to atomic Hardy spaces Hp

A, 0 < p ≤ 1. The compactly supported frames provide
a vehicle in establishing Littlewood-Play characterization of the Hardy spaces Hp

A

and their frame decomposition.
We shall operate in the setting established in [2, 12], which we next recall briefly:
I. We assume that (M,ρ, µ) is a metric measure space satisfying the conditions:

(M,ρ) is a locally compact metric space with distance ρ(·, ·) and µ is a positive
Radon measure such that the following volume doubling condition is valid

(1.1) 0 < µ(B(x, 2r)) ≤ c0µ(B(x, r)) <∞ for all x ∈M and r > 0,

where B(x, r) is the open ball centered at x of radius r and c0 > 1 is a constant.
The above yields

(1.2) µ(B(x, λr)) ≤ c0λdµ(B(x, r)) for x ∈M , r > 0, and λ > 1,

were d = log2 c0 > 0 is a constant playing the role of a dimension.
II. The main assumption is that the local geometry of the space (M,ρ, µ) is

related to an essentially self-adjoint positive operator L on L2(M,dµ) such that the
associated semigroup Pt = e−tL consists of integral operators with (heat) kernel
pt(x, y) obeying the conditions:
• Small time Gaussian upper bound:

(1.3) |pt(x, y)| ≤
C? exp{− c

?ρ2(x,y)
t }√

µ(B(x,
√
t))µ(B(y,

√
t))

for x, y ∈M, 0 < t ≤ 1.

• Hölder continuity: There exists a constant α > 0 such that

(1.4)
∣∣pt(x, y)− pt(x, y′)

∣∣ ≤ C?(ρ(y, y′)√
t

)α exp{− c
?ρ2(x,y)

t }√
µ(B(x,

√
t))µ(B(y,

√
t))

for x, y, y′ ∈M and 0 < t ≤ 1, whenever ρ(y, y′) ≤
√
t.

• Markov property:

(1.5)

∫
M

pt(x, y)dµ(y) ≡ 1 for t > 0.

Above C?, c? > 0 are structural constants.
We shall also assume the following additional conditions:
• Non-collapsing condition: There exists a constant c > 0 such that

(1.6) inf
x∈M

µ(B(x, 1)) ≥ c.

• Reverse doubling condition: There exists a constant c > 1 such that

(1.7) µ(B(x, 2r)) ≥ cµ(B(x, r)) for x ∈M and 0 < r ≤ diamM
3 .

The latter condition is only needed for lower bound estimates on the Lp-norms
of the frame elements (see Proposition 2.5). It can be relaxed if such estimates are
not needed, which is the case in the general theory.
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A natural effective realization of the above setting appears in the general frame-
work of Dirichlet spaces. More precisely, in the framework of strictly local regular
Dirichlet spaces with a complete intrinsic metric it suffices to only verify the local
Poincaré inequality and the global doubling condition on the measure and then the
above general setting applies in full. For more details, see [2]. The key observa-
tion is that situations where our theory applies are quite common, which becomes
evident from the examples given in [2].

We next outline the main points in this paper. We build on results on functional
calculus, frames and spaces of distributions developed in [2, 12]. For convenience,
in §2 we collect all the results we need from [2, 12].

To achieve our goals we first develop in §3 a general small perturbation scheme
for construction of frames in a general quasi-Banach space B of distributions given
a pair of dual frames {ψξ}, {ψ̃ξ}. In fact, this is the situation in [12]. Such a method
has been developed in [16] in the more favorable situation when a single frame {ψξ}
for B exists (see §3.3). The latter scheme can be applied directly in our setting in
the spacial case when the spectral spaces have the polynomial property (see [12])
as on the sphere, interval, ball, and simplex. The idea of these schemes is rooted
in the development of bases in [22], also in [14, 15], and is related to the method
for construction of atomic decompositions in [1].

The construction of compactly supported frames in the current setting is given
in §4. It relies heavily on the finite speed propagation property of solutions of the
wave equation associated with the operator L, see (2.5) below. This property
follows from the Gaussian bound (1.3) on the heat kernel pt(x, y). The finite speed
propagation property alone, however, is not sufficient. The other properties of
the heat kernel and the doubling condition on the measure given above are also
important for the development of a complete theory. In particular, they allowed to
develop in [12] Besov and Triebel-Lizorkin spaces with full set of indices and their
frame characterization, which play a critical role here.

In §5 the compactly supported frames from §4 are applied to the development
of the atomic Hardy spaces Hp

A in the setting of this article.
In §6 the developments from previous sections are applied to specific settings on

the interval, ball, and simplex.
Section 7 is an appendix where we place the proof of the boundedness of almost

diagonal operators on Besov and Triebel-Lizorkin sequence spaces.
Some useful notation: Throughout we shall denote |E| := µ(E) and 1E will

stand for the characteristic function of E ⊂ M , ‖ · ‖p = ‖ · ‖Lp := ‖ · ‖Lp(M,dµ).
Positive constants will be denoted by c, C, c1, c′, . . . and will be allowed to vary at
every occurrence. The notation a ∼ b will stand for c1 ≤ a/b ≤ c2. We shall also
use the standard notation a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2. Background

In developing compactly supported frames we shall make extensive use of results
from [2, 12]. In this section we review everything that will be needed from [2, 12].

2.1. Functional calculus. We adhere to the notation in [2, 12]. In particular, the
following symmetric functions will appear in the following:

(2.1) Dδ,σ(x, y) :=
(
|B(x, δ)||B(y, δ)|

)−1/2
(

1 +
ρ(x, y)

δ

)−σ
, x, y ∈M.
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As B(x, r) ⊂ B(y, ρ(y, x) + r), (1.2) yields

(2.2) |B(x, r)| ≤ c0
(

1 +
ρ(x, y)

r

)d
|B(y, r)|, x, y ∈M, r > 0.

Combining this with (2.1) we arrive at this useful inequality

(2.3) Dδ,σ(x, y) ≤ c1/20 |B(x, δ)|−1
(

1 +
ρ(x, y)

δ

)−σ+d/2

.

Here |B(x, δ)|−1 on the right can be replaced by |B(y, δ)|−1.
The following inequality will be instrumental in some proofs [12, Lemma 2.1]:

For σ > d and δ > 0

(2.4)

∫
M

(
1 + δ−1ρ(x, y)

)σ
dµ(y) ≤ c|B(x, δ)|, x ∈M.

The finite speed propagation property will play a key role in this study:

(2.5)
〈

cos(t
√
L)f1, f2

〉
= 0, 0 < c̃t < r, c̃ :=

1

2
√
c?
,

for all open sets Uj ⊂M , fj ∈ L2(M), supp fj ⊂ Uj , j = 1, 2, where r := ρ(U1, U2).
This property implies the following localization result for the kernels of operators

of the form f(δ
√
L) whenever f̂ is band limited. Here f̂(ξ) :=

∫
R f(t)e−itξdt.

Proposition 2.1. Let f be even, supp f̂ ⊂ [−A,A] for some A > 0, and f̂ ∈W 2
∞,

i.e. ‖f̂ (2)‖∞ <∞. Then for δ > 0 and x, y ∈M

(2.6) f(δ
√
L)(x, y) = 0 if ρ(x, y) > c̃δA.

We shall need the following result from the smooth functional calculus induced
by the heat kernel developed in [12] (Theorem 3.1).

Theorem 2.2. [12] Let f ∈ Ck(R+), k ≥ d + 1, supp f ⊂ [0, R] for some R ≥ 1,

and f (2ν+1)(0) = 0 for ν ≥ 0 such that 2ν + 1 ≤ k. Then f(δ
√
L), 0 < δ ≤ 1, is an

integral operator with kernel f(δ
√
L)(x, y) satisfying

(2.7)
∣∣f(δ
√
L)(x, y)

∣∣ ≤ ckDδ,k(x, y) and

(2.8)
∣∣f(δ
√
L)(x, y)− f(δ

√
L)(x, y′)

∣∣ ≤ c′k(ρ(y, y′)

δ

)α
Dδ,k(x, y) if ρ(y, y′) ≤ δ.

Here Dδ,k(x, y) is from (2.1),

(2.9) ck = ck(f) = Rd
[
(c1k)k‖f‖L∞ + (c2R)k‖f (k)‖L∞

]
, c′k = c3ckR

α,

where c1, c2, c3 > 0 depend only on the constants c0, C
?, c? from (1.1) − (1.4), c3

depends on k as well; α > 0 is the constant from (1.4). Furthermore,

(2.10)

∫
M

f(δ
√
L)(x, y)dµ(y) = f(0).

This theorem readily implies the following result that will be needed later on.

Corollary 2.3. Let f ∈ C∞(R+), supp f ⊂ [0, R], R ≥ 1, and f (2ν+1)(0) = 0,

ν ≥ 0. Then for any n ≥ 0 and 0 < δ ≤ 1 the operator Lnf(δ
√
L) is an integral

operator with kernel Lnf(δ
√
L)(x, y) having the property that for any σ > 0 there

exists a constant cσ,n > 0 such that

(2.11)
∣∣Lnf(δ

√
L)(x, y)

∣∣ ≤ cσ,nδ−2nDδ,σ(x, y), x, y ∈M.
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The requirement in Theorem 2.2 that f is compactly supported can be relaxed.

Theorem 2.4. [12] Suppose f ∈ Ck(R+), k ≥ d+ 1,

|f (ν)(λ)| ≤ Ck(1 + λ)−r for λ > 0 and 0 ≤ ν ≤ k, where r ≥ k + d+ 1,

and f (2ν+1)(0) = 0 for ν ≥ 0 such that 2ν + 1 ≤ k. Then f(δ
√
L) is an integral

operator with kernel f(δ
√
L)(x, y) satisfying (2.7)-(2.8), where the constants ck, c

′
k

depend on k, d, α, c0, C
?, c?, and linearly on Ck.

2.2. Spectral spaces. Let Eλ, λ ≥ 0, be the spectral resolution associated with
the self-adjoint positive operator L on L2 := L2(M,dµ). We let Fλ, λ ≥ 0, de-

note the spectral resolution associated with
√
L, i.e. Fλ = Eλ2 . Then for any

measurable and bounded function f on R+ the operator f(
√
L) is defined by

f(
√
L) =

∫∞
0
f(λ)dFλ on L2. For the spectral projectors we have Eλ = 1[0,λ](L) :=∫∞

0
1[0,λ](u)dEu and

(2.12) Fλ = 1[0,λ](
√
L) :=

∫ ∞
0

1[0,λ](u)dFu =

∫ ∞
0

1[0,λ](
√
u)dEu.

For any compact K ⊂ [0,∞) the spectral space ΣpK is defined by

ΣpK := {f ∈ Lp : θ(
√
L)f = f for all θ ∈ C∞0 (R+), θ ≡ 1 on K}.

In general, given a space Y of measurable functions on M we set

Σλ = Σλ(Y ) := {f ∈ Y : θ(
√
L)f = f for all θ ∈ C∞0 (R+), θ ≡ 1 on [0, λ]}.

2.3. Frames. Our construction of compactly supported frames will rely on the
frames developed in [12]. Here we collect the needed information from [12].

Construction of Frame # 1. The construction begins with a cut-off function Φ
with the following properties: Φ ∈ C∞(R+), Φ(u) = 1 for u ∈ [0, 1], 0 ≤ Φ ≤ 1,
and supp Φ ⊂ [0, b], where b > 1 is a constant, see [12]. We shall assume that b ≥ 2.
Set Ψ(u) := Φ(u)− Φ(bu).

An important point is that the function Φ can be selected so that the opera-
tors Φ(δ

√
L) and Ψ(δ

√
L) are integral operators whose kernels Φ(δ

√
L)(x, y) and

Ψ(δ
√
L)(x, y) have sub-exponential space localization, namely,

(2.13) |Φ(δ
√
L)(x, y)|, |Ψ(δ

√
L)(x, y)| ≤ c

exp
{
− κ
(ρ(x,y)

δ

)β}(
|B(x, δ)||B(y, δ)|)1/2

, x, y ∈M,

where 0 < β < 1, κ, c > 0, and β can be selected as close to 1 as we wish.
Furthermore, Φ(δ

√
L)(x, y) and Ψ(δ

√
L)(x, y) are Hölder continuous (see [12]).

Setting

(2.14) Ψ0(u) := Φ(u) and Ψj(u) := Ψ(b−ju), j ≥ 1,

we have Ψj ∈ C∞(R+), 0 ≤ Ψj ≤ 1, supp Ψ0 ⊂ [0, b], supp Ψj ⊂ [bj−1, bj+1], j ≥ 1,
and

∑
j≥0 Ψj(u) = 1 for u ∈ R+. Hence we have the following Littlewood-Paley

decomposition

(2.15) f =
∑
j≥0

Ψj(
√
L)f for f ∈ D′ (and f ∈ Lp).

For j ≥ 0 we let Xj ⊂ M be a maximal δj−net on M with δj := γb−j−2 and
suppose {Aξ}ξ∈Xj is a companion disjoint partition of M consisting of measurable
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sets such that B(ξ, δj/2) ⊂ Aξ ⊂ B(ξ, δj), ξ ∈ Xj . Here γ > 0 is a sufficiently small
constant.

The jth level frame elements ψξ are defined by

(2.16) ψξ(x) := |Aξ|1/2Ψj(
√
L)(x, ξ), ξ ∈ Xj .

Let X := ∪j≥0Xj , where equal points from different sets Xj will be regarded as dis-
tinct elements of X , so X can be used as an index set. Then {ψξ}ξ∈X is Frame #1.

The construction of a dual frame {ψ̃ξ}ξ∈X is much more involved; we refer the
reader to §4.3 in [12] for the details.

We next describe the main properties of {ψξ}ξ∈X and {ψ̃ξ}ξ∈X .

Proposition 2.5. [12] (a) Localization: For any 0 < κ̂ < κ/2 there exist a constant
ĉ > 0 such that for any ξ ∈ Xj, j ≥ 0,

(2.17) |ψξ(x)|, |ψ̃ξ(x)| ≤ ĉ|B(ξ, b−j)|−1/2 exp
{
− κ̂(bjρ(x, ξ))β

}
and for any m ≥ 1

(2.18) |Lmψξ(x)|, |Lmψ̃ξ(x)| ≤ cm|B(ξ, b−j)|−1/2b2jm exp
{
− κ̂(bjρ(x, ξ))β

}
.

Also, if ρ(x, y) ≤ b−j, then

(2.19) |ψξ(x)− ψξ(y)| ≤ ĉ|B(ξ, b−j)|−1/2(bjρ(x, y))α exp
{
− κ̂(bjρ(x, ξ))β

}
and the same inequality holds for ψ̃ξ.

(b) Norms: If in addition the reverse doubling condition (1.7) is valid, then

(2.20) ‖ψξ‖p ∼ ‖ψ̃ξ‖p ∼ |B(ξ, b−j)|
1
p−

1
2 , 0 < p ≤ ∞.

(c) Spectral localization: ψξ, ψ̃ξ ∈ Σpb if ξ ∈ X0, ψξ ∈ Σp[bj−1,bj+1] if ξ ∈ Xj, and

ψ̃ξ ∈ Σp[bj−2,bj+2] if ξ ∈ Xj, j ≥ 1, 0 < p ≤ ∞.

(d) Representation: For any f ∈ D′ we have

(2.21) f =
∑
ξ∈X

〈f, ψ̃ξ〉ψξ =
∑
ξ∈X

〈f, ψξ〉ψ̃ξ in D′.

This also holds for f ∈ Lp, 1 ≤ p ≤ ∞, with the usual modification when p =∞.
(e) Each of the systems {ψξ} and {ψ̃ξ} is a frame for L2.

2.4. Besov and Triebel-Lizorkin spaces. The Besov and Triebel-Lizorkin spaces
associated with the operator L, defined in [12], are in general spaces of distributions.
There are some distinctions, however, between the tests functions and distributions
that are used depending on whether µ(M) <∞ or µ(M) =∞.

In the case µ(M) < ∞, we use as test functions the class D of all functions
φ ∈ ∩m≥0D(Lm) with the topology induced by

(2.22) Pm(φ) := ‖Lmφ‖2, m ≥ 0.

If µ(M) = ∞, then the class of test functions D is defined as the set of all
functions φ ∈ ∩m≥0D(Lm) such that

(2.23) Pm,`(φ) := sup
x∈M

(1 + ρ(x, x0))`|Lmφ(x)| <∞ ∀m, ` ≥ 0.

Here x0 ∈M is selected arbitrarily and fixed once and for all.
As usual the space D′ of distributions on M is defined as the set of all continuous

linear functionals on D and the pairing of f ∈ D′ and φ ∈ D will be denoted by
〈f, φ〉 := f(φ).
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To handle possible anisotropic geometries there are two types of Besov (B) and
Triebel-Lizorkin (F) spaces introduced in [12]: (i) classical B-spaces Bspq = Bspq(L)

and F-spaces F spq = F spq(L), and (ii) nonclassical B-spaces B̃spq = B̃spq(L) and F-

spaces F̃ spq = F̃ spq(L). We next recall them. Let the functions ϕ0, ϕ ∈ C∞(R+) be
so that

suppϕ0 ⊂ [0, 2], ϕ
(2ν+1)
0 (0) = 0 for ν ≥ 0, |ϕ0(λ)| ≥ c > 0 for λ ∈ [0, 23/4],

(2.24)

suppϕ ⊂ [1/2, 2], |ϕ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4].

(2.25)

Then |ϕ0(λ)|+
∑
j≥1 |ϕ(2−jλ)| ≥ c > 0, λ ∈ R+. Set ϕj(λ) := ϕ(2−jλ) for j ≥ 1.

Definition 2.6. Let s ∈ R and 0 < p, q ≤ ∞.
(i) The Besov space Bspq = Bspq(L) is defined as the set of all f ∈ D′ such that

(2.26) ‖f‖Bspq :=
(∑
j≥0

(
2sj‖ϕj(

√
L)f(·)‖Lp

)q)1/q

<∞.

(ii) The Besov space B̃spq = B̃spq(L) is defined as the set of all f ∈ D′ such that

(2.27) ‖f‖B̃spq :=
(∑
j≥0

(
‖|B(·, 2−j)|−s/dϕj(

√
L)f(·)‖Lp

)q)1/q

<∞.

Definition 2.7. Let s ∈ R, 0 < p <∞, and 0 < q ≤ ∞.
(a) The Triebel-Lizorkin space F spq = F spq(L) is defined as the set of all f ∈ D′

such that

(2.28) ‖f‖F spq :=
∥∥∥(∑

j≥0

(
2js|ϕj(

√
L)f(·)|

)q)1/q∥∥∥
Lp
<∞.

(b) The Triebel-Lizorkin space F̃ spq = F̃ spq(L) is defined as the set of all f ∈ D′
such that

(2.29) ‖f‖F̃ spq :=
∥∥∥(∑

j≥0

(
|B(·, 2−j)|−s/d|ϕj(

√
L)f(·)|

)q)1/q∥∥∥
Lp
<∞.

Above in both definitions the `q-norm is replaced by the sup-norm if q =∞.

Frame decomposition of Besov and Triebel-Lizorkin spaces. One of the
main result in [12] asserts that the Besov and Triebel-Lizorkin spaces from above
can be characterized in terms of respective sequence norms of the frame coefficients
of distributions, using the frames {ψξ}ξ∈X , {ψ̃ξ}ξ∈X from §2.3.

To state this result we next introduce the sequence spaces bspq, b̃
s
pq, and fspq, f̃

s
pq,

associated with the B- and F-spaces. As before X := ∪j≥0Xj will denote the sets
of the centers of the frame elements and {Aξ}ξ∈Xj will be the associated partitions
of M .

Definition 2.8. Let s ∈ R and 0 < p, q ≤ ∞.
(a) bspq is defined as the space of all complex-valued sequences a := {aξ}ξ∈X such

that

(2.30) ‖a‖bspq :=
(∑
j≥0

bjsq
[∑
ξ∈Xj

(
|B(ξ, b−j)|1/p−1/2|aξ|

)p]q/p)1/q

<∞.
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(b) b̃spq is defined as the space of all complex-valued sequences a := {aξ}ξ∈X such
that

(2.31) ‖a‖b̃spq :=
(∑
j≥0

[∑
ξ∈Xj

(
|B(ξ, b−j)|−s/d+1/p−1/2|aξ|

)p]q/p)1/q

<∞.

Definition 2.9. Suppose s ∈ R, 0 < p <∞, and 0 < q ≤ ∞.
(a) fspq is defined as the space of all complex-valued sequences a := {aξ}ξ∈X such

that

(2.32) ‖a‖fspq :=
∥∥∥(∑

j≥0

bjsq
∑
ξ∈Xj

[
|aξ|1̃Aξ(·)

]q)1/q∥∥∥
Lp
<∞.

(b) f̃spq is defined as the space of all complex-valued sequences a := {aξ}ξ∈X such
that

(2.33) ‖a‖f̃spq :=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d|aξ|1̃Aξ(·)

]q)1/q∥∥∥
Lp
<∞.

Here 1̃Aξ := |Aξ|−1/2
1Aξ with 1Aξ being the characteristic function of Aξ.

Above as usual the `p or `q norm is replaced by the sup-norm if p =∞ or q =∞.
In stating the results from [12] we shall use the “analysis” and “synthesis” op-

erators defined by

(2.34) Sψ̃ : f → {〈f, ψ̃ξ〉}ξ∈X and Tψ : {aξ}ξ∈X →
∑
ξ∈X

aξψξ.

Here the roles of {ψξ} and {ψ̃ξ} can be interchanged.

Theorem 2.10. [12] Let s ∈ R and 0 < p, q ≤ ∞. (a) The operators Sψ̃ : Bspq →
bspq and Tψ : bspq → Bspq are bounded and Tψ ◦ Sψ̃ = Id on Bspq. Consequently, for

f ∈ D′ we have f ∈ Bspq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ bspq. Moreover, if f ∈ Bspq,
then ‖f‖Bspq ∼ ‖{〈f, ψ̃ξ〉}‖bspq and under the reverse doubling condition (1.7)

(2.35) ‖f‖Bspq ∼
(∑
j≥0

bjsq
[∑
ξ∈Xj

‖〈f, ψ̃ξ〉ψξ‖pp
]q/p)1/q

.

(b) The operators Sψ̃ : B̃spq → b̃spq and Tψ : b̃spq → B̃spq are bounded and Tψ ◦Sψ̃ = Id

on B̃spq. Hence, f ∈ B̃spq ⇐⇒ {〈f, ψ̃ξ〉}ξ∈X ∈ b̃spq. Furthermore, if f ∈ B̃spq, then

‖f‖Bspq ∼ ‖{〈f, ψ̃ξ〉}‖bspq and under the reverse doubling condition (1.7)

(2.36) ‖f‖B̃spq ∼
(∑
j≥0

[∑
ξ∈Xj

(
|B(ξ, b−j)|−s/d‖〈f, ψ̃ξ〉ψξ‖p

)p]q/p)1/q

.

Theorem 2.11. [12] Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. (a) The operators
Sψ̃ : F spq → fspq and Tψ : fspq → F spq are bounded and Tψ̃ ◦ Sψ = Id on F spq.

Consequently, f ∈ F spq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ fspq, and if f ∈ F spq, then

‖f‖F spq ∼ ‖{〈f, ψ̃ξ〉}‖fspq . Furthermore,

(2.37) ‖f‖F spq ∼
∥∥∥(∑

j≥0

bjsq
∑
ξ∈Xj

[
|〈f, ψ̃ξ〉||ψξ(·)|

]q)1/q∥∥∥
Lp
.
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(b) The operators Sψ̃ : F̃ spq → f̃spq and Tψ : f̃spq → F̃ spq are bounded and Tψ̃ ◦Sψ = Id

on F̃ spq. Hence, f ∈ F̃ spq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ f̃spq, and if f ∈ F spq, then

‖f‖F spq ∼ ‖{〈f, ψ̃ξ〉}‖f̃spq . Furthermore,

(2.38) ‖f‖F̃ spq ∼
∥∥∥(∑

ξ∈X

[
|B(ξ, b−j)|−s/d|〈f, ψ̃ξ〉||ψξ(·)|

]q)1/q∥∥∥
Lp
.

The roles of {ψξ} and {ψ̃ξ} in Theorems 2.10-2.11 can be interchanged.

2.5. Maximal operator. We shall need the maximal operator Mt defined by

(2.39) Mtf(x) := sup
B3x

(
1

|B|

∫
B

|f |t dµ
)1/t

, x ∈M, t > 0,

where the sup is over all balls B ⊂ M such that x ∈ B. Since µ is a Radon
measure on M which satisfies the doubling condition (1.2) the Fefferman-Stein
vector-valued maximal inequality holds (see [23]): If 0 < p < ∞, 0 < q ≤ ∞, and
0 < t < min{p, q} then for any sequence of functions {fν} on M

(2.40)
∥∥∥(∑

ν

|Mtfν(·)|q
)1/q∥∥∥

Lp
≤ c]

∥∥∥(∑
ν

|fν(·)|q
)1/q∥∥∥

Lp
.

From Theorem 2.1 in [9] it follows that the constant c] > 0 above can be written
in the form

(2.41) c] = c1 max
{
p, (p/t− 1)−1

}
max

{
1, (q/t− 1)−1

}
,

where c1 is a structural constant depending only on the underlying space M .

3. General small perturbation method for construction of frames

The purpose of this section is to develop in general a small perturbation method
for construction of frames in the case when there exists a pair of dual frames {ψξ},
{ψ̃ξ} for a quasi-Banach space B of distributions (or a class Y of spaces B).

3.1. Assumptions in the case of a single space B. Assume that (M,ρ, µ) is
a metric measure space and D ⊂ L2(M,µ) is a linear space of test functions on
M furnished with a locally convex topology induced by a sequence of norms or
semi-norms. Let D′ be the dual of D consisting of all continuous linear functionals
on D. The pairing of f ∈ D′ and φ ∈ D will be denoted by 〈f, φ〉 := f(φ) and we
assume that it is consistent with the inner product 〈f, g〉 =

∫
M
fgdµ on L2(M,µ).

Further, we assume that B ⊂ D′ with norm ‖ · ‖B is a quasi-Banach space of
distributions, which is continuously embedded in D′ and D ⊂ B.

The old pair of frames. We stipulate the existence of a pair of dual frames
{ψξ}ξ∈X , {ψ̃ξ}ξ∈X in B, where ψξ, ψ̃ξ ∈ D and X is a countable index set, with the
following properties:

A1. For any f ∈ B

(3.1) f =
∑
ξ∈X

〈f, ψ̃ξ〉ψξ =
∑
ξ∈X

〈f, ψξ〉ψ̃ξ,

where the two series converge unconditionally in B and hence in D′.
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A2. Consider the following analysis and synthesis operators: Sψ̃ : f 7→ (〈f, ψ̃ξ〉)ξ∈X
and Tψ : (hξ)ξ∈X 7→

∑
ξ∈X hξψξ. The condition is that there exists a quasi-Banach

(complex) sequence space Bd with quasi-norm ‖ · ‖Bd such that:
(i) the operator Sψ̃ : B 7→ Bd is bounded, and

(ii) for any sequence h = (hξ)ξ∈X ∈ Bd the series
∑
ξ∈X hξψξ converges uncon-

ditionally in B and Tψ : Bd → B is bounded. Furthermore, the roles of ψ and ψ̃
can be interchanged.

Therefore, for any f ∈ B we have (〈f, ψ̃ξ〉)ξ∈X ∈ Bd, (〈f, ψξ〉)ξ∈X ∈ Bd, and

‖f‖B ∼ ‖(〈f, ψ̃ξ〉)‖Bd ∼ ‖(〈f, ψξ〉)‖Bd .
In addition, we assume that Bd obeys the conditions:

A3. (i) For any sequence (hξ)ξ∈X ∈ Bd, ‖(hξ)‖Bd = ‖(|hξ|)‖Bd .
(ii) Let h = (hξ)ξ∈X ∈ Bd and assume (hξj )j≥1 is any ordering of the terms of the

sequence h. Set Xm := {ξj : j ≥ m} and define the truncated sequence h(m) ∈ Bd
by

h
(m)
ξ := hξ if ξ ∈ Xm and h

(m)
ξ := 0 if ξ ∈ X \ Xm.

The condition is that ‖h(m)‖Bd → 0 as m→∞.
Clearly, this assumption implies that compactly supported sequences are dense

in Bd.
A4. The operator with matrix

(3.2) A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉

is bounded on Bd, i.e. ‖A‖Bd 7→Bd ≤ c <∞.

3.2. Construction of new frames. Next we construct a new pair of dual frames
{θξ}ξ∈X , {θ̃ξ}ξ∈X in B, where X is the index set from above, in two steps: We first
construct the new system {θξ}ξ∈X to approximate well {ψξ}ξ∈X in terms of the
size of the inner products 〈ψη − θη, ψξ〉 and be well localized in terms of 〈θη, ψξ〉.
More precisely, we assume that θξ ∈ B, ξ ∈ X , can be constructed so that the
operators with matrices

(3.3)
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη − θη, ψξ〉

are bounded on Bd, e.g. ‖B‖Bd 7→Bd ≤ c, and more importantly for a sufficiently
small ε > 0 (to be determined later on)

(3.4) ‖D‖Bd 7→Bd ≤ ε.

We introduce two operators:

Tdh :=
∑
ξ∈X

hξθξ, h = (hξ)ξ∈X ∈ Bd, and(3.5)

Tf :=
∑
ξ∈X

〈f, ψ̃ξ〉θξ, f ∈ B.(3.6)

Lemma 3.1. The operators Td and T are well defined and bounded, that is,

(3.7) ‖Tdh‖B ≤ c‖h‖Bd , ∀h ∈ Bd and ‖Tf‖B ≤ c‖f‖B, ∀f ∈ B.

Furthermore, the series in (3.5)-(3.6) converge unconditionally in B and hence
in D′.
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Proof. Let h = (hξ)ξ∈X be a compactly supported sequence of complex numbers.
Then

〈Tdh, ψη〉 =
∑
ξ

hξ〈θξ, ψη〉 = (Bh)η, η ∈ X ,

and using that ‖B‖Bd 7→Bd ≤ c and A2 we obtain

‖Tdh‖B ≤ c‖Bh‖Bd ≤ c‖B‖Bd 7→Bd‖h‖Bd ≤ c′‖h‖Bd .

This and condition A3(ii) on Bd readily imply that the series in (3.5) converges
unconditionally in B and Td can be extended as a bounded operator from Bd to B.

We use the above and A2 to conclude that for any f ∈ B

‖Tf‖B ≤ c‖(〈f, ψ̃ξ〉)‖Bd ≤ c‖f‖B. �

It will be critical that the operator T is invertible if ε in (3.4) is sufficiently small.

Lemma 3.2. If ε in (3.4) is sufficiently small and independent of other constants,
then ‖I − T‖B7→B < 1 and hence T−1 exists and

(3.8) ‖T−1‖B7→B ≤ c <∞.

Proof. For f ∈ B we have (with I being the identity operator)

(I − T )f =
∑
ξ∈X

〈f, ψ̃ξ〉(ψξ − θξ),

where the convergence in B and hence in D′. Therefore,

〈(I − T )f, ψη〉 =
∑
ξ∈X

〈f, ψ̃ξ〉〈ψξ − θξ, ψη〉 = (Dh)η,

where D is from (3.3) and hξ := 〈f, ψ̃ξ〉. Now, using A2 and (3.4) we obtain

‖(I − T )f‖B ≤ c‖Dh‖Bd ≤ c‖D‖Bd 7→Bd‖h‖Bd ≤ cε‖h‖Bd ≤ c∗ε‖f‖B.

Hence ‖I − T‖B7→B ≤ c∗ε < 1 if ε is sufficiently small.
By our hypotheses B is a quasi-Banach space and as is well known there exists

a constant 0 < p ≤ 1 such that ‖
∑
j fj‖

p
B ≤

∑
j ‖fj‖

p
B for fj ∈ B. Using this it is

easy to show that ‖I−T‖B7→B < 1 implies that T−1 exists and ‖T−1‖B7→B ≤ c <∞.
In fact, T−1 =

∑
k≥0(I−T )k and ‖T−1‖p ≤

∑
k≥0 ‖I−T‖pk ≤ (1−(c∗ε)

p)−1 <∞.
�

We need one more simple lemma:

Lemma 3.3. The operators H with matrix H := (〈T−1ψη, ψ̃ξ〉)ξ,η∈X is bounded
on Bd.

Proof. Let h = (hξ)ξ∈X be a compactly supported sequence of complex numbers
and set f :=

∑
η∈X hξψη. Clearly,

(Hh)ξ =
∑
η∈X

hη〈T−1ψη, ψ̃ξ〉 =
〈
T−1

(∑
η∈X

hηψη

)
, ψ̃ξ

〉
= 〈T−1f, ψ̃ξ〉.

The above, A2, and (3.8) imply

‖Hh‖Bd = ‖(〈T−1f, ψ̃ξ〉)‖Bd ≤ c‖T−1f‖B ≤ c‖f‖B ≤ c‖h‖Bd .

Since compactly supported sequences are dense in Bd the operator H can be
uniquely extended to a bounded operator on Bd. �



12 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

Construction of the dual frame {θ̃ξ}. For any ξ ∈ X we define the linear

functional θ̃ξ by

(3.9) θ̃ξ(f) = 〈f, θ̃ξ〉 :=
∑
η∈X
〈T−1ψη, ψ̃ξ〉〈f, ψ̃η〉 for f ∈ B.

From Lemma 3.3 and A2 it follows that for f ∈ B
|θ̃ξ(f)| = |〈f, θ̃ξ〉| ≤ ‖H‖Bd 7→Bd‖(〈f, ψ̃η〉)‖Bd ≤ c‖f‖B.

Thus, θ̃ξ is a bounded linear functional on B, i.e. θ̃ξ ∈ B′.
In going further, for f ∈ B by Lemma 3.2 T−1f ∈ B and using Lemma 3.1

(3.10) f = T (T−1f) =
∑
ξ∈X

〈T−1f, ψ̃ξ〉θξ.

On the other hand, from the fact that T−1 is a bounded operator on B and (3.1) it

follows that for any f ∈ B we have T−1f =
∑
η∈X 〈f, ψ̃η〉T−1ψη, where the series

converges unconditionally in B and hence in D′. This and the fact that ψ̃ξ ∈ D
imply

(3.11) 〈T−1f, ψ̃ξ〉 =
∑
η∈X
〈T−1ψη, ψ̃ξ〉〈f, ψ̃η〉 = 〈f, θ̃ξ〉.

Here the series converges unconditionally and hence absolutely because of the un-
conditional convergence of the former series. From (3.10)-(3.11) we infer

(3.12) f =
∑
ξ∈X

〈f, θ̃ξ〉θξ, f ∈ B,

where 〈f, θ̃ξ〉 is defined in (3.9); the convergence is unconditional in B.

We next show that θ̃ξ can be identified in a sense with an element of B.

Proposition 3.4. For any ξ ∈ X the distribution

(3.13) θ̃ξ :=
∑
η∈X
〈T−1ψη, ψ̃ξ〉ψ̃η (convergence in B)

belongs to B and for any φ ∈ D we have

(3.14) θ̃ξ(φ) = 〈θ̃ξ, φ〉,

where on the left the linear functional θ̃ξ ∈ B′, defined in (3.9), acts on φ ∈ D ⊂ B,

while on the right the distribution θ̃ξ ∈ B from (3.13) acts on φ ∈ D.

Proof. Assume for a moment that the series in (3.13) converges in B and hence
in D′. Then we have for φ ∈ D

〈θ̃ξ, φ〉 =
〈∑
ξ∈X

〈T−1ψη, ψ̃ξ〉ψ̃η, φ
〉

=
∑
ξ∈X

〈T−1ψη, ψ̃ξ〉〈φ, ψ̃η〉 = θ̃ξ(φ),

where for the last equality we used (3.9); this verifies (3.14).
To show that the series in (3.13) converges in B, we observe that as ψη ∈ D ⊂ B

by (3.1) ψη =
∑
ω∈X 〈ψη, ψ̃ω〉ψω ∀η ∈ X with convergence in B. Hence, using that

the operator T−1 is bounded on B it follows that T−1ψη =
∑
ω∈X 〈ψη, ψ̃ω〉T−1ψω

in B and hence in D′. Therefore, as ψ̃ξ ∈ D

〈T−1ψη, ψ̃ξ〉 =
∑
ω∈X
〈T−1ψω, ψ̃ξ〉〈ψη, ψ̃ω〉.
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However, by Lemma 3.3 the operator H with matrix H := (〈T−1ψω, ψ̃ξ〉)ξ,ω∈X
is bounded on Bd, and

(
〈ψη, ψ̃ω〉

)
η∈X =

(
〈ψ̃ω, ψη〉

)
η∈X ∈ Bd since ψ̃ω ∈ D ⊂ B

and using A2-A3. Therefore,
(
〈T−1ψη, ψ̃ξ〉

)
η∈X ∈ Bd and using A3 we have(

〈T−1ψη, ψ̃ξ〉
)
η∈X ∈ Bd. Then from A2 it follows that the series in (3.13) converges

in B and θ̃ξ ∈ B. �

We next show that in a sense {θξ}, {θ̃ξ} is a pair of dual frames for B if ε is
sufficiently small.

Theorem 3.5. If ε in (3.4) is sufficiently small, with the above defined {θξ}, {θ̃ξ},
for any f ∈ B

(3.15) f =
∑
ξ∈X

〈f, θ̃ξ〉θξ,

where the convergence is unconditional in B, and

(3.16) ‖f‖B ∼ ‖(〈f, θ̃ξ〉)‖Bd
with constants of equivalence independent of f .

Moreover, the operator Td defined by Tdh :=
∑
ξ∈X hξθξ for sequences of complex

numbers h = (hξ)ξ∈X is bounded as a map Td : Bd 7→ B.

Proof. Representation (3.15) was already established in (3.12). To prove that

(3.17) ‖f‖B ≤ c‖(〈f, θ̃ξ〉)‖Bd , f ∈ B,

we first use A2 to obtain ‖f‖B ≤ c‖(〈f, ψ̃ξ〉)‖Bd . Using (3.11) we write

〈f, ψ̃ξ〉 = 〈f − T−1f, ψ̃ξ〉+ 〈T−1f, ψ̃ξ〉 = 〈T−1(I − T )f, ψ̃ξ〉+ 〈f, θ̃ξ〉.

Now from A2, (3.7), (3.8), and ‖I − T‖B7→B ≤ c∗ε (Lemma 3.2) it follows that

‖f‖B ≤ c‖(〈f, ψ̃ξ〉)‖Bd ≤ c‖(〈T−1(T − I)f, ψ̃ξ〉)‖Bd + c‖(〈f, θ̃ξ〉)‖Bd
≤ c‖T−1(T − I)f‖B + c‖(〈f, θ̃ξ〉)‖Bd
≤ c‖T−1‖B7→B‖T − I‖B7→B‖f‖B + c‖(〈f, θ̃ξ〉)‖Bd ≤ c�ε‖f‖B + c‖(〈f, θ̃ξ〉)‖Bd

with c� > 0 a constant independent of ε. Therefore,

‖f‖B ≤
c

1− c�ε
‖(〈f, θ̃ξ〉)‖Bd ,

which implies (3.17) if we choose ε so that c�ε < 1.
In the other direction, we use (3.11), A2, and (3.8) to obtain

‖(〈f, θ̃ξ〉)‖Bd = ‖(〈T−1f, ψ̃ξ〉)‖Bd ≤ c‖T−1f‖B ≤ c‖f‖B.

The boundedness of Td : Bd 7→ B is established in Lemma 3.1. �

3.3. Construction of frames in the case of existence of a single frame.
There are many cases when there is a single (old) frame {ψξ} for a quasi-Banach

space B. More specifically, assume that in the setting of §3.1 ψ̃ξ = ψξ, ξ ∈ X , i.e.
for any f ∈ B

(3.18) f =
∑
ξ∈X

〈f, ψξ〉ψξ and ‖f‖B ∼ ‖(〈f, ψξ〉)‖Bd .
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In this situation the construction of a new pair of frames {θξ}, {θ̃ξ} can be sim-

plified. More precisely, {θξ} is constructed as in §3.2 and {θ̃ξ} is defined by

θ̃ξ := S−1θξ, ξ ∈ X , where S is the frame operator: Sf :=
∑
ξ∈X 〈f, θξ〉θξ. This

method is developed in [16], where it is shown that if the the operators with ma-
trices B, D from (3.3) and their adjoints B∗, D∗ are bounded on Bd and `2, and
for a sufficiently small ε, ‖D‖Bd→Bd ≤ ε, ‖D∗‖Bd→Bd ≤ ε, ‖D‖`2→`2 ≤ ε, then S−1

exists and is bounded on B and for any f ∈ B

(3.19) f =
∑
ξ∈X

〈f, θ̃ξ〉θξ and ‖f‖B ∼ ‖(〈f, θ̃ξ〉)‖Bd .

We refer the reader to [16] for details and proofs.

3.4. Construction of frames for classes of quasi-Banach spaces. Let Y be
a class (set) of quasi-Banach spaces B of distributions and assume that {ψξ}ξ∈X ,

{ψ̃ξ}ξ∈X is a pair of dual frames, just as in §3.1, for each B ∈ Y . We shall denote
by Yd the class consisting of the respective sequence spaces Bd.

Now, our main assumption is that all constants in §3.1 are uniform with respect
to B ∈ Y and Bd ∈ Yd, i.e. they are the same for all B ∈ Y and Bd ∈ Yd.

In the construction in §3.2 of new frames {θξ}ξ∈X , {θ̃ξ}ξ∈X for B ∈ Y our
main assumption now is that the constants are also uniform. Thus we assume that
θξ ∈ D, ξ ∈ X , can be constructed so that ‖B‖Bd 7→Bd ≤ c and ‖D‖Bd 7→Bd ≤ ε for
all Bd ∈ Yd, where ε > 0 is sufficiently small.

A careful examination of the arguments shows that under the above assumptions
Theorem 3.5 holds for all B ∈ Y , where the constants in (3.16) are independent of
B as well; they may depend on Y , Yd, and the constants from the assumptions.

4. Compactly supported frames in Dirichlet spaces

In this section we present the construction of a compactly supported frame {θξ}
in the general setting of §1 and its dual frame {θ̃ξ}, and show how they can be used
for characterization of Besov and Triebel-lizorkin spaces.

4.1. The construction. Let Ψ0 := Φ and Ψ be the compactly supported C∞

functions from the construction of Frame # 1 in §2.3. The first step is to construct
band limited functions Θ0 and Θ which approximate well Ψ0 and Ψ in a specific
sense given below.

Proposition 4.1. Let Ψ0 and Ψ be the even extensions of the functions Ψ0 and Ψ
from the construction of Frame # 1 in §2.3. Then for any ε > 0 and N ≥ K ≥ 1
there exist functions Θ0,Θ ∈ C∞ and R > 0 such that Θ0 and Θ are even and real
valued, supp Θ̂0 ⊂ [−R,R], supp Θ̂ ⊂ [−R,R],

(4.1) |Ψ(ν)
0 (t)−Θ

(ν)
0 (t)| ≤ ε|t|N

(1 + |t|)2N
, t ∈ R, ν = 0, 1, . . . ,K,

and

(4.2) |Ψ(ν)(t)−Θ(ν)(t)| ≤ ε|t|N

(1 + |t|)2N
, t ∈ R, ν = 0, 1, . . . ,K.

Furthermore, suppF(t−mΘ(t)) ⊂ [−R,R], 0 ≤ m ≤ N , with F being the Fourier
transform.
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Proof. For this proof we shall borrow from [12] and [16]. Evidently, it suffices to
prove the proposition in the case when N = K = k > 1.

We first construct Θ. Define f(t) := (sin γt)−2kΨ(t) with γ := π/2b, and observe
that f ∈ C∞(R) , f is even, and supp f = supp Ψ ⊂ [−b, b], b ≥ 2.

Our next step is to construct a band limited function fA, A > 1, which approxi-
mates well f . To this end we shall proceed similarly as in the proof of Theorem 3.1
in [12]. Just as in [12] we define the function φ on R by its Fourier transform

φ̂ := 1[− 1
2−δ,

1
2 +δ] ∗Hδ ∗ · · · ∗Hδ︸ ︷︷ ︸

k+1

, where Hδ := (2δ)−1
1[−δ,δ], δ :=

1

2(k + 2)
.

Evidently, φ̂ is even, supp φ̂ ⊂ [−1, 1], 0 ≤ φ̂ ≤ 1, φ̂(ξ) = 1 for ξ ∈ [−1/2, 1/2], and

‖φ̂(ν)‖∞ ≤ δ−ν ≤ (2(k + 2))ν ≤ (4k)ν for ν = 0, 1, . . . , k + 1.

Define fA := f ∗ φA, where φA(t) := Aφ(At). Note that φ̂A(ξ) = φ̂(ξ/A)

and hence supp φ̂A ⊂ [−A,A]. On the other hand, f̂A = f̂ φ̂A and, therefore,

supp f̂A ⊂ [−A,A]. Since f and φ are even, fA is even. In going further,

f(t)− fA(t) = (2π)−1A−k
∫
R
ξkf̂(ξ)F̂ (ξ/A)eiξtdξ,

where F̂ (ξ) = (1− φ̂(ξ))ξ−k. From this we infer

f (ν)(t)− f (ν)
A (t) = iν(2π)−1A−k

∫
R
ξk+ν f̂(ξ)F̂ (ξ/A)eiξtdξ

and hence

‖f (ν) − f (ν)
A ‖∞ ≤ A

−k‖f (k+ν) ∗ FA‖∞(4.3)

≤ A−k‖f (k+ν)‖∞‖FA‖L1 ≤ ckA−k‖f (k+ν)‖∞.

Here we used that ‖FA‖L1 = ‖F‖L1 ≤ ck, where c > 1 is an absolute constant [12].
As in [12] we have

|φA(t)| ≤ c(k)A(1 +A|t|)−k−1, c(k) = (c′k)k.

We use this and supp f ⊂ [−b, b] to obtain for t > b

|f (ν)(t)− f (ν)
A (t)| = |f (ν)

A (t)| = |f (ν) ∗ φA(t)| ≤
∫ b

−b
|f (ν)(y)||φA(y − t)|dy

≤ ‖f (ν)‖∞
∫ t+b

t−b
|φA(u)|du ≤ c(k)‖f (ν)‖∞

∫ t+b

t−b
A(1 +Au)−k−1du

≤ c(k)‖f (ν)‖∞
∫ ∞
A(t−b)

(1 + v)−k−1du ≤ c(k)A−k‖f (ν)‖∞(t− b)−k.

Therefore,

|f (ν)(t)− f (ν)
A (t)| ≤ c′A−k‖f (ν)‖∞(1 + |t|)−k for |t| ≥ 2b.

This coupled with (4.3) yields

(4.4) |f (ν)(t)− f (ν)
A (t)| ≤ cA−k max

0≤j≤2k
‖f (j)‖∞(1 + |t|)−k ≤ c′A−k(1 + |t|)−k

for t ∈ R and ν = 0, 1, . . . , k, where c′ > 0 is independent of t and A.
We set

Θ(t) := (sin γt)2kfA(t) with γ := π/2b as above.
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We next show that Θ and t−mΘ(t) (1 ≤ m ≤ 2k) are band limited. Indeed,
set ∆2k

γ := (Tγ − T−γ)2k, where Tγ is the shift to the left operator, defined by
Tγg(ξ) := g(ξ + γ). It is readily seen that(

∆2k
γ f̂A

)∨
(t) = (−1)k22k(sin γt)2kfA(t) = (−1)k22kΘ(t)

and hence

Θ̂(ξ) = (−1)k2−2k∆2k
γ f̂A(ξ).

Since supp f̂A ⊂ [−A,A], it follows that supp Θ̂ ⊂ [−A− 2kγ,A+ 2kγ].
In going further, set Gν(t) := (sin γt)2k−2νfA(t), 0 ≤ ν ≤ k. Then

t−2νΘ(t) = (sin γt/t)2νGν(t).

As above supp Ĝν ⊂ [−A−2(k−ν)γ,A+2(k−ν)γ]. Clearly, F(sin γt/t) = π1[−γ,γ]

and hence

F
(
t−2νΘ(t)

)
= (−1)νπ2ν

1[−γ,γ] ∗ · · · ∗ 1[−γ,γ]︸ ︷︷ ︸
2ν

∗Ĝν .

Therefore, suppF
(
t−2νΘ(t)

)
⊂ [−A − 2kγ,A + 2kγ], 0 ≤ ν ≤ k. This along with

the obvious fact that suppF(tf(t)) = suppF(f ′) yields

suppF
(
t−mΘ(t)

)
⊂ [−A− 2kγ,A+ 2kγ] =: [−R,R], 0 ≤ m ≤ 2k,

as claimed.
We now establish (4.2). From the definition of f and Θ

Ψ(t)−Θ(t) := (sin γt)2k[f(t)− fA(t)]

and using (4.4)

|Ψ(ν)(t)−Θ(ν)(t)| ≤ c| sin γt|k max
0≤j≤ν

|f (j)(t)− f (j)
A (t)| ≤ c′A−k|t|k

(1 + |t|)2k
,

for ν = 0, 1, . . . , k.
Finally, choosing A so that c′A−k = ε and setting R := A+ 2kγ we get Θ with

the claimed properties.
To construct Θ0, we first note that Ψ′0 ∈ C∞, supp Ψ′0 ⊂ [−b,−b−1]∪[b−1, b], and

Ψ′0 is odd. Then just as above we construct an odd function Θ′0 which approximate

Ψ′0 as above and supp Θ̂′0 ⊂ [−R,R]. Finally, we set Θ0(t) := 1 +
∫ t

0
Θ′0(u)du. It is

easy to see that this will give us Θ0 with the claimed properties. �

Construction of compactly supported frame. The constants N,K, and ε
(sufficiently small) will be selected later on. With these constants fixed, we use the
functions Θ0,Θ from Proposition 4.1 to define the new frame. Similarly as in (2.14)
we set

(4.5) Θj(u) := Θ(b−ju), j ≥ 1.

Let the sets Xj , {Aξ}ξ∈Xj , and X := ∪j≥0Xj be from the definition of Frame # 1
in §2.3. We define the jth level (j ≥ 0) elements of the new system by

(4.6) θξ(x) := |Aξ|1/2Θj(
√
L)(x, ξ), ξ ∈ Xj .

Then {θξ}ξ∈X is the new Frame #1. A dual frame {θ̃ξ}ξ∈X is produced using the
general scheme from §3.
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Observe immediately that since supp Θ̂0 ⊂ [−R,R] and supp Θ̂ ⊂ [−R,R], by
Proposition 2.1 it follows that each θξ is compactly supported, more precisely

(4.7) supp θξ ⊂ B(ξ, c̃Rb−j), ξ ∈ Xj , j ≥ 0.

We shall assume that c̃, R ≥ 1.

4.2. Main result. Our goal is to show that the above defined system {θξ}ξ∈X
along with a dual system {θ̃ξ}ξ∈X constructed by the recipe from §3 form a pair of

frames for the Besov and Triebel-Lizorkin spaces Bspq, B̃
s
pq, F

s
pq, and F̃ spq defined in

§2.4 for the following range of indices determined by constants s0 ≥ 0, p0, p1, q0 > 0:

(4.8) Ω := {(s, p, q) : |s| ≤ s0, p0 ≤ p ≤ p1, and q0 ≤ q <∞}.

To state the result we also introduce the constant: J0 := d/min{1, p0} in the case
of B-spaces and J0 := d/min{1, p0, q0} in the case of F-spaces.

Theorem 4.2. Suppose s0 ≥ 0, p0, p1, q0 > 0, p1 ≥ p0, and let {θξ}ξ∈X be the
system constructed in (4.6), where

K ≥ s0 + J0 + d/2 + 1 and N ≥ K + s0 + J0 + 3d/2 + 1.

If ε in the construction of {θξ}ξ∈X is sufficiently small the following holds true for
(s, p, q) ∈ Ω with Ω from (4.8): (a) The operator

(4.9) Tf :=
∑
ξ∈X

〈f, ψ̃ξ〉θξ,

is invertible on Bspq and T , T−1 are bounded on Bspq, uniformly with respect to
(s, p, q) ∈ Ω.

(b) The system {θ̃ξ}ξ∈X consists of bounded linear functionals on Bspq defined by

(4.10) θ̃ξ(f) = 〈f, θ̃ξ〉 :=
∑
η∈X
〈T−1ψη, ψ̃ξ〉〈f, ψ̃η〉 for f ∈ Bspq,

with the series converging absolutely, and θ̃ξ, ξ ∈ X , can be identified with

(4.11) θ̃ξ :=
∑
η∈X
〈T−1ψη, ψ̃ξ〉ψ̃η, where |θ̃ξ(x)| ≤ c|B(ξ, b−j)|−1/2(

1 + bjρ(x, ξ)
)σ , x ∈M,

in the sense that for any φ ∈ D we have θ̃ξ(φ) = 〈φ, θ̃ξ〉 (inner product). Here
σ > 0 is arbitrary but fixed.

Moreover, {θξ}ξ∈X , {θ̃ξ}ξ∈X form a pair of dual frames for Bspq in the following
sense: For any f ∈ Bspq

(4.12) f =
∑
ξ∈X

〈f, θ̃ξ〉θξ and ‖f‖Bspq ∼ ‖(〈f, θ̃ξ〉)‖bspq ,

where the convergence is unconditional in Bspq.
(c) The operator Td defined by Tdh :=

∑
ξ∈X hξθξ for sequences of numbers

h = (hξ)ξ∈X is bounded as a map Td : bspq 7→ Bspq, uniformly relative to (s, p, q) ∈ Ω.

Furthermore, (a)− (c) above hold true when Bspq is replaced by B̃spq, F
s
pq, or F̃ spq,

and bspq by b̃spq, f
s
pq, or f̃spq, respectively.
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4.3. Almost diagonal matrices. On account of Theorem 3.5 and the discussion
in §3.4 it is clear that to show that {θξ}ξ∈X , {θ̃ξ}ξ∈X is a pair of frames for the B-

and F-spaces Bspq, B̃
s
pq, F

s
pq, and F̃ spq for (s, p, q) ∈ Ω (see (4.8)) it suffices to show

that the operators with matrices

(4.13)

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉,
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη − θη, ψξ〉

are bounded on the respective sequence spaces bspq, b̃
s
pq, f

s
pq, and f̃spq, defined by

Definitions 2.8-2.9, and

‖D‖bspq 7→bspq ≤ ε, ‖D‖b̃spq 7→b̃spq ≤ ε, ‖D‖fspq 7→fspq ≤ ε, and ‖D‖f̃spq 7→f̃spq ≤ ε,

for a sufficiently small ε, where the norm bounds and ε are uniform with respect to
(s, p, q) ∈ Ω. As in the classical case on Rn (see [7]), we shall show the boundedness
of the above operators by using the machinery of almost diagonal operators.

It will be convenient to us to denote

(4.14) `(ξ) := b−j for ξ ∈ Xj , j ≥ 0.

Here b ≥ 2 is the constant from the construction of the frames in §2.3. Evidently,
`(ξ) is a constant multiple of the radius of the neighborhood Aξ of ξ.

Definition 4.3. Let A be a linear operator acting on bspq, b̃
s
pq, f

s
pq, or f̃spq, with

an associated matrix (aξη)ξ,η∈X . Let J := d/min{1, p} in the case of the spaces

bspq, b̃
s
pq, and J := d/min{1, p, q} for fspq, f̃

s
pq. We say that A is almost diagonal if

there exists δ > 0 such that

sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

<∞, where

ωδ(ξ, η) :=

(
min

{
`(ξ)

`(η)
,
`(η)

`(ξ)

})|s|+J+ d
2 +δ(

1 +
ρ(ξ, η)

max{`(ξ), `(η)}

)−|s|−J− d2−δ
.

We next show that the almost diagonal operators are bounded on bspq, b̃
s
pq, f

s
pq,

and f̃spq. More precisely, with the notation

(4.15) ‖A‖δ := sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

we have:

Theorem 4.4. Suppose s ∈ R and 0 < p, q <∞, and let ‖A‖δ <∞ (in the sense
of Definition 4.3) for some δ > 0. Then there exists a constant c > 0 such that for
any sequence h := {hξ}ξ∈X ∈ bspq
(4.16) ‖Ah‖bspq ≤ c‖A‖δ‖h‖bspq ,

and the same holds true with bspq replaced by b̃spq, f
s
pq, or f̃spq. Here the constant

c can be written in the form c = c1(p + 1)c
|s|
2 c

1/p+1/q
3 (1/q)1/q, where c1, c2, c3 > 1

depend only on δ, b, γ, and c0.
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To streamline the presentation we divert the proof of this theorem to the appen-
dix.
Remark. Observe that ωδ(ξ, η) in the definition of almost diagonal operators can

be optimized depending on the specific space bspq, b̃
s
pq, f

s
pq, or f̃spq. As a result this

would enable us to work with smaller parameters N and K in the construction of
{θξ} and in Theorem 4.2. However, we have no restrictions on N , K and opted to
go for a simpler version of ωδ(ξ, η).

The above theorem and the construction from §3.2 indicate that to prove that
{θξ}, {θ̃ξ} is a pair of frames for Bspq, B̃

s
pq, F

s
pq, or F̃ spq it suffices to show that the

operators with matrices A, B, and D, defined in (4.13) are almost diagonal and
‖D‖δ ≤ ε, for fixed δ > 0 and sufficiently small ε > 0.

4.4. Inner products. We next estimate the inner product involved in (4.13) which
in a sense characterize the localization and approximation properties of the new
system {θξ} relative to the old frame {ψξ}.

Theorem 4.5. For any ξ ∈ Xj, η ∈ X` we have

|〈ψξ, ψη〉| ≤ cb−|j−`|(N−K−d)
(
1 + bmin{j,`}ρ(ξ, η)

)−K
,(4.17)

|〈θξ, ψη〉| ≤ cb−|j−`|(N−K−d)
(
1 + bmin{j,`}ρ(ξ, η)

)−K
,(4.18)

and

(4.19) |〈ψξ − θξ, ψη〉| ≤ cεb−|j−`|(N−K−d)
(
1 + bmin{j,`}ρ(ξ, η)

)−K
,

where c > 0 is a constant independent of ε. Moreover, the above inequalities hold
with ψη replaced by ψ̃η.

Proof. We shall only prove (4.19); the proof of (4.17) or (4.18) is similar and will
be omitted. Assume j, ` ≥ 1. The other cases are similar. From (2.16) and (4.6)
we get

|〈ψξ − θξ, ψη〉|

≤ c|B(ξ, b−j)|1/2|B(η, b−`)|1/2
〈[

Ψ(b−j
√
L)−Θ(b−j

√
L)
]
(·, ξ),Ψ(2−`

√
L)(·, η)

〉
= c|B(ξ, b−j)|1/2|B(η, b−`)|1/2

∣∣[Ψ(b−j
√
L)−Θ(b−j

√
L)
]
Ψ(2−`

√
L)(ξ, η)

∣∣
Two cases present themselves here.

Case 1: ` ≥ j. Set F (λ) := [Ψ(λ)−Θ(λ)]Ψ(b−(`−j)λ). Evidently,

F (b−j
√
L) := [Ψ(b−j

√
L)−Θ(b−j

√
L)]Ψ(b−`

√
L), suppF ⊂ [b`−j−1, b`−j+1],

and by Proposition 4.1

‖F (ν)‖∞ ≤
cε

b(`−j)N
, ν = 0, 1, . . . ,K.

Now applying Theorem 2.2 we infer

|F (b−j
√
L)(x, y)| ≤

cb(`−j)d
(
‖F‖∞ + b(`−j)K‖F (K)‖∞

)
|B(x, b−j)|1/2|B(y, b−j)|1/2(1 + bjρ(x, y))K

≤ cεb−(`−j)(N−K−d)

|B(x, b−j)|1/2|B(y, b−j)|1/2(1 + bjρ(x, y))K

and hence

|〈ψξ − θξ, ψη〉| ≤
cεb−(`−j)(N−K−d)

(1 + bjρ(ξ, η))K
,



20 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

which verifies (4.19).
Case 2: ` < j. Set F (λ) := [Ψ(b−(j−`)λ)−Θ(b−(j−`)λ)]Ψ(λ). Evidently,

F (b−`
√
L) := [Ψ(b−j

√
L)−Θ(b−j

√
L)]Ψ(b−`

√
L), suppF ⊂ [b−1, b2],

and by Proposition 4.1

‖F (ν)‖∞ ≤ cεb−(j−`)N , ν = 0, 1, . . . ,K.

Now, again by Theorem 2.2

|F (b−`
√
L)(x, y)| ≤

c
(
‖F‖∞ + ‖F (K)‖∞

)
|B(x, b−`)|1/2|B(y, b−`)|1/2(1 + b`ρ(x, y))K

≤ cεb−(j−`)N

|B(x, b−`)|1/2|B(y, b−`)|1/2(1 + b`ρ(x, y))K

and hence

|〈ψξ − θξ, ψη〉| ≤
cεb−(j−`)N

(1 + b`ρ(ξ, η))K
,

which confirms (4.19). �

4.5. Proof of Theorem 4.2. Observe first that a careful examination of the de-
velopment in [12] shows that the pair of frames {ψξ}ξ∈X , {ψ̃ξ}ξ∈X , constructed in
[12], satisfy condition A1-A2 in §3.1 with B, Bd being any of the pairs of spaces

Bspq, b
s
pq or B̃spq, b̃

s
pq or F spq, f

s
pq or F̃ spq, f̃

s
pq, and all relevant constants, in particu-

lar, the constants in Theorems 2.10-2.11, are uniform with respect to (s, p, q) ∈ Ω,
where Ω is defined in (4.8). In fact, the maximal inequality (2.40) is the main
nontrivial contributor to the constants of interest in [12]. Condition A3 (§3.1) is
also satisfied since we assume p, q < ∞. The validity of condition A4 is included
in the argument in what follows.

Note that, if (s, p, q) ∈ Ω, then the constant c from Theorem 4.4 applied with
e.g. δ = 1 can be bounded as follows

c ≤ c1(p1 + 1)cs02 c
1/p0+1/q0
3 (1/q0)1/q0 ,

where the constants c1, c2, c3 > 0 depend only on b, γ, c0. Here, any δ > 0 would do
the job. Therefore, Theorem 4.2 will follow from Theorem 3.5 if we prove that the
operators with matrices A,B,D defined in (4.13) are almost diagonal with δ = 1

on bspq, b̃
s
pq, f

s
pq, or f̃spq and in addition for sufficiently small ε > 0

(4.20) ‖D‖δ ≤ ε with δ = 1.

We shall only prove (4.20); the boundedness of the operators associated with the
other matrices follows similarly. Recall that

D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη − θη, ψξ〉.
It will be convenient to introduce the more detailed notation ωδ(ξ, η; s,J ) for the
quantity ωδ(ξ, η) from Definition 4.3. We claim that using that K ≥ s0+J0+d/2+1
and N ≥ K + s0 + J0 + 3d/2 + 1 it follows that

(4.21) |dξ,η| := |〈ψη − θη, ψξ〉| ≤ cεω1(ξ, η; s0,J0), ξ, η ∈ X ,
where the constant c is independent of ε. This along with the obvious fact that
ω1(ξ, η; s,J ) ≥ ω1(ξ, η; s0,J0), whenever (s, p, q) ∈ Ω, yields

‖D‖1 := sup
ξ,η∈X

|dξ,η|
ω1(ξ, η; s,J )

≤ cε.
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However, ε is independent of M , N , and c. Therefore, cε above can be replaced by
ε and (4.20) would hold.

For the proof of (4.21) consider the case when `(ξ) ≥ `(η), i.e. ξ ∈ Xj , η ∈ X`
and ` ≥ j. From estimate (4.19) in Theorem 4.5 we get

|aξ,η| ≤ cεb−|j−`|(N−K−d)(1 + 2jρ(ξ, η))−K

= cε
(`(η)

`(ξ)

)N−K−d(
1 +

ρ(ξ, η)

`(ξ)

)−K
≤ cεω1(ξ, η; s0,J0),

where in the last inequality we used that K ≥ s0 +J0 + d/2 + 1 and N ≥ K + s0 +
J0 + 3d/2 + 1.

The proof of (4.21) in the case `(ξ) < `(η) is the same and will be omitted.

The claimed properties of the dual frame elements θ̃ξ, ξ ∈ X , are established in
Theorem 4.6 below. �

4.6. Localization of θ̃ξ. From our general construction of new frames in §3 it only

follows that the dual frame elements θ̃ξ, ξ ∈ X , are continuous linear functional on
the underlying space B, that is, the respective B- or F-space in the current setting.
Now, we would like to provide more information about the dual frame elements,
and in particular, to identify them with well localized functions.

Theorem 4.6. For any γ, σ > 0 the parameters K, N and ε in the construction
of {θ̃ξ} can be selected so that for any ξ ∈ Xj, j ≥ 0, the linear functional θ̃ξ can
be identified with a function

(4.22) θ̃ξ =
∑
ν≥0

∑
η∈Xν

αξηψ̃η, where |αξη| ≤
cb−|j−ν|γ(

1 + bj∨νρ(ξ, η)
)σ ,

and

(4.23) |θ̃ξ(x)| ≤ c|B(ξ, b−j)|−1/2(
1 + bjρ(x, ξ)

)σ , x ∈M.

The following two lemmas will be instrumental in the proof of this theorem.

Lemma 4.7. Let σ ≥ 2d+ 1, b > 1, 0 ≤ s, t ≤ m, and x, y ∈M . Then

(4.24)
∑
ω∈Xm

1(
1 + bsρ(x, ω)

)σ(
1 + btρ(y, ω)

)σ ≤ cb(m−s∨t)σ(
1 + bs∧tρ(x, y)

)σ ,
where c > 0 depends only on d, b and σ.

Proof. Assume 0 ≤ s ≤ t ≤ m. Denote the quantity on the left in (4.24) by Σ and
set

X 1
m := {ω ∈ Xm : ρ(x, ω) ≥ ρ(x, y)/2}, X 2

m := {ω ∈ Xm : ρ(y, ω) > ρ(x, y)/2}.
Then Σ can be represented as Σ ≤

∑
ω∈X 1

m
· · · +

∑
ω∈X 2

m
· · · =: Σ1 + Σ2. For the

first sum we have

Σ1 ≤
cb(m−t)σ(

1 + bsρ(x, y)
)σ ∑

ω∈Xm

1(
1 + bmρ(y, ω)

)σ ≤ cb(m−t)σ(
1 + bsρ(x, y)

)σ .
Here we used the following simple inequality

(4.25)
∑
ω∈Xm

(
1 + bmρ(y, ω)

)−2d−1 ≤ c <∞,
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see [2], inequality (2.20).
To estimate Σ2 we consider two cases depending on whether bsρ(x, y) ≥ 1 or

bsρ(x, y) < 1. In the first case, just as above we get

Σ2 ≤
cb(m−s)σ(

1 + btρ(x, y)
)σ ≤ cb(m−s)σ(

btρ(x, y)
)σ =

cb(m−t)σ(
bsρ(x, y)

)σ ≤ c2σb(m−t)σ(
1 + bsρ(x, y)

)σ .
If bsρ(x, y) < 1, then using (4.25) we obtain

Σ2 ≤
∑
ω∈Xm

1(
1 + btρ(y, ω)

)σ ≤ ∑
ω∈Xm

b(m−t)σ(
1 + bmρ(y, ω)

)σ ≤ cb(m−t)σ ≤ c2σb(m−t)σ(
1 + bsρ(x, y)

)σ .
The above estimates for Σ1 and Σ2 yield (4.24). �

Lemma 4.8. Let σ ≥ 2d+ 1 and j, ν ≥ 0, δ > 0, b > 1, and x, y ∈M . Then

(4.26)
∑
m≥0

∑
ω∈Xm

b−|m−j|σ(
1 + bj∧mρ(x, ω)

)σ b−|m−ν|(σ+δ)(
1 + bν∧mρ(y, ω)

)σ ≤ c�b
|j−ν|σ(

1 + bj∧νρ(x, y)
)σ

and

(4.27)
∑
m≥0

∑
ω∈Xm

b−|m−j|(σ+δ)(
1 + bj∧mρ(x, ω)

)σ 1(
1 + bmρ(y, ω)

)σ ≤ c�(
1 + bjρ(x, y)

)σ ,
where c� > 0 depends only on d, b, δ, and σ.

Proof. Assume ν ≤ j and denote by Σ the quantity on the left in (4.26). We split
Σ into three Σ =

∑
0≤m<ν · · · +

∑
ν≤m≤j · · · +

∑
m>j · · · =: Σ1 + Σ2 + Σ3. Now,

using Lemma 4.7

Σ1 =
∑

0≤m<ν

∑
ω∈Xm

b−(j−m)σ(
1 + bmρ(x, ω)

)σ b−(ν−m)(σ+δ)(
1 + bmρ(y, ω)

)σ
≤

∑
0≤m<ν

cb−(j−m)σb−(ν−m)(σ+δ)(
1 + bmρ(x, y)

)σ
≤ c(

1 + bνρ(x, y)
)σ ∑

0≤m<ν

b−(j−m)σ ≤ cb−(j−ν)σ(
1 + bνρ(x, y)

)σ .
We estimate Σ2 using again (4.24)

Σ2 =
∑

ν≤m≤j

∑
ω∈Xm

b−(j−m)σ(
1 + bmρ(x, ω)

)σ b−(m−ν)(σ+δ)(
1 + bνρ(y, ω)

)σ
≤

∑
ν≤m≤j

cb−(j−m)σb−(m−ν)(σ+δ)(
1 + bνρ(x, y)

)σ
=

cb−(j−ν)σ(
1 + bνρ(x, y)

)σ ∑
ν≤m≤j

b−(m−ν)δ ≤ cb−(j−ν)σ(
1 + bνρ(x, y)

)σ .
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To estimate Σ3 we proceed in the same way

Σ3 =
∑
m>j

∑
ω∈Xm

b−(m−j)σ(
1 + bjρ(x, ω)

)σ b−(m−ν)(σ+δ)(
1 + bνρ(y, ω)

)σ
≤
∑
m>j

cb−(m−ν)(σ+δ)(
1 + bνρ(x, y)

)σ ≤ cb−(j−ν)σ(
1 + bνρ(x, y)

)σ .
The above estimates for Σ1, Σ2, Σ3 yield (4.26). The proof of (4.26) when ν > j
follows the same lines. The proof of (4.27) is similar and simpler; we omit it. �

Proof of Theorem 4.6. Clearly, it suffices to prove the theorem only whenever
γ = σ ≥ 5d/2 + 2. Given σ ≥ 5d/2 + 2 we impose on the parameters K,M from
Theorem 4.2 the additional conditions: N −K − d ≥ σ + 1 and K ≥ σ. Later on
an additional condition will be imposed on ε as well. By Theorem 4.5 we have for
ξ ∈ Xj and η ∈ Xν , j, ν ≥ 0,

(4.28) |〈ψξ − θξ, ψ̃η〉| ≤ c[εb−|j−ν|(σ+1)
(
1 + bj∧νρ(ξ, η)

)−σ
and

(4.29) |〈ψξ, ψ̃η〉| ≤ cb−|j−ν|σ
(
1 + bj∧νρ(ξ, η)

)−σ
.

Note that by (4.11) the linear functional θ̃ξ can be identified with

(4.30) θ̃ξ =
∑
η∈X
〈T−1ψη, ψ̃ξ〉ψ̃η,

and our next step is to obtain a suitable representation for T−1ψη.

Lemma 4.9. For any σ > 0 the parameters K,N , and ε in the construction of
{θ̃ξ} can be selected so that for any η ∈ Xν , ν ≥ 0, we have

(4.31) T−1ψη =
∑
m≥0

∑
ω∈Xm

tηω(ψω − θω), where |tηω| ≤
cb−|ν−m|σ(

1 + bν∧mρ(η, ω)
)σ ,

and

(4.32) |T−1ψη(x)| ≤ c|B(η, b−ν)|−1/2(
1 + bνρ(η, x)

)σ , x ∈M.

The above series converges uniformly on M .

Proof. From the construction of {θ̃ξ} in §3.2 (Lemma 3.2) we have

T−1f =
∑
k≥1

(I − T )kf, where Tf :=
∑
ξ∈X

〈f, ψ̃ξ〉θξ,

for any distribution f from the underlying B- or F-space B with convergence in the
norm of the space and as a consequence in D′. From this and the representation
f =

∑
ω∈X 〈f, ψ̃ω〉ψω (Proposition 2.5) we infer

(4.33) (I − T )f =
∑
m≥0

∑
ω∈Xm

〈f, ψ̃ω〉(ψω − θω).

We apply the above to ψη (η ∈ Xν , ν ≥ 0). We claim that for any k ≥ 1 we have

(4.34) (I − T )kψη =
∑
m≥0

∑
ω∈Xm

T kηω(ψω − θω),
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where the convergence is in B and hence in D′, and

(4.35) |T kηω| ≤
c(c∗ε)

k−1b−|ν−m|σ(
1 + bν∧mρ(η, ω)

)σ , ω ∈ Xm, c∗ := c�c[.

Here the constants c[, c� are from Lemma 4.8 and (4.28).

Indeed, using (4.33) identity (4.34) holds for k = 1 with T 1
ηω = 〈ψη, ψ̃ω〉 and by

(4.29) it follows that inequality (4.35) holds for k = 1. Assume now that (4.34)-
(4.35) hold for some k ≥ 1. Then

(I − T )k+1ψη =
∑
m≥0

∑
ω∈Xm

〈(I − T )kψη, ψ̃ω〉(ψω − θω)

and using (4.28), (4.35), and Lemma 4.8 we obtain (η ∈ Xν , ω ∈ Xm)

|〈(I − T )kψη, ψ̃ω〉| ≤
∑
`≥0

∑
α∈X`

|T kηα||〈ψα − θα, ψ̃ω〉|

≤ c(c∗ε)k−1c[ε
∑
`≥0

∑
α∈X`

b−|ν−`|σ(
1 + bν∧`ρ(η, α)

)σ b−|m−`|(σ+1)(
1 + bm∧`ρ(ω, α)

)σ
≤ c(c∗ε)k

b−|ν−m|σ(
1 + bν∧mρ(η, ω)

)σ , c∗ := c�c[.

Therefore, by induction (4.34)-(4.35) hold for all k ≥ 1.
We now impose on ε the additional condition ε ≤ 1

2c∗
= 1

2c�c[
. Summing up we

obtain ∑
k≥1

|T kηω| ≤
cb−|ν−m|σ(

1 + bν∧mρ(η, ω)
)σ ∑

k≥1

(c∗ε)
k−1 ≤ 2cb−|ν−m|σ(

1 + bν∧mρ(η, ω)
)σ .

This, the representation T−1ψη =
∑
k≥1(I−T )kψη, and (4.34)-(4.35) imply (4.31).

By the localization of ψξ and ψ̃ξ, given in Proposition 2.5, it follows that

(4.36) |ψξ(x)|, |ψ̃ξ(x)| ≤ c|B(ξ, b−j)|−1/2(
1 + bjρ(x, ξ)

)σ , x ∈M, ξ ∈ Xj , j ≥ 0.

On the other hand, by (4.6)-(4.7) it follows that

‖θξ‖∞ ≤ c|B(ξ, b−j)|−1/2 and supp θξ ⊂ B(ξ, cb−j) for ξ ∈ Xj .

Therefore,

|ψξ(x)− θξ(x)| ≤ c|B(ξ, b−j)|−1/2(
1 + bjρ(x, ξ)

)σ , x ∈M, ξ ∈ Xj .

This along with the estimate for |tηω| in (4.31) yield

|T−1ψη(x)| ≤
∑
m≥0

∑
ω∈Xm

|tηω||ψω(x)− θω(x)|

≤ c
∑
m≥0

∑
ω∈Xm

b−|ν−m|σ(
1 + bν∧mρ(η, ω)

)σ |B(ω, b−m)|−1/2(
1 + bmρ(x, ω)

)σ .
By (1.2) and (2.2) it readily follows that

|B(η, b−ν)| ≤ c20b|ν−m|d
(
1 + bν∧mρ(η, ω)

)d|B(ω, b−m)|.
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We insert this above and obtain

|T−1ψη(x)| ≤ c|B(η, b−ν)|−1/2
∑
m≥0

∑
ω∈Xm

b−|ν−m|(σ−d/2)(
1 + bν∧mρ(η, ω)

)σ−d/2 1(
1 + bmρ(x, ω)

)σ
≤ c|B(η, b−ν)|−1/2(

1 + bνρ(η, x)
)σ−d/2−1

.

Here for the last inequality we used (4.27) with σ replaced by σ− d/2− 1 ≥ 2d+ 1.
Finally, observe that since σ can be selected selected arbitrarily large then above σ
can be replaced by σ + d/2 + 1, which leads to (4.32). This completes the proof of
the lemma. �

We are now ready to complete the proof of Theorem 4.6. Using Lemmas 4.8-4.9
we obtain

|〈T−1ψη, ψ̃ξ〉| ≤
∑
m≥0

∑
ω∈Xm

|tηω||〈ψω − θω, ψ̃ξ〉|

≤ c
∑
m≥0

∑
ω∈Xm

b−|ν−m|σ(
1 + bν∧mρ(η, α)

)σ b−|m−j|(σ+1)(
1 + bm∧jρ(ω, α)

)σ
≤ cb−|ν−j|σ(

1 + bν∧jρ(η, ξ)
)σ .

Using this in (4.30) implies (4.22) with γ = σ.
To establish (4.23) we use the estimate for |αξη| in (4.22) (with γ = σ) and the

localization of ψ̃ξ from (4.36). We get

|θ̃ξ(x)| ≤
∑
ν≥0

∑
η∈Xν

|〈T−1ψη, ψ̃ξ〉||ψ̃η(x)|

≤ c
∑
ν≥0

∑
η∈Xν

b−|j−ν|σ(
1 + bj∨νρ(ξ, η)

)σ |B(η, b−ν)|−1/2(
1 + bνρ(x, η)

)σ .
Now, just as in the proof of Lemma 4.9 we conclude that (4.23) holds true. �

5. Application of compactly supported frames to Hardy spaces

In this section we consider atomic Hardy spaces Hp
A, 0 < p ≤ 1, in the general

setting of this article (§1). We use the compactly supported frames from §4 to
establish Littlewood-Paley characterization, and as a consequence, frame decompo-
sition of the atomic Hardy spaces Hp

A. This result can also be viewed as an atomic
decomposition of the Triebel-Lizorkin spaces F 0

p2, 0 < p ≤ 1.

Inhomogeneous atomic Hardy spaces. In introducing atoms we follow to
a large extent [10, 4]. The inhomogeneous nature of our setting, however, compels
us to introduce two kinds of atoms.

Definition 5.1. Let 0 < p ≤ 1 and n := bd/2pc + 1, where d is from (1.2).
A function a is called an atom (of type A or B) associated with the operator L if it
satisfies one of the following sets of conditions:

(A) There exists a ball B of radius r = rB, r ≥ 1, such that

(i) supp a ⊂ B and
(ii) ‖a‖L2 ≤ |B|1/2−1/p.
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(B) There exists a function b ∈ D(Ln) and a ball B of radius r = rB, r > 0 such
that

(i) a = Lnb,
(ii) suppLkb ⊂ B, k = 0, 1, . . . , n, and

(iii) ‖Lkb‖L2 ≤ r2(n−k)|B|1/2−1/p, k = 0, 1, . . . , n.

Being in a setting different from the one in [10, 4] we define the atomic Hardy
spaces Hp

A as spaces of distributions (§2.4).

Definition 5.2. The atomic Hardy space Hp
A, 0 < p ≤ 1, is defined as the set of

all distributions f ∈ D′ that can be represented in the form

(5.1) f =

∞∑
j=1

λjaj , where

∞∑
j=1

|λj |p <∞,

{aj} are atoms, and the convergence is in D′. We set

(5.2) ‖f‖HpA := inf
f=

∑
j≥1 λjaj

(∑
j≥1

|λj |p
)1/p

, f ∈ Hp
A.

Our first order of business is to give an example of atoms.

Lemma 5.3. Assume that the constant N from the construction of Θ in Proposi-
tion 4.1 obeys the condition N ≥ 2n = 2bd/2pc+ 2.

(i) For any ξ ∈ X0 the function

aξ := |B(ξ, 1)|1/2−1/pθξ with supp aξ ⊂ B(ξ, c̃R),

is a constant multiple of an atom of type A.
(ii) For any ξ ∈ Xj, j ≥ 1, the function

aξ := |B(ξ, b−j)|1/2−1/pθξ with supp aξ ⊂ B(ξ, c̃Rb−j),

is a constant multiple of an atom of type B.
Above the constants c̃, R are from (4.7).

Proof. Part (i) is immediate from the construction of θξ, ξ ∈ X0.
To prove Part (ii) we put

bξ(x) := |B(ξ, b−j)|1/2−1/p|Aξ|1/2L−nΘ(b−j
√
L)(x, ξ) for ξ ∈ Xj , j ≥ 1.

Clearly, Lnbξ = aξ and

Lkbξ(x) = |B(ξ, b−j)|1/2−1/p|Aξ|1/2L−(n−k)Θ(b−j
√
L)(x, ξ)(5.3)

= |B(ξ, b−j)|1/2−1/p|Aξ|1/2b−2j(n−k)g(b−j
√
L)(x, ξ),

where g(t) := t−2(n−k)Θ(t). By Proposition 4.1 supp ĝ ⊂ [−R,R] and applying

Proposition 2.1 we obtain suppLkbξ = g(b−j
√
L)(·, ξ) ⊂ B(ξ, r) with r = c̃Rb−j ,

k = 0, 1, . . . , n.
On the other hand, by Theorem 2.2 it follows that

‖g(b−j
√
L)(·, ξ)‖∞ ≤ c|B(ξ, b−j)|−1

and we know that |Aξ| ≤ |B(ξ, b−j)|, ξ ∈ Xj . These coupled with (5.3) imply

(5.4) ‖Lkbξ‖∞ ≤ cb−2j(n−k)|B(ξ, b−j)|−1/p ≤ c′r2(n−k)|B(ξ, r)|−1/p,
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where the constant c′ > 0 depends on b, R, c̃, n. Here for the last inequality we
used (1.2). Now, the estimate ‖Lkbξ‖L2 ≤ cr2(n−k)|B(ξ, r)|1/2−1/p follows by (5.4)
and suppLkbξ ⊂ B(ξ, r). �

We now come to the main result in this section.

Theorem 5.4. We have Hp
A = F 0

p2, 0 < p ≤ 1, and

(5.5) ‖f‖HpA ∼ ‖f‖F 0
p2

for f ∈ Hp
A.

Proof. For the proof of the estimate ‖f‖F 0
p2
≤ c‖f‖HpA , f ∈ Hp

A, we need this

lemma:

Lemma 5.5. For any atom a and 0 < p ≤ 1, we have

(5.6) ‖a‖F 0
p2
≤ c <∞.

Proof. Let a be an atom of type B in the sense of Definition 5.1 and suppose
supp a ⊂ B, B = B(z, r). Denote briefly B2 := B(z, 2r). Let {ϕj}j≥0 be the
functions from the definition of the B- and F-spaces in §2.4. From Spectral theory

it follows that Tf :=
(∑

j≥0 |ϕj(
√
L)f(·)|2

)1/2

is a bounded operator on L2(M).

Therefore,∥∥∥(∑
j≥0

|ϕj(
√
L)a(·)|2

)1/2∥∥∥
Lp(B2)

≤
∥∥∥(∑

j≥0

|ϕj(
√
L)a(·)|2

)1/2∥∥∥
L2(B2)

|B2|1/p−1/2

≤
∥∥∥(∑

j≥0

|ϕj(
√
L)a(·)|2

)1/2∥∥∥
L2(M)

|B2|1/p−1/2

≤ c‖a‖L2 |B|1/p−1/2 ≤ c,

where we used Hölder’s inequality and that ‖a‖L2 ≤ |B|1/2−1/p.

To estimate
∥∥∥(∑j≥0 |ϕj(

√
L)a(·)|2

)1/2∥∥∥
Lp(M\B2)

we split the index set into two,

depending on whether 2j ≥ 1/r or 2j < 1/r.
Let 2j ≥ 1/r. From Theorem 2.2 and (2.3) it follows that for any σ > 0 and

j ≥ 1

(5.7) |ϕj(
√
L)(x, y)| = |ϕ(2−j

√
L)(x, y))| ≤ cσ|B(y, 2−j)|−1

(
1 + 2jρ(x, y)

)−σ
.

For the same reason this estimate holds for j = 0 as well. We choose σ > d(2+1/p).
Let x ∈M \B2 and y ∈ B. By (1.2) and using that ρ(x, z) ≥ r and r2j > 1 we

get

|B| = |B(z, r)| ≤ c0(r2j)d|B(z, 2−j)| ≤ c0
(
1 + 2jρ(x, z)

)d|B(z, 2−j)|.
On the other hand, by (2.2) and since ρ(z, y) ≤ r ≤ ρ(x, z) we have

|B(z, 2−j)| ≤ c0
(
1 + 2jρ(z, y)

)d|B(y, 2−j)| ≤ c0
(
1 + 2jρ(x, z)

)d|B(y, 2−j)|
Therefore,

|B| ≤ c20
(
1 + 2jρ(x, z)

)2d|B(y, 2−j)|.
We use this and the obvious inequalities ρ(x, z) ≤ ρ(x, y) + ρ(y, z) ≤ 2ρ(x, y) in
(5.7) to obtain

|ϕj(
√
L)(x, y)| ≤ c|B|−1

(
1 + 2jρ(x, z)

)−σ+2d
, x ∈M \B2, y ∈ B.
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In turn, this and the fact that supp a ⊂ B and ‖a‖2 ≤ |B|1/2−1/p lead to

|ϕj(
√
L)a(x)| =

∣∣∣ ∫
B

ϕ(2−j
√
L)(x, y)a(y)dµ(y)

∣∣∣ ≤ ‖a‖L2‖ϕ(2−j
√
L)(x, ·)‖L2(B)

≤ |B|1−1/p‖ϕ(2−j
√
L)(x, ·)‖L∞(B) ≤

c|B|−1/p

(1 + 2jρ(x, z))σ1

for x ∈ M \ B2 with σ1 := σ − 2d > 0. Summing up using that ρ(x, z) ≥ r ≥ 2−j

we infer∑
2j≥1/r

|ϕj(
√
L)a(x)|2 ≤ c|B|−2/p

∑
2j≥1/r

1

(1 + 2jρ(x, z))2σ1
≤ c|B|−2/p

(1 + r−1ρ(x, z))2σ1
.

Therefore,

(5.8)
∥∥∥( ∑

2j≥1/r

|ϕj(
√
L)a(·)|2

)1/2∥∥∥p
Lp(M\B2)

≤ c
∫
M

|B|−1dµ(x)

(1 + r−1ρ(x, z))pσ1
≤ c.

For the last inequality we used (2.4) and that pσ1 = p(σ − 2d) > d.
Let 2j < 1/r. By Corollary 2.3 and (2.3) it follows that for any σ > 0 and j ≥ 1

(5.9) |Lnϕj(
√
L)(x, y)| = |Lnϕ(2−j

√
L)(x, y))| ≤ cσ22jn

|B(y, 2−j)|(1 + 2jρ(x, y))σ
.

Exactly in the same way replacing ϕ with ϕ0 we infer that this estimate holds for
j = 0. We choose σ ≥ 2n.

Let x ∈ M \ B2 and y ∈ B. Clearly, B(z, r) ⊂ B(y, 2r) and using (1.1) and
r < 2−j we obtain

|B| = |B(z, r)| ≤ |B(y, 2r)| ≤ c02d|B(y, r)| ≤ c02d|B(y, 2−j)|.

This along with the obvious inequality ρ(x, z) ≤ 2ρ(x, y) and (5.9) yield, for any
x ∈M \B2,

|ϕj(
√
L)a(x)| =

∣∣∣ ∫
B

Lnϕ(2−j
√
L)(x, y)b(y)dµ(y)

∣∣∣
≤ ‖b‖L2‖Lnϕ(2−j

√
L)(x, ·)‖L∞(B)|B|1/2 ≤

c|B|−1/p(2jr)2n

(1 + 2jρ(x, z))σ
.

By Definition 5.1 we have n > d/2p. Choose ε > 0 so that p(4n− ε)/2 > d. Then,
from above∑

2j<1/r

|ϕj(
√
L)a(x)|2 ≤ c|B|−2/p

∑
2j<1/r

(2jr)4n

(1 + 2jρ(x, z))4n−ε

≤ c|B|−2/p
∑

2j<1/r

(2jr)4n

(2jr)4n−ε
(
1 + ρ(x,z)

r

)4n−ε
≤ c|B|−2/p(

1 + ρ(x,z)
r

)4n−ε ∑
2j<1/r

(2jr)ε

≤ c|B|−2/p(
1 + ρ(x,z)

r

)4n−ε , x ∈M \B2.
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This implies∥∥∥( ∑
2j<1/r

|ϕj(
√
L)a(·)|2

)1/2∥∥∥p
Lp(M\B2)

≤ c|B|−1

∫
M

dµ(x)(
1 + ρ(x,z)

r

)p(4n−ε)/2 ≤ c.
For the last inequality we used (2.4) and that p(4n − ε)/2 > d. Putting together
the above estimates we arrive at (5.6).

Consider now the case when a is an atom of type A. Then supp a ⊂ B, where
B = B(z, r) for some z ∈ M and r ≥ 1, and ‖a‖L2 ≤ |B|1/2−1/p. In this case, we
proceed exactly as above with one important distinction. As r ≥ 1 the set of all
j ≥ 0 such that 2j < 1/r is empty and, therefore, the estimate ‖a‖L2 ≤ |B|1/2−1/p

is sufficient to obtain the same result. This completes the proof of Lemma 5.5. �

Assume f ∈ Hp
A. Then there exist atoms {ak}k≥1 (see Definition 5.1) such that

f =
∑
k λkak (with convergence in D′) and

∑
k |λk|p ≤ 2‖f‖p

HpA
. By the properties

of ϕj it follows that ϕj(
√
L)f(x) =

∑
k λkϕj(

√
L)ak(x), x ∈ M , j ≥ 0. Therefore,

with the notation (as above) Tf :=
(∑

j≥0 |ϕj(
√
L)f(·)|2

)1/2

we have for x ∈M

Tf(x) =
∥∥∥(∑

k

λkϕj(
√
L)ak(x)

)∥∥∥
`2
≤
∑
k

|λk|
∥∥(ϕj(√L)ak(x)

)∥∥
`2

=
∑
k

|λk|Tak(x).

Using the above and Lemma 5.5 we obtain

‖f‖p
F 0
p2

= ‖Tf‖pp ≤
∑
k

|λk|p‖Tak‖pp ≤ c
∑
k

|λk|p ≤ c‖f‖pHpA

as claimed. This completes the first part of the proof.

Assume f ∈ F 0
p2. We shall show that f ∈ Hp

A and ‖f‖HpA ≤ c‖f‖F 0
p2

. To this end

for the given 0 < p ≤ 1 we set s0 = 0, p0 = p, p1 = 2, and q0 = 2, and impose on the
parameters K,N in the construction of {θξ}ξ∈X and Theorem 4.2 the additional
conditions

(5.10) K ≥ 3d/2 + 1 and N ≥ 2K + 4n+ 3d+ 2,

where n := bd/2pc + 1 as in Definition 5.1. Then for sufficiently small ε in the
construction of {θξ} Theorem 4.2 remains valid with Bspq, b

s
pq replaced by F 0

p2, f0
p2.

In particular, denoting X ′ := ∪j≥1Xj , we have

(5.11) f =
∑
ξ∈X

〈f, θ̃ξ〉θξ =
∑
ξ∈X0

〈f, θ̃ξ〉θξ +
∑
ξ∈X ′
〈f, θ̃ξ〉θξ =: f0 + f1,

where the convergence is unconditional in F 0
p2, and

‖f‖F 0
p2
∼
∥∥∥(∑

ξ∈X

[
|〈f, θ̃ξ〉|1̃Aξ(·)

]2)1/2∥∥∥
Lp

∼
( ∑
ξ∈X0

[
|〈f, θ̃ξ〉||Aξ|1/p−1/2

]p)1/p

+
∥∥∥( ∑

ξ∈X ′

[
|〈f, θ̃ξ〉|1̃Aξ(·)

]2)1/2∥∥∥
Lp
.(5.12)

We split the atomic decomposition of f into two steps by decomposing first f0

and then f1 (see (5.11)).
From Lemma 5.3 we know that there exists a constant c∗ > 0 such that for any

ξ ∈ X0 the function aξ := c∗|B(ξ, 1)|1/2−1/pθξ is an atom (of type A). On the other
hand, from the definition of {Aξ} in §2.3 it follows that |Aξ| ∼ |B(ξ, 1)|, ξ ∈ X0.
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Setting λξ := c−1
∗ 〈f, θ̃ξ〉|B(ξ, 1)|1/p−1/2 we get |λξ| ≤ c|〈f, θ̃ξ〉||Aξ|1/p−1/2, ξ ∈ X0.

From this and (5.12) we infer

(5.13) f0 =
∑
ξ∈X0

〈f, θ̃ξ〉θξ =
∑
ξ∈X0

λξaξ and
∑
ξ∈X0

|λξ|p ≤ c‖f‖pF 0
p2
.

We now turn to the atomic decomposition of f1. By (4.7) we have supp θξ ⊂ Bξ,
where Bξ := B(ξ, δj), δj := c̃Rb−j for ξ ∈ Xj . Denote briefly αξ := 〈f, θ̃ξ〉. We
may assume that αξ 6= 0 for ξ ∈ X ′ (otherwise we remove ξ from X ′). Set

g(x) :=
( ∑
ξ∈X ′

|αξ|2|Bξ|−1
1Bξ(x)

)1/2

and write Ωr := {x ∈ M : g(x) > 2r}, r ∈ Z. Obviously, Ωr+1 ⊂ Ωr for r ∈ Z and
∪r∈ZΩr = ∪ξ∈X ′Bξ. It is easy to see that

(5.14)
∑
r∈Z

2pr|Ωr| ≤ cp
∫
M

g(x)pdµ(x).

Indeed, we have∑
r∈Z

2pr|Ωr| =
∑
r∈Z

2pr
∑
ν≥r

|Ων \ Ων+1| =
∑
ν∈Z
|Ων \ Ων+1|

∑
r≤ν

2pr

≤ cp
∑
ν∈Z

2pν |Ων \ Ων+1| ≤ cp
∑
ν∈Z

∫
Ων\Ων+1

g(x)pdµ(x) = cp

∫
M

g(x)pdµ(x).

Define
Br :=

{
Bξ : |Bξ ∩ Ωr| ≥ |Bξ|/2 and |Bξ ∩ Ωr+1| < |Bξ|/2

}
and observe that Br ∩ Bs = ∅ if r 6= s and {Bξ}ξ∈X ′ = ∪r∈ZBr. We next introduce
a partial order on the set {Bξ}. Namely, we write Bη ≺ Bξ if

(i) Bξ, Bη ∈ Br for some r ∈ Z, and
(ii) if ξ ∈ Xj , η ∈ Xk for some j < k, there exists a chain Bξ1 , . . . , Bξm ∈ Br

such that Bξ1 = Bξ, Bξm = Bη, Bξν ∩ Bξν+1 6= ∅ and level (ξν) < level (ξν+1) for
1 ≤ ν ≤ m− 1.

Denote by M(Br) the set of all maximal elements Bξ ∈ Br with respect to ≺
and for each Bξ ∈ M(Br) set Tξ := {Bη ∈ Br : Bη ≺ Bξ}. By assigning each ball
Bη ∈ Br to only one Tξ we may assume that these are disjoint sets. Therefore, we
have the following decomposition into disjoint “trees”:

{Bη}η∈X ′ = ∪r∈Z ∪Bξ∈M(Br) Tξ.
We associate with each such “tree” Tξ (ξ ∈ Xj) the function fξ :=

∑
η∈Tξ αηθη and

set

(5.15) aξ := c?|B(ξ, 3δj)|−1/p2−rfξ, bξ := L−naξ, and λξ := c−1
? |B(ξ, 3δj)|1/p2r.

We next show that aξ is an atom if the constant c? > 0 is selected sufficiently small.
Observe first that each ball Bη ∈ Tξ (ξ ∈ Xj) is connected to Bξ := B(ξ, δj) by

a chain of balls and hence Bη ⊂ B(ξ, γ) with γ := δj(1 +
∑
ν≥1 2b−ν) ≤ 3δj , using

that b ≥ 2. On the other hand, from the proof of Lemma 5.3 suppL−mθη ⊂ Bη
for 0 ≤ m ≤ n, and hence suppLkbξ ⊂ ∪η∈TξBη ⊂ B(ξ, 3δj), 0 ≤ k ≤ n. Thus, to
prove that aξ is an atom, it remains to show that if the constant c? is sufficiently
small, then

(5.16) ‖Lkbξ‖L2 ≤ (3δj)
2(n−k)|B(ξ, 3δj)|1/2−1/p, 0 ≤ k ≤ n,
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which is equivalent to

(5.17) ‖L−maξ‖L2 ≤ (3δj)
2m|B(ξ, 3δj)|1/2−1/p, 0 ≤ m ≤ n.

For this we need the following Bessel type property of {L−mθη}:

Lemma 5.6. For any sequence of numbers {βη}η∈X ′ and 0 ≤ m ≤ n we have

(5.18)
∥∥∥ ∑
η∈X ′

βηL
−mθη

∥∥∥2

L2
≤ c

∑
η∈X ′

b−4mjη |βη|2.

Here, jη is the level of η, i.e. η ∈ Xjη .

Proof. To prove the above inequality we shall show that the elements of the Gram
matrix of {L−mθη} decay sufficiently fast away from the main diagonal, namely, if
ξ ∈ Xj , η ∈ X`, ` ≥ j ≥ 1, and 0 ≤ m ≤ n then

(5.19) |〈L−mθξ, L−mθη〉| ≤ cb−4mjb−(`−j)N/2(1 + bjρ(ξ, η)
)−K

.

To prove (5.19) we proceed similarly as in the proof of Theorem 4.5. From (4.6)
we obtain

|〈L−mθξ, L−mθη〉| ≤ c|B(ξ, b−j)|1/2|B(η, b−`)|1/2|L−2mΘ(b−j
√
L)Θ(b−`

√
L)(ξ, η)|.

Set F (λ) := λ−4mΘ(λ)Θ(b−(`−j)λ). Then

(5.20) F (b−j
√
L) = b4mjL−2mΘ(b−j

√
L)Θ(b−`

√
L),

and by Proposition 4.1 we obtain for ν = 0, 1, . . . ,K

|F (ν)(λ)| ≤ cb−(`−j)Nλ2N

λ4m(1 + λ)2N (1 + b−(`−j)λ)2N
≤ cb−(`−j)N/2

(1 + λ)N/2
, λ ≥ 1,

and

|F (ν)(λ)| ≤ cb−(`−j)Nλ2N

λ4m+K(1 + λ)2N (1 + b−(`−j)λ)2N
≤ cb−(`−j)N/2

(1 + λ)N/2
, 0 < λ < 1.

Here we used that 2N > K+4n and for the same reason F (ν)(0) = 0, ν = 0, . . . ,K.
Now, we apply Theorem 2.4 using that N/2 ≥ K + d+ 1 (see (5.10)) and obtain

|F (b−j
√
L)(x, y)| ≤ cb−(`−j)N/2

|B(x, b−j)|1/2|B(y, b−j)|1/2(1 + bjρ(x, y))K
.

This along with (5.20) implies (5.19).
Denote briefly υξ(x) := b2mjL−mθξ(x) for ξ ∈ Xj . Then, if ξ ∈ Xj , η ∈ X`,

` ≥ j ≥ 1, then

|〈υξ, υη〉| ≤ cb−(`−j)(N/2−2m)
(
1+bjρ(ξ, η)

)−K ≤ cb−(`−j)( 3d
2 +1)

(
1+bjρ(ξ, η)

)− 3d
2 −1

,

where we used that N/2 ≥ 2n+3d/2+1 and K ≥ 3d/2+1. This and Definition 4.3
imply that the Gram matrix G := (〈υξ, υη〉)ξ,η∈X ′ is almost diagonal for f0

22 = `2

and by Theorem 4.4 the operator associated with this matrix is bounded on `2.
Therefore, for any sequence of numbers {βη}η∈X ′ and 0 ≤ m ≤ n,∥∥∥ ∑

η∈X ′
βηL

−mθη

∥∥∥2

L2
=
∥∥∥ ∑
η∈X ′

b−2mjηβηυη

∥∥∥2

L2

≤ ‖G‖2→2

∑
η∈X ′

|b−2mjηβη|2 ≤ c
∑
η∈X ′

|b−2mjηβη|2,

which verifies (5.18). �
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We are now prepared to prove (5.17). Let ξ ∈ Xj , Bξ ∈ M(Br) for some r > 0,
and 0 ≤ m ≤ n. Then using (5.18) we get

(5.21) ‖L−mfξ‖2L2 =
∥∥∥ ∑
η∈Tξ

αηL
−mθη

∥∥∥2

L2
≤ cb−4mj

∑
η∈Tξ

|αη|2.

On the other hand, for any Bη ∈ Tξ we have Bη ⊂ B(ξ, 3δj), which gives

1 ≤ 2|Bη|−1|Bη \ Ωr+1| = 2|Bη|−1

∫
B(ξ,3δj)\Ωr+1

1Bηdµ.

Thus, ∑
η∈Tξ

|αη|2 ≤ 2

∫
B(ξ,3δj)\Ωr+1

∑
η∈Tξ

|αη|2|Bη|−1
1Bηdµ

≤ 2

∫
B(ξ,3δj)\Ωr+1

|g(x)|2dµ(x) ≤ c|B(ξ, 3δj)|22r.

This coupled with (5.21) implies

‖L−maξ‖L2 = c?|B(ξ, 3δj)|−1/p2−r‖L−mfξ‖L2

≤ cc?b−2mj |B(ξ, 3δj)|1/2−1/p ≤ cc?(3δj)2m|B(ξ, 3δj)|1/2−1/p.

Choosing c? so that cc? = 1 we arrive at ‖L−maξ‖L2 ≤ (3δj)
2m|B(ξ, 3δj)|1/2−1/p.

Therefore, with this choice of c? the function aξ from (5.15) is an atom.
By assumption f ∈ F 0

p2 and hence the representation (5.11) is valid, where the

convergence is unconditional in F 0
p2. As F 0

p2 is continuously embedded in D′ [12,
Prposition 7.3], the series in (5.11) converges unconditionally in D′ as well. Thus,
we can rearrange the terms in the representation of f1 as we please, in particular,

(5.22) f1 =
∑
r∈Z

∑
Bξ∈M(Br)

λξaξ in D′.

Now, using (5.14)-(5.15) and the fact that each aξ, when Bξ ∈ M(Br), is an atom
we obtain

(5.23)

∑
r∈Z

∑
Bξ∈M(Br)

|λξ|p ≤ cc−p?
∑
r∈Z

∑
Bξ∈M(Br)

2pr|Bξ|

≤ c
∑
r∈Z

∑
Bξ∈M(Br)

2pr|Bξ ∩ Ωr|

≤ c
∑
r∈Z

2pr|Ωr| ≤ c‖g‖pp ≤ c‖f‖
p
F 0
p2
.

Here for the last inequality we used that 1Bξ(x) ≤ cM11Aξ(x), ξ ∈ X ′, and applied
the maximal inequality (2.40).

From (5.13) and (5.22)-(5.23) it follows that f ∈ Hp
A and ‖f‖HpA ≤ c‖f‖F 0

p2
. This

completes the proof of Theorem 5.4. �

6. Frames with small supports on the interval, ball, and simplex

The purpose of this section is to illustrate our heat kernel based method for
construction of frames in three classical cases (interval, ball, and simplex), where
orthogonal polynomials appear naturally as eigenfunctions; the case on the sphere
is completed in [20, 16].
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6.1. Frames with small shrinking supports on [−1, 1] with Jacobi weights.
Consider the case when M = [−1, 1], dµ(x) = wα,β(x)dx, where

wα,β(x) = w(x) := (1− x)α(1 + x)β , α, β > −1,

and

Lf(x) = − [w(x)a(x)f ′(x)]′

w(x)
, a(x) = (1− x2).

As is well known [24] the (normalized) Jacobi polynomials Pk, k = 0, 1, . . . , are
eigenfunctions of the operator L, i.e. LPk = λkPk with λk = k(k + α+ β + 1).

It is not hard to see that the operator L is essentially self-adjoint and positive.
In [2] it is shown that L generates a complete strictly local Dirichlet space with
an intrinsic metric on [−1, 1] defined by

(6.1) ρ(x, y) = | arccosx− arccos y|.

The doubling property of the measure dµ follows readily by the following estimates
on |B(x, r)| = µ(B(x, r)):

|B(x, r)| ∼ r(1− x+ r2)α+1/2(1 + x+ r2)β+1/2.

The Poincaré inequality holds true and appears in the form: For any weakly differ-
entiable function f : [−1, 1]→ C and an interval I = [a, b] ⊂ [−1, 1]

(6.2)

∫
I

|f(x)− fI |2w(x)dx ≤ c(diam ρ(I))2

∫
I

|f ′(x)|2(1− x2)w(x)dx

where diam ρ(I) = arccos a− arccos b, fI = 1
w(I)

∫
I
f(x)w(x)dx, w(I) =

∫
I
w(x)dx.

We refer the reader to [2] for details and proofs.
Thus we are in a situation which fits in the general setting of complete strictly

local Dirichlet spaces, where the local Poincaré inequality and doubling condition
on the measure are obeyed (see [2]). The heat kernel associated with the Jacobi
operator takes the form

(6.3) pt(x, y) =
∑
k≥0

e−λktPk(x)Pk(y), λk = k(k + α+ β + 1),

and the general theory leads to Gaussian bounds on pt(x, y): For any 0 < t ≤ 1
and x, y ∈ [−1, 1]

(6.4)
c′1 exp{− c1ρ

2(x,y)
t }(

|B(x,
√
t)||B(y,

√
t)|
)1/2 ≤ pt(x, y) ≤

c′2 exp{− c2ρ
2(x,y)
t }(

|B(x,
√
t)||B(y,

√
t)|
)1/2 .

In turn, the upper bound above implies that the finite speed propagation property
holds and as a consequence we arrive at the following fundamental property of

Jacobi polynomials: If f is even, supp f̂ ⊂ [−A,A] for some A > 0, and f̂ ∈ W 2
∞,

i.e. ‖f̂ (2)‖∞ <∞, then for δ > 0 and x, y ∈ [−1, 1]

(6.5)
∑
k≥0

f(δ
√
λk)Pk(x)Pk(y) = 0 if ρ(x, y) > c̃δA.

In this case the eigenspaces have the polynomial property (the product of two
polynomials of degree n is a polynomial of degree 2n) and, therefore, the “simple”
scheme from §5.3 in [2] or §4.4 in [12] produces a frame {ψ}ξ∈X , which can be used
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for decomposition of weighted Besov and Triebel-Lizorkin spaces on [−1, 1] in the
form

(6.6) f =
∑
ξ∈X

〈f, ψξ〉ψξ,

and the B- and F-norms of f are characterized by respective sequence norms of
{〈f, ψξ〉} just as in Theorems 2.10-2.11 above.

Now, the scheme from §3.3, §4 produces a pair of dual frames {θξ}ξ∈X , {θ̃ξ}ξ∈X
which can be used for decomposition of the B- and F-spaces with frame characteriza-
tion of the norms as in Theorem 4.2. Here X has a multilevel structure: X = ∪j≥0Xj
and the frame elements {θξ} have shrinking supports, namely, supp θξ ⊂ B(ξ, cb−j),
ξ ∈ Xj , j ≥ 0.

Remark. Here we have an example where the general method presented in this
paper allows to improve on well known results and produce new results in a con-
crete classical setting. The Gaussian bounds (6.4) for the heat kernel (6.3) were
established in [2] and also independently in [21] in the case when α, β ≥ −1/2.
The finite speed propagation property and its important consequence (6.5) to the
best of our knowledge appear explicitly first in this article and implicitly in [12].
Frames as in (6.6) and their utilization for decomposition of weighted Besov and
Triebel-Lizorkin spaces on [−1, 1] with weight ωα,β(x) are developed in [18] under
the condition α, β > −1/2, while above we assume α, β > −1. Up to now frames
with small shrinking supports on [−1, 1] with weight ωα,β(x) were only possible
from [17] in the case when α = β, α is a half integer, and α ≥ −1/2, while here we
operate under the assumption α, β > −1. Therefore, as a whole the proposed heat
kernel based development of Jacobi frames is more complete.

6.2. Heat kernel and frames with small shrinking supports on the ball.
Let M be the unit ball Bd := {x ∈ Rd : |x| < 1} in Rd and the measure be
dν(x) = wµ(x)dx, where

wµ(x) := (1− |x|2)µ−1/2, µ > −1/2.

Here |x| is the Euclidean norm of x ∈ Rd. Consider the differential operator

(6.7) Lµ := −∆ +
d∑
i=1

d∑
j=1

xixj∂i∂j + (2µ+ d)
d∑
j=1

xi∂i,

which has orthogonal polynomials on Bd with weight wµ as eigenfunctions. To be
more specific, denote by V dn the space for all polynomials of degree n in d vari-
ables which are orthogonal to lower degree polynomials in L2(Bd, wµ). These are
eigenspaces of the differential operator Lµ (see e.g. [3, 5]), i.e.

LµP = λnP for P ∈ V dn with λn = n(n+ d+ 2µ− 1).

In [13] it is shown that the operator Lµ from (6.7) is essentially self-adjoint and
positive, and Lµ generates a complete strictly local Dirichlet space with an intrinsic
metric on Bd defined by

ρ(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
.

More importantly, the respective local scale-invariant Poincaré inequality holds.
Furthermore, it is easy to see that ν(B(x, r)) ∼ rd(r2 + 1− |x|2), which implies the
validity of the doubling condition on the measure.
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Therefore, the machinery of Dirichlet spaces applies and the results from [2, 12]
and the current article apply in full. We next describe their main implications.
If {Pα}|α|=n is an orthonormal basis for the space V dn , then the kernel of the

the orthogonal projector Proj n : L2(Bd, wµ) 7→ V dn can be written in the form
Pn(wµ;x, y) =

∑
|α|=n Pα(x)Pα(y); it is independent of the particular selection of

the basis {Pα}|α|=n in V dn . The associated heat kernel takes the form

(6.8) pt(x, y) =
∑
n≥0

e−λntPn(wµ;x, y).

The Poincaré inequality and doubling property of the measure yield Gaussian
bounds on the heat kernel pt(x, y), which appear just as in (6.4). In turn, the
Gaussian upper bound implies the finite speed propagation property which implies

the following property: If f is even, supp f̂ ⊂ [−A,A] for some A > 0, and f̂ ∈W 2
∞,

then for δ > 0 and x, y ∈ Bd

(6.9)
∑
n≥0

f(δ
√
λn)Pn(wµ;x, y) = 0 if ρ(x, y) > c̃δA.

The polynomial property of the eigenspaces V dn allows to apply the “simple”
scheme from [2] or [12] and construct a frame {ψ}ξ∈X for the weighted Besov
and Triebel-Lizorkin spaces just as in Theorems 2.10-2.11 above. Furthermore, the
scheme from §3.3, §4 enables us to construct a pair of dual frames {θξ}ξ∈X , {θ̃ξ}ξ∈X
for the weighted B- and F-spaces with weight wµ(x). The supports of the frame
elements {θξ}ξ∈X shrink, more precisely, supp θξ ⊂ B(ξ, cb−j), ξ ∈ Xj , j ≥ 0.

Remark. The weighted Besov and Triebel-Lizorkin spaces on Bd with weight
wµ(x) and their frame decomposition have already been developed in [19] under
the condition µ ≥ 0. Frames with small shrinking supports for the same spaces are
developed in [17] under the condition that µ is a half-integer and µ ≥ 0. The main
points in our development on the ball are that, first, with the use of the heat kernel
technology from [2, 12, 13] we free the development of spaces and frames on the
ball from the restriction µ ≥ 0, replacing it by µ > −1/2, second, we develop here
frames with small shrinking supports under the natural condition µ > −1/2, and
third, we have a characterization of atomic Hardy spaces on the ball.

6.3. Heat kernel and frames with small supports on the simplex. We con-
sider now the case when M is the simplex

Td = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, 1− ‖x‖1 ≥ 0}, ‖x‖1 := |x1|+ . . .+ |xd|,

with measure dν(x) := wκ(x)dx, where

wκ(x) = x
κ1− 1

2
1 · · ·xκd−

1
2

d (1− ‖x‖1)κd+1− 1
2 , κi > −1/2.

Consider the differential operator (with ∂i := ∂/∂xi and |κ| := κ1 + · · ·+ κd)

Lκ := −
d∑
i=1

xi∂
2
i +

d∑
i=1

d∑
j=1

xixj∂i∂j −
d∑
i=1

(
κi + 1

2 − (|κ|+ d+1
2 )xi

)
∂i.

As is well known (see [3]) the orthogonal polynomials on Td with respect to wκ are
eigenfunctions of Lκ. More explicitly, if V dn denotes the space of all polynomials of
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degree n which are orthogonal to lower degree polynomials in L2(Td, wκ), then

LκP = λnP for P ∈ V dn with λn := n(n+ 2lκ), lκ := |κ|+ d− 1

2
.

In [13] it is shown that Lκ is an essentially self-adjoint positive operator which
generates a complete strictly local Dirichlet space with an intrinsic metric on Td
defined by

ρ(x, y) := arccos
{√

x1y1 + · · ·+√xdyd +
√

(1− ‖x‖1)(1− ‖y‖1)
}
.

Moreover, the respective local scale-invariant Poincaré inequality is valid [13]. Also,
it is easy to see that

|B(x, r)| = ν(B(x, r)) ∼ rd
d+1∏
i=1

(r2 + xi)
κi ,

which implies the doubling property of the measure. Thus, we are again in a
position to run the machinery of Dirichlet spaces and the results from [2, 12] and
the previous sections apply in full.

Assuming that {Pα}|α|=n is an orthonormal basis for the space V dn , the kernel

of the orthogonal projector Proj n : L2(Td, wκ) 7→ V dn can be written in the form
Pn(wκ;x, y) =

∑
|α|=n Pα(x)Pα(y). Therefore, the associated heat kernel can be

written as

(6.10) pt(x, y) =
∑
n≥0

e−λntPn(wκ;x, y).

Gaussian bounds on pt(x, y) follow by the Poincaré inequality and the doubling
property of the measure, namely, for 0 < t ≤ 1 and x, y ∈ Td

(6.11)
c′1 exp{− c1ρ

2(x,y)
t }(

|B(x,
√
t)||B(y,

√
t)|
)1/2 ≤ pt(x, y) ≤

c′2 exp{− c2ρ
2(x,y)
t }(

|B(x,
√
t)||B(y,

√
t)|
)1/2 .

As a consequence the finite speed propagation property is valid, and therefore, the

following property holds: If f is even, supp f̂ ⊂ [−A,A] for some A > 0, and

f̂ ∈W 2
∞, then for δ > 0 and x, y ∈ Td

(6.12)
∑
n≥0

f(δ
√
λn)Pn(wκ;x, y) = 0 if ρ(x, y) > c̃δA.

For more details and proofs, see [13].
As on the interval and ball, the “simple” scheme from [2] or [12] produces a frame

{ψ}ξ∈X for the weighted Besov and Triebel-Lizorkin spaces on Td with weight wκ(x)
just as in Theorems 2.10-2.11 above. In turn, the scheme from §3.3 and §4 produces
a pair of dual frames {θξ}ξ∈X , {θ̃ξ}ξ∈X for the weighted B- and F-spaces, where
supp θξ ⊂ B(ξ, cb−j), ξ ∈ Xj , j ≥ 0.

Remark. Note that the theory of weighted Besov and Triebel-Lizorkin spaces with
full indices on Td with weight wκ(x), κi > −1/2, and their frame decomposition
follows by the general theory from [2, 12] and the development of the heat kernel
on Td in [13]. However, most of the components of this theory have already been
developed in [11] in the case when κi ≥ 0. Now, the advances in [2, 12, 13] allow
to handle the general case when κi > −1/2. Another challenging problem that was
solved using the heat kernel technology is the establishment of sharp lower bound
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estimates on Lp norms of frame elements and operator kernels. The development
of frames on Td with small shrinking supports and atomic Hardy spaces on Td is
entirely new.

7. Appendix

Here we carry out the proof of Theorem 4.4. For this we need two lemmas.

Lemma 7.1. Let 0 < t ≤ 1 and M > d/t. Then for any sequence of complex
numbers {hη}η∈Xm , m ≥ 0, we have for x ∈ Aξ, ξ ∈ X ,∑
η∈Xm

|hη|
(

1+
ρ(ξ, η)

max{`(ξ), `(η)}

)−M
≤ c∗max

{
b(m−j)d/t, 1

}
Mt

( ∑
η∈Xm

|hη|1Aη
)

(x).

Here the constant c∗ takes the form c∗ = c1c
1/t
2 δ−1 with c1, c2 > 1 constants inde-

pendent of t,δ if M ≥ d/t+ δ, 0 < δ ≤ 1.

Proof. Consider the case `(ξ) ≥ `(η). The proof in the case `(ξ) < `(η) is similar
and will be omitted. Let ξ ∈ Xj (j ≤ m) and set Ω0 := {η ∈ Xm : ρ(η, ξ) ≤ c�b−j}
and

Ων := {η ∈ Xm : c�bν−1 < b
j

ρ(η, ξ) ≤ c�bν}, ν ≥ 1,

where c� = γ/4 with γ the constant from the construction of Frame # 1 in §2.3.
Set

Bν := B(ξ, c�b−m(1 + bν−j+m)), ν ≥ 0.

Note that Aη ⊂ Bν if η ∈ Ων and hence Bν ⊂ B(η, 2c�b−m(1 + bν−j+m)) implying

|Bν | ≤ |B(η, 2c�b−m(1 + bν−j+m))|

≤ c(1 + bν−j+m)d|B(η, 2−1c�b−m)| ≤ cb(ν−j+m)d|Aη|,

where we used (1.2) and the fact that B(η, 2−1c�b−m) ⊂ Aη ⊂ B(η, c�b−m) for
η ∈ Xm, see §2.3. Thus

(7.1) |Bν |/|Aη| ≤ cb(ν−j+m)d, η ∈ Ων .

Since 0 < t ≤ 1 we have∑
η∈Xm

|hη|
(
1 + bjρ(ξ, η)

)−M ≤ (2/c�)M
∑
ν≥0

b−νM
∑
η∈Ων

|hη|

≤ (2/c�)M
∑
ν≥0

b−νM
(∑
η∈Ων

|hη|t
)1/t

.

From this and (7.1) we obtain for x ∈ Aξ∑
η∈Ων

|hη|t =

∫
M

(∑
η∈Ων

|hη||Aη|−1/t
1Aη (y)

)t
dµ(y)

=
1

|Bν |

∫
M

( ∑
η∈Ων

|hη|
( |Bν |
|Aη|

)1/t

1Aη (y)
)t
dµ(y)

≤ cb(ν−j+m)d 1

|Bν |

∫
Bν

(∑
η∈Ων

|hη|1Aη (y)

)t
dµ(y)

≤ cb(ν−j+m)d
[
Mt

( ∑
η∈Xm

|hη|1Aη
)
(x)
]t
.
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Therefore, since M > d/t we get for x ∈ Aξ∑
η∈Xm

|hη|
(
1 + bjd(ξ, η)

)−M ≤ c∑
ν≥0

b−νMb(ν−j+m)d/tMt

( ∑
η∈Xm

|hη|1Aη
)
(x)

≤ c∗b(m−j)d/tMt

( ∑
η∈Xm

|hη|1Aη
)
(x),

where the constant c∗ is of the form c∗ = c1c
M
2 c

1/t
3 δ−1 if M ≥ d/t+ δ.

If M ≥ d/t+ δ, 0 < δ ≤ 1, then everywhere above M can be replaced by d/t+ δ,

which will result in a constant c∗ of the form c∗ = c1c
1/t
2 δ−1 as claimed. �

In the next lemma we specify the constants in certain discrete Hardy inequalities
that will be needed.

Lemma 7.2. Let γ > 0, 0 < q <∞, b > 1, and am ≥ 0 for m ≥ 0. Then

(7.2)
(∑
j≥0

(∑
m≥j

b−(m−j)γam

)q)1/q

≤ c\
( ∑
m≥0

aqm

)1/q

and

(7.3)
(∑
j≥0

( j∑
m=0

b−(j−m)γam

)q)1/q

≤ c\
( ∑
m≥0

aqm

)1/q

.

Above the constant c\ is of the form c\ = c1(c2/q)
1/q, where c1, c2 > 0 are constants

depending only on γ and b.

The proof of this lemma is standard and simple; we omit it.

Proof of Theorem 4.4. We shall only establish the result for the spaces f̃spq, that
is,

(7.4) ‖Ah‖f̃spq ≤ c‖A‖δ‖h‖f̃spq .

The proof in the other cases is similar and will be omitted.
Let A be an almost diagonal operator on f̃spq in the sense of Definition 4.3 with

associated matrix (aξη)ξ,η∈X and let h ∈ f̃spq. As compactly supported sequences

are dense in f̃spq (p, q < ∞) we may assume that the sequence h is compactly

supported. Then we have (Ah)ξ =
∑
η∈X aξηhη. By the definition of f̃spq, we have

‖Ah‖f̃spq :=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d|(Ah)ξ|1̃Aξ(·)

]q)1/q∥∥∥
Lp

=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d

∑
η∈X
|aξη||hη|1̃Aξ(·)

]q)1/q∥∥∥
Lp
≤ c(Q1 +Q2),

where c = 21/p+1/q,

Q1 :=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d

∑
`(η)≤`(ξ)

|aξη||hη|1̃Aξ(·)
]q)1/q∥∥∥

Lp
, and

Q2 :=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d

∑
`(η)>`(ξ)

|aξη||hη|1̃Aξ(·)
]q)1/q∥∥∥

Lp
.
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We next estimate Q1. Suppose ξ ∈ Xj , η ∈ Xm, and m ≥ j; hence `(η) ≤ `(ξ).
We know that B(ξ, 2−1c�b−j) ⊂ Aξ ⊂ B(ξ, c�b−j) with c� = γb−2, 0 < γ < 1, and
similarly for Aη. We use the above, (2.2), and (1.2) to obtain

|Aξ| ≤ |B(ξ, c�b−j)| ≤ c0
(

1 +
ρ(ξ, η)

c�b−j

)d
|B(η, c�b−j)|

≤ c20(2/c�)db(m−j)d
(

1 + bjρ(ξ, η)
)d
|B(η, 2−1c�b−m)|

≤ c20(2/c�)db(m−j)d
(

1 + bjρ(ξ, η)
)d
|Aη|.

Therefore,

(7.5) |Aξ| ≤ c†
( `(ξ)
`(η)

)d(
1 +

ρ(ξ, η)

`(ξ)

)d
|Aη|, c† := c20(2/c�)d.

Using this and ‖A‖δ < ∞ (see Definition 4.3) it readily follows that whenever
`(η) ≤ `(ξ)

|aξη| ≤ c[‖A‖δ
(
`(η)

`(ξ)

)J+δ( |Aξ|
|Aη|

)s/d+1/2(
1 +

ρ(ξ, η)

`(ξ)

)−J−δ
, c[ := c

|s|+d/2
† .

Denote briefly λξ := |Aξ|−s/d−1/2
1Aξ(·) and choose t so that d/t = J + δ/2. Then

0 < t < min{1, p, q} and J + δ − d/t > 0. We have

Q1

‖A‖δ
≤ c[

∥∥∥(∑
ξ∈X

[ ∑
`(η)≤`(ξ)

(`(η)

`(ξ)

)J+δ
(
|Aξ|
|Aη|

)s/d+1/2

×
(

1 +
ρ(ξ, η)

`(ξ)

)−J−δ
|hη|λξ(·)

]q) 1
q
∥∥∥
Lp

= c[

∥∥∥(∑
j≥0

∑
ξ∈Xj

[ ∑
m≥j

b(j−m)(J+δ)
∑
η∈Xm

(
|Aξ|
|Aη|

)s/d+1/2

× |hη|
(
1 + bjρ(ξ, η)

)−J−δ
λξ(·)

]q) 1
q
∥∥∥
Lp
.

We now apply Lemma 7.1, the Hardy inequality (7.2), and the maximal inequality
(2.40) to obtain

Q1

‖A‖δ
≤ c∗c[

∥∥∥(∑
j≥0

∑
ξ∈Xj

[ ∑
m≥j

b(j−m)(J+δ−d/t)

×Mt

( ∑
η∈Xm

(
|Aξ|
|Aη|

)s/d+1/2

|hη|1Aη
)

(·)λξ(·)
]q) 1

q
∥∥∥
Lp

≤ c∗c[
∥∥∥(∑

j≥0

[ ∑
m≥j

b(j−m)δ/2Mt

( ∑
η∈Xm

|hη|λη
)]q) 1

q
∥∥∥
Lp

≤ c∗c\c[
∥∥∥(∑

j≥0

Mt

( ∑
ξ∈Xj

|hξ|λξ
)q) 1

q
∥∥∥
Lp
≤ c∗c\c]c[‖h‖f̃spq .

Here c∗ = c1c
1/t
2 δ−1 is from Lemma 7.1, c\ = c3(c4/q)

1/q is from Lemma 7.2,

c[ = c
|s|
5 and

c] = c6 max
{
p, (p/t− 1)−1

}
max

{
1, (q/t− 1)−1

}
,
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is from (2.40). It is readily seen that the constant c = c∗c\c]c[ is of the claimed
form.

To estimate Q2 we again use that ‖A‖δ <∞ and (7.5) with the roles of ξ and η
interchanged to obtain whenever `(η) > `(ξ)

|aξη| ≤ c[‖A‖δ
(
`(ξ)

`(η)

)δ( |Aξ|
|Aη|

)s/d+1/2(
1 +

ρ(ξ, η)

`(η)

)−J−δ
.

Setting again λξ := |Aξ|−s/d−1/2
1Aξ(·) we get

Q2

‖A‖δ
≤ c[

∥∥∥(∑
ξ∈X

[ ∑
`(η)>`(ξ)

( `(ξ)
`(η)

)δ( |Aξ|
|Aη|

)s/d+1/2

×
(

1 +
ρ(ξ, η)

`(η)

)−J−δ
|hη|λξ(·)

]q) 1
q
∥∥∥
Lp

= c[

∥∥∥(∑
j≥0

∑
ξ∈Xj

[ ∑
m<j

b(m−j)δ
∑
η∈Xm

(
|Aξ|
|Aη|

)s/d+1/2

× |hη|
(
1 + bmρ(ξ, η)

)−J−δ
λξ(·)

]q) 1
q
∥∥∥
Lp
.

We use again Lemma 7.1, the Hardy inequality (7.3), and the maximal inequality
(2.40) to obtain

Q2

‖A‖δ
≤ c∗c[

∥∥∥(∑
j≥0

∑
ξ∈Xj

[ ∑
m<j

b(m−j)δ

×Mt

( ∑
η∈Xm

(
|Aξ|
|Aη|

)s/d+1/2

|hη|1Aη
)
λξ(·)

]q) 1
q
∥∥∥
Lp

≤ c∗c[
∥∥∥(∑

j≥0

[ ∑
m<j

2(m−j)δMt

( ∑
η∈Xm

|hη|λη
)]q) 1

q
∥∥∥
Lp

≤ c∗c\c[
∥∥∥(∑

j≥0

[
Mt

(∑
ξ∈Xj

|hξ|λξ
)]q) 1

q
∥∥∥
Lp
≤ c∗c\c]c[‖h‖f̃spq ,

where the constants c∗, c\, c], c[ are as above. The above estimates for Q1 and Q2

yield (7.4). �
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