“\
N

Ny

X
ww /)
’

-

—~F
0“
e

7/
NS
A
‘0
b &

X
S)
7/
AKX
()

Vv,
L/
[

L)
|
-me

%
8

)

e

n
|\
S

= 4

.

1M1

PREPRINT SERIES

INTERDISCIPLINARY
MATHEMATICS
INSTITUTE

2013:04

Compactly Supported Frames for
Spaces of Distributions in the
Framework of Dirichlet Spaces

S. Dekel, G. Kerkyacharian, G.
Kyriazis, and P. Petrushev

COLLEGE OF ARTS AND SCIENCES

UNIVERSITY OF SOUTH CAROLINA



COMPACTLY SUPPORTED FRAMES FOR SPACES OF
DISTRIBUTIONS IN THE FRAMEWORK OF DIRICHLET
SPACES

S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

ABSTRACT. A small perturbation method is developed and deployed to the
construction of compactly supported frames for Besov and Triebel-Lizorkin in
the general setting of Dirichlet space with a doubling measure and local scale-
invariant Poincaré inequality. This allows, in particular, to develop compactly
supported frames for Besov and Triebel-Lizorkin spaces in the context of Lie
groups, Riemannian manifolds, and various other settings. The compactly
supported frames are utilized for the development of atomic Hardy spaces HZ
in the general framework of Dirichlet spaces.

1. INTRODUCTION

Compactly supported frames and bases are an important tool in Harmonic anal-
ysis and its applications in allowing to represent functions and distributions in
terms of building blocks of small supports. The atomic decompositions exhibit
another side of the same idea. The purpose of this study is to construct frames
with compactly supported frame elements of small shrinking supports in the gen-
eral framework of Dirichlet spaces, described in [2, 12]. More explicitly, compactly
supported frames will be developed in the general setting of strictly local regular
Dirichlet spaces with doubling measure and local scale-invariant Poincaré inequal-
ity, leading to a Markovian heat kernel with small time Gaussian bounds and Hélder
continuity. In particular, this theory allows to develop compactly supported frames
on Lie groups or homogeneous spaces with polynomial volume growth, complete
Riemannian manifolds with Ricci curvature bounded from below and satisfying the
volume doubling condition, and in various other nonclassical setups. Naturally,
it covers the more classical cases on the sphere, interval, ball, and simplex with
weights.

Compactly supported frames have already been constructed on the sphere in
[16] and on the ball with weight wy,(z) = (1 — |z|)*~1/2, where y is a half integer
and g > 0 in [17]. One of the strengths of our method is that although it is
general it allows to obtain in particular settings better results than the existing
ones. For example, combining results from this article and [13] enable us to improve
the results on the ball from [17] by relaxing the condition on p from a half integer
and p > 0 to any p > —1/2. Another application of the results from the current
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paper and [13] is to the development of compactly supported frames on the interval
with Jacobi weights and on the simplex with weights.

A key feature of the new frames is that they can be used for decomposition of
the Besov and Triebel-Lizorkin spaces in the general framework of Dirichlet spaces
developed in [12], and therefore, in many particular settings of interest.

An important application of the compactly supported frames from this article is
to atomic Hardy spaces H, 0 < p < 1. The compactly supported frames provide
a vehicle in establishing Littlewood-Play characterization of the Hardy spaces HY
and their frame decomposition.

We shall operate in the setting established in [2, 12], which we next recall briefly:

I. We assume that (M, p, 1) is a metric measure space satisfying the conditions:
(M, p) is a locally compact metric space with distance p(-,-) and p is a positive
Radon measure such that the following volume doubling condition is valid

(1.1) 0 < u(B(x,2r)) < cou(B(z,r)) < oo forall z € M andr >0,

where B(xz,r) is the open ball centered at z of radius r and ¢y > 1 is a constant.
The above yields

(1.2) w(B(x,\r)) < coMu(B(x,r)) forx € M, r >0, and A > 1,

were d = log, ¢ > 0 is a constant playing the role of a dimension.

II. The main assumption is that the local geometry of the space (M, p,n) is
related to an essentially self-adjoint positive operator L on L?(M,du) such that the
associated semigroup P, = e~ ' consists of integral operators with (heat) kernel
pt(x,y) obeying the conditions:

e Small time Gaussian upper bound:

exp{ cp(rm}

¢u Jn(B(y. V)

e Holder continuity: There exists a constant o > 0 such that

(1.3) |pe(z, )| for z,ye M, 0<t<1.

exp{ ctp (M/)}

V(B V) u(By. VD)

for z,y,y € M and 0 < ¢t < 1, whenever p(y,y’) < \/Z
e Markov property:

(1.5) /Mpt(sr:,y)du(y) =1 fort>0.

Above C*, ¢* > 0 are structural constants.
We shall also assume the following additional conditions:
e Non-collapsing condition: There exists a constant ¢ > 0 such that

(1.6) inf n(B(w,1)) = c.

1) o) - o] < 0 (H52)”

o Reverse doubling condition: There exists a constant ¢ > 1 such that
diam M
(1.7) w(B(x,2r)) > cu(B(x,r)) forx € M and 0 < r < S23222,
The latter condition is only needed for lower bound estimates on the LP-norms

of the frame elements (see Proposition 2.5). It can be relaxed if such estimates are
not needed, which is the case in the general theory.
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A natural effective realization of the above setting appears in the general frame-
work of Dirichlet spaces. More precisely, in the framework of strictly local regular
Dirichlet spaces with a complete intrinsic metric it suffices to only verify the local
Poincaré inequality and the global doubling condition on the measure and then the
above general setting applies in full. For more details, see [2]. The key observa-
tion is that situations where our theory applies are quite common, which becomes
evident from the examples given in [2].

We next outline the main points in this paper. We build on results on functional
calculus, frames and spaces of distributions developed in [2, 12]. For convenience,
in §2 we collect all the results we need from [2, 12].

To achieve our goals we first develop in §3 a general small perturbation scheme
for construction of frames in a general quasi-Banach space B of distributions given
a pair of dual frames {t)¢}, {th¢}. In fact, this is the situation in [12]. Such a method
has been developed in [16] in the more favorable situation when a single frame {t¢ }
for B exists (see §3.3). The latter scheme can be applied directly in our setting in
the spacial case when the spectral spaces have the polynomial property (see [12])
as on the sphere, interval, ball, and simplex. The idea of these schemes is rooted
in the development of bases in [22], also in [14, 15], and is related to the method
for construction of atomic decompositions in [1].

The construction of compactly supported frames in the current setting is given
in §4. It relies heavily on the finite speed propagation property of solutions of the
wave equation associated with the operator L, see (2.5) below. This property
follows from the Gaussian bound (1.3) on the heat kernel p;(x, y). The finite speed
propagation property alone, however, is not sufficient. The other properties of
the heat kernel and the doubling condition on the measure given above are also
important for the development of a complete theory. In particular, they allowed to
develop in [12] Besov and Triebel-Lizorkin spaces with full set of indices and their
frame characterization, which play a critical role here.

In §5 the compactly supported frames from §4 are applied to the development
of the atomic Hardy spaces HY in the setting of this article.

In §6 the developments from previous sections are applied to specific settings on
the interval, ball, and simplex.

Section 7 is an appendix where we place the proof of the boundedness of almost
diagonal operators on Besov and Triebel-Lizorkin sequence spaces.

Some useful notation: Throughout we shall denote |E| := pu(E) and 1p will
stand for the characteristic function of £ C M, |- |l, = | - llzr := || - |l Lr(r,dp)-
Positive constants will be denoted by ¢, C, ¢1, ¢, ... and will be allowed to vary at
every occurrence. The notation a ~ b will stand for ¢; < a/b < ¢a. We shall also
use the standard notation a A b := min{a,b} and a V b := max{a, b}.

2. BACKGROUND

In developing compactly supported frames we shall make extensive use of results
from [2, 12]. In this section we review everything that will be needed from [2, 12].

2.1. Functional calculus. We adhere to the notation in [2, 12]. In particular, the
following symmetric functions will appear in the following;:

(1) Diolay) = (BB )) (14 20T a e
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As B(z,r) C B(y, p(y,x) + 1), (1.2) yields

d
(2.2) B < eo(1+ 22D) Byl wyen r>o
Combining this with (2.1) we arrive at this useful inequality
—o+d/2
2.3 D (a.y) < b/ Blara)| 7 (14 A2 7T

Here |B(z,8)| ™! on the right can be replaced by |B(y, )|~
The following inequality will be instrumental in some proofs [12, Lemma 2.1]:
For 0 >d and § >0

(2.4) [ 67000 o) < B, w0
M
The finite speed propagation property will play a key role in this study:
1
2.5 cos(tV'L , =0, O<eét<r, C:i=——s,
(25) (cos(tVI) 1, f2) =

for all open sets U; C M, f; € L*(M), supp f; C Uj, j = 1,2, where r := p(Uy, Us).
This property implies the follpwing localization resultAfor the kernels of operators
of the form f(0v/L) whenever f is band limited. Here f(&) := Jp f(t)e™edt.

Proposition 2.1. Let f be even, supp f C [—A, A] for some A >0, and f € W2,
i.e. ||fP| 0 < o00. Then ford >0 and x,y € M

(2.6) FOVI)(x,y) =0 if plx,y) > SA.

We shall need the following result from the smooth functional calculus induced
by the heat kernel developed in [12] (Theorem 3.1).

Theorem 2.2. [12] Let f € C*(Ry), k > d+ 1, supp f C [0, R] for some R > 1,
and f*+1(0) =0 for v > 0 such that 2v+1 < k. Then f(6v/L),0< 3§ <1, is an
integral operator with kernel f(5v/L)(x,y) satisfying

(2.7) ‘f((5\FL)(m7y)‘ <cpDsp(x,y) and

(28 [FVD) )~ FOVD)wv)| < ch (D) Dyt if olw.v') <5
Here Ds i, (z,y) is from (2.1),

(29) e =alf) =R (k) /> + (B FPe=], = eserR?,

where ¢1,ca,c3 > 0 depend only on the constants co, C*,c* from (1.1) — (1.4), c3
depends on k as well; o > 0 is the constant from (1.4). Furthermore,

(2.10) s FOVI) (@, y)duly) = f(0).

This theorem readily implies the following result that will be needed later on.

Corollary 2.3. Let f € C®(R,), supp f C [0,R], R > 1, and f**+1(0) = 0,
v > 0. Then for anyn >0 and 0 < § < 1 the operator L™ f(6v/L) is an integral
operator with kernel L™ f(6v/L)(x,y) having the property that for any o > 0 there
exists a constant c,, > 0 such that

(2.11) ‘L"f(é\/f)(x, y)‘ < Cond ?"Dso(z,y), =,y€ M.
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The requirement in Theorem 2.2 that f is compactly supported can be relaxed.
Theorem 2.4. [12] Suppose f € C*(Ry), k> d+ 1,
IFO N < Cr(T+ N for A >0 and 0 < v < k, where r >k +d + 1,

and f**+1(0) = 0 for v > 0 such that 2v +1 < k. Then f(6\/L) is an integral
operator with kernel f(6v/L)(x,y) satisfying (2.7)-(2.8), where the constants cy, ¢,
depend on k,d,«, co,C*,c*, and linearly on Cj.

2.2. Spectral spaces. Let Ey, A > 0, be the spectral resolution associated with
the self-adjoint positive operator L on L? := L?(M,du). We let Fy, A > 0, de-
note the spectral resolution associated with /L, i.e. F\ = Ej2. Then for any
measurable and bounded function f on R, the operator f(v/L) is defined by
fF(VL) = [;° f(A)dFy on L?. For the spectral projectors we have Ex = 1jg yj(L) :=
fooo ]l[o})\] (’U,)dEu and

212)  F=1on(VD) = [ Lon@df = [ te(VadEL.
For any compact K C [0,00) the spectral space ¥4 is defined by
Yho={feLlP:0(VL)f =fforalld € C(R.), =1on K}.
In general, given a space Y of measurable functions on M we set
Sy=5S\(Y):={feY:0WL)f=fforall § € C(R,), # =1on [0,)\}.
2.3. Frames. Our construction of compactly supported frames will rely on the

frames developed in [12]. Here we collect the needed information from [12].

Construction of Frame # 1. The construction begins with a cut-off function ®
with the following properties: ® € C*(R,), ®(u) = 1 for v € [0,1], 0 < & < 1,
and supp ® C [0, b], where b > 1 is a constant, see [12]. We shall assume that b > 2.
Set ¥(u) := ®(u) — O(bu).

An important point is that the function ® can be selected so that the opera-
tors ®(v/L) and ¥(5v/L) are integral operators whose kernels ®(6v/L)(x,y) and

U (5v/'L)(z,y) have sub-exponential space localization, namely,

exp { — (%52)")

(1B(x, 0)[1B(y, 6)))1/2’

where 0 < 8 < 1, k,¢ > 0, and § can be selected as close to 1 as we wish.

Furthermore, ®(5v/L)(x,y) and ¥(5v/L)(x,y) are Holder continuous (see [12]).
Setting

(2.14) Uo(u) := ®(u) and  W,(u) := V(b 7u), j>1,

we have U; € C*(R4), 0 < ¥, <1, supp ¥y C [0,0], supp ¥; C [/~ 6T, j > 1,
and >, ¥;(u) =1 for u € Ry. Hence we have the following Littlewood-Paley
decomposition

(2.15) f=>_W;(VL)f for f €D (and f € LP).

Jj=0

(213)  |®(6VL)(w,y)|, [¥(VI)(z,y)| < ¢ z,y €M,

For j > 0 we let X; C M be a maximal §;—net on M with §; := yb~772 and
suppose {A¢}ecx; is a companion disjoint partition of M consisting of measurable
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sets such that B(§,d,/2) C Ae C B(&,6;), £ € X;j. Here v > 0 is a sufficiently small
constant.
The jth level frame elements 1)¢ are defined by

(2.16) V(@) = |Ae 20 (VI)(2,6), €€ X
Let X := U;>0Xj;, where equal points from different sets X; will be regarded as dis-

tinct elements of X', so X' can be used as an index set. Then {¢¢ }¢cx is Frame #1.

The construction of a dual frame {1/35}56 x 1s much more involved; we refer the
reader to §4.3 in [12] for the details.
We next describe the main properties of {t¢}ecx and {te}ecx.

Proposition 2.5. [12] (a) Localization: For any 0 < & < k/2 there exist a constant
¢ > 0 such that for any £ € X;, j >0,

(2.17) e ()], |0 ()] < &|B(& b)) exp { — A(b p(x,€))" }

and for any m > 1

(2.18)  [L™e ()], |IL™ e (@)] < em|B(Eb77)|[ 720%™ exp { — (Y p(=, €))7 }.
Also, if p(z,y) < b7, then

(219)  |ve(x) — ve(y)| < EBED) T2V plz,y)* exp { — (¥ p(x,€))"}

and the same inequality holds for ’(/NJg.
(b) Norms: If in addition the reverse doubling condition (1.7) is valid, then

1

(2.20) [vellp ~ llellp ~ [B(Eb7)[»~2, 0<p< oo

(c) Spectral localization: 1, e € X if € € Xy, ¢ € E][”bj,lbj“] if € € X, and
Ve € Zl[)bjfz’bwz] if € € Xj, 721, 0<p< 0.

(d) Representation: For any f € D' we have

(2.21) F= (fde)e =D (five)de in D"
fex cex
This also holds for f € LP, 1 < p < oo, with the usual modification when p = cc.
(e) Each of the systems {1¢} and {1)¢} is a frame for L?.

2.4. Besov and Triebel-Lizorkin spaces. The Besov and Triebel-Lizorkin spaces
associated with the operator L, defined in [12], are in general spaces of distributions.
There are some distinctions, however, between the tests functions and distributions
that are used depending on whether (M) < oo or p(M) = co.

In the case u(M) < oo, we use as test functions the class D of all functions
® € Np>oD(L™) with the topology induced by

(2.22) P (®) :==[|[L™¢|l2, m > 0.
If w(M) = oo, then the class of test functions D is defined as the set of all
functions ¢ € N> D(L™) such that

(2.23) Pon,e(¢) = sup (14 p(z,x0)) L™ $(x)| < 00 ¥m, £ > 0.
zeM

Here xg € M is selected arbitrarily and fixed once and for all.
As usual the space D’ of distributions on M is defined as the set of all continuous
linear functionals on D and the pairing of f € D’ and ¢ € D will be denoted by

(f,0) = f(9).
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To handle possible anisotropic geometries there are two types of Besov (B) and
Triebel-Lizorkin (F) spaces introduced in [12]: (i) classical B-spaces B, = B, (L)
and F-spaces F,, = F,, (L), and (ii) nonclassical B-spaces B;q = B;q(L) and F-
spaces Fz‘j‘q = F;q(L). We next recall them. Let the functions ¢g,p € C°(R,) be
so that
(2.24)

supp o C [0,2], gpfﬁ”H)(O) =0 for v >0, [po(N)| > ¢ >0 for X e [0,2%4],
(2.25)
supp ¢ C [1/2,2], |o(\)| > ¢ >0 for A e [273/423/4),

Then |@o(M)|+ 30,51 [0(277A)[ > ¢ >0, A € Ry Set p;(A) := (277 ) for j > 1.

Definition 2.6. Let s € R and 0 < p,q < co.
1) The Besov space BE, = B2 (L) is defined as the set of all f € D' such that
(4) D pa Pq

) 1/
(2.26) 105, = (3 (27 1es(VDI £ O)ls) ) < oo
Jj=0
(#9) The Besov space Bf)q = B;q(L) is defined as the set of all f € D' such that
. a\ /4
(2.27) 1z, = (D2 (INBC 270 (VD f()s ) ) < oo
>0

Definition 2.7. Let s e R, 0 < p < 00, and 0 < g < o0.
(a) The Triebel-Lizorkin space F,, = Fy, (L) is defined as the set of all f € D’
such that

(2.28) 1fllEs, = H (Z (st‘%(ﬁ)f(')‘)q)
3>0

(b) The Triebel-Lizorkin space Fz‘fq = ﬁ‘;q(L) is defined as the set of all f € D’
such that

(2.29) /]

1/q
< Q.
Lr

< 00.

1/q
..

r = | (Z (1BC2) VD10
j=0

Above in both definitions the #9-norm is replaced by the sup-norm if ¢ = co.

Frame decomposition of Besov and Triebel-Lizorkin spaces. One of the
main result in [12] asserts that the Besov and Triebel-Lizorkin spaces from above
can be characterized in terms of respective sequence norms of the frame coefficients
of distributions, using the frames {1¢}ecx, {155}5695 from §2.3.

To state this result we next introduce the sequence spaces by, I;‘;';q, and f7,, ;fq,
associated with the B- and F-spaces. As before &' := U;>0X; will denote the sets
of the centers of the frame elements and {A¢}ecx; will be the associated partitions
of M.

Definition 2.8. Let s € R and 0 < p,q < oo.
(a) by, is defined as the space of all complex-valued sequences a := {ag}eex such

that
bs, = (Z biSq{Z (|B(§,bij)‘l/p71/2|a£‘)p:| q/p) 1/q -

Jj=0 EEX;

(2.30) la
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(b) l;f)q is defined as the space of all complez-valued sequences a := {a¢}ecx such

that
= ([ (1B s a2 )] ) < s

j>0 EeX;

2.31) |

Definition 2.9. Suppose s € R, 0 < p < 00, and 0 < ¢ < 0.
a) 2 is defined as the space of all complex-valued sequences a := {a ¥ such
Pq D p q £ree

that
(O UadﬂAs(')]q)l/q

32>0 fEXj

(2.32) l|al

< Q.
Lr

(b) ;‘fq is defined as the space of all complex-valued sequences a := {a¢}ecx such
that

(2.33) |

< 00.
Lp

o= (X Ieractiac0l') |

fex

Here ]~1A5 = |Ag|_1/2]l,45 with 14, being the characteristic function of Ag.

Above as usual the ¢P or ¢4 norm is replaced by the sup-norm if p = cc or ¢ = oo
In stating the results from [12] we shall use the “analysis” and “synthesis” op-
erators defined by

(2.34) Sy f = {(fide)eexr and Ty :{agteex — D actbe.
fex

Here the roles of {1)¢} and {¢)¢} can be interchanged.
Theorem 2.10. [12] Let s € R and 0 < p,q < oo. (a) The operators Sj : By, —
by and Ty : by, — By, are bounded and T, o Sd? = Id on B,,. Consequently, for
f € D' we have f € B, if and only if {{f, 7L£>}£€X € by, Moreover if feB

prq
then |1£11 5, ~ I{(F. %)} o

s, ~ (0 3 vt

7>0 £ex;

P(I’

bs, and under the reverse doubling condition (1.7)

(2.35) /]

(b) The operators Sy : ng — l;;q and Ty, : l;;q — BS are bounded and Tyyo0S; = Id
on B;q. Hence,Nf € B;q — {(f,Pe) }eex € qu Furthermore if f € qu, then
1f11B5, ~ IH(f5 ve) )

(2.36)

bs, and under the reverse doubling condition (1.7)

~ ([ (B indav)]") ™

j>0 £eiX;

Theorem 2.11. [12] Let s € R, 0 < p < 00 and 0 < ¢ < oo. (a) The operators
Sp ot Fog = fpg and Ty = fo, — FJ, are~bounded and Tjj o Sy = Id on Fg,.
Consequently, [ € Fj, if and only if {{f,Ve)}eex € fpy, and if f € F;,, then
£, ~ (S e

(2.37) 71, ~ | (0 3 D0 deween?)

j=0 §EX;

¢s . Furthermore
Pq ’

e
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(b) The operators Sy : F;q — f;q and Ty fzfq — F;q are bounded and Tj;0 Sy = Id
on Fj,. Hence,~f € Fy, if and only if {(f,Y¢)}eex € f3y, and if f € Fj,, then
1fll7g, ~ I, e}

oo Furthermore,
rq

1/q‘

@38) gy, ~||( X [BE I/ 00 lve (]

fex

e
The roles of {1)¢} and {1/;5} in Theorems 2.10-2.11 can be interchanged.

2.5. Maximal operator. We shall need the maximal operator M; defined by

B3x

1/t
(2.39) M, f(x) = sup <|;|/ |f|td,u> , weM, t>0,
B

where the sup is over all balls B C M such that x € B. Since p is a Radon
measure on M which satisfies the doubling condition (1.2) the Fefferman-Stein
vector-valued maximal inequality holds (see [23]): If 0 < p < 00,0 < ¢ < o0, and
0 < t < min{p, ¢} then for any sequence of functions {f,} on M

em[(Senon)”] e (Sinor”

From Theorem 2.1 in [9] it follows that the constant ¢y > 0 above can be written
in the form

(2.41) ¢y = cymax {p, (p/t — 1)~' b max {1, (¢/t — 1)},

where ¢ is a structural constant depending only on the underlying space M.

e

3. GENERAL SMALL PERTURBATION METHOD FOR CONSTRUCTION OF FRAMES

The purpose of this section is to develop in general a small perturbation method
for construction of frames in the case when there exists a pair of dual frames {t},
{1¢} for a quasi-Banach space B of distributions (or a class Y of spaces B).

3.1. Assumptions in the case of a single space B. Assume that (M, p, ) is
a metric measure space and D C L?(M, ) is a linear space of test functions on
M furnished with a locally convex topology induced by a sequence of norms or
semi-norms. Let D’ be the dual of D consisting of all continuous linear functionals
on D. The pairing of f € D’ and ¢ € D will be denoted by (f, ¢) := f(¢) and we
assume that it is consistent with the inner product (f,g) = [,, fgdu on L*(M, p).

Further, we assume that B C D’ with norm || - ||z is a quasi-Banach space of

distributions, which is continuously embedded in D’ and D C B.

The old pair of frames. We stipulate the existence of a pair of dual frames
{Weteex, {¥e}ecn in B, where ¢, ¢ € D and X is a countable index set, with the
following properties:

Al. For any f € B
(3.1) f= (frdbehvbe = > (f,ve)te,

fex cex

where the two series converge unconditionally in B and hence in D’.
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A2. Consider the following analysis and synthesis operators: Sj : f — ((f, 7/;£>)fe x
and Ty @ (he)eex > D ogcn hetbe. The condition is that there exists a quasi-Banach
(complex) sequence space By with quasi-norm || - ||z, such that:

(i) the operator S; : B+ Bq is bounded, and

(ii) for any sequence h = (h¢)eex € By the series ). o hetpe converges uncon-
ditionally in B and Ty : B4 — B is bounded. Furthermore, the roles of ¢ and @Z
can be interchanged.

Therefore, for any f € B we have ((f,lﬁg))gex € Ba, ((f,¥¢))ecx € Ba, and

1115 ~ N delsa ~ 1((F, ) 5,

In addition, we assume that B; obeys the conditions:
A3. (i) For any sequence (he)cex € Ba, ||(he)ls, = Il (e )15,
(ii) Let h = (h¢)eex € By and assume (he,)j>1 is any ordering of the terms of the
sequence h. Set X, := {&; : j > m} and define the truncated sequence R € By
by
h{" = he if €€ X, and h{™ =0 if £ € X\ X,

The condition is that [|h(™)||5, — 0 as m — oo.
Clearly, this assumption implies that compactly supported sequences are dense
in Bd.

A4. The operator with matrix
(3.2) A= (agn)emex, gy = Yy, ve)

is bounded on By, i.e. ||Allg,—B, < ¢ < 0.

3.2. Construction of new frames. Next we construct a new pair of dual frames
{0c}ecx, {Oc}ecn in B, where X is the index set from above, in two steps: We first
construct the new system {f¢}scx to approximate well {i¢}eca in terms of the
size of the inner products (i, — 6,,1¢) and be well localized in terms of (6, v¢).
More precisely, we assume that 0 € B, £ € &, can be constructed so that the
operators with matrices

B = (ben)emexs  bey = (O, e),
D = (dep)enex, dey = (y — On, 1)

are bounded on By, e.g. ||B|B,~8, < ¢, and more importantly for a sufficiently

small € > 0 (to be determined later on)

(3.3)

(3.4) 1Dl < =
We introduce two operators:
(3.5) Tih:=Y  hebe, h=(he)ecx € Bg, and
gex
(3.6) Tf:=) (f.de)be, [EB.
fex

Lemma 3.1. The operators Ty and T are well defined and bounded, that is,
(3.7) 1Tahlls < cllhllz,,  VYh € By and |Tfls<clflls VfeB.

Furthermore, the series in (3.5)-(3.6) converge unconditionally in B and hence

in D’.
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Proof. Let h = (h¢)ecx be a compactly supported sequence of complex numbers.
Then

(Tah, ¥y) = Zh§<9€>¢n> = (Bh)y, meX,
3

ITahlls < cllBhls, < clBllpssi s, < lhlls,-

and using that ||B||g,—5, < ¢ and A2 we obtain

This and condition A3(ii) on By readily imply that the series in (3.5) converges
unconditionally in B and T}; can be extended as a bounded operator from By to B.
We use the above and A2 to conclude that for any f € B

ITflls <l ((f, de)llss < el flls. O
It will be critical that the operator T is invertible if € in (3.4) is sufficiently small.

Lemma 3.2. Ife in (3.4) is sufficiently small and independent of other constants,
then ||I — T|p—s < 1 and hence T~ exists and

(3.8) 1T s < ¢ < co.
Proof. For f € B we have (with I being the identity operator)
(I=T)f =Y {fide)(we — be),
fex
where the convergence in B and hence in D’. Therefore,

(I =T)f by =Y _(fthe) (e — Og,1by) = (Dh)y,

gex
where D is from (3.3) and he := (f, ¢). Now, using A2 and (3.4) we obtain
I =T)flls < el Dhlls, < cllDlsa-salPllss < cellblls, < cuellflls-

Hence ||I — T||p—B < cie < 1 if ¢ is sufficiently small.

By our hypotheses B is a quasi-Banach space and as is well known there exists
a constant 0 < p < 1 such that || 3, f;ll5 < 32, /5l for f; € B. Using this it is
easy to show that | [ —T||gps < 1 implies that T—! exists and | T7!|| g5 < ¢ < .
Infact, 77t =Y, o (I—T)* and [|[ TP < 3o I =T|IPF < (1—(cse)?) ™! < 0.
O

We need one more simple lemma:

Lemma 3.3. The operators H with matriz H := ((T’lqpn,d;g))gmex is bounded
on By.

Proof. Let h = (h¢)ecx be a compactly supported sequence of complex numbers
and set f =3y hety. Clearly,

(HWe = 3 (T, 0) = (T (3 by ) ) = (T £, e)-

neX nex
The above, A2, and (3.8) imply

1H b5, = (T, 05, < T~ flls < el flls < c|lhlls,-

Since compactly supported sequences are dense in By the operator H can be
uniquely extended to a bounded operator on By. O
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Construction of the dual frame {6¢}. For any ¢ € X we define the linear
functional ¢ by

(3.9) Oc(f) = (f.0c) == Y (T "4y, ) (f, ) for fEB.
nex
From Lemma 3.3 and A2 it follows that for f € B

10(/) = [F,06)] < [ Hlas s, (F, 0D 52 < el £l

Thus, f¢ is a bounded linear functional on B, i.c. 6 € B'.
In going further, for f € B by Lemma 3.2 T~!f € B and using Lemma 3.1

(3.10) F=T@) =) (T f.de)be.
fex

On the other hand, from the fact that 7! is a bounded operator on B and (3.1) it
follows that for any f € B we have T1f = > onexlfs Yy)T ™ 4py,, where thg series
converges unconditionally in B and hence in D’. This and the fact that ¢ € D
imply
(3.11) (T fribe) = Y AT bm, V)£, 9m) = (f6c).

nex

Here the series converges unconditionally and hence absolutely because of the un-
conditional convergence of the former series. From (3.10)-(3.11) we infer

(3.12) f=> (f.0)0:, feB,
fex

where (f,0¢) is defined in (3.9); the convergence is unconditional in B.
We next show that 6¢ can be identified in a sense with an element of .

Proposition 3.4. For any £ € X the distribution
(3.13) 0 = Z (T=Y4p,, e)iby,  (convergence in B)

nex
belongs to B and for any ¢ € D we have

(3~14) éf(é) = <é€7 ¢>’
where on the left the linear functional ég € B, defined in (3.9), acts on ¢ € D C B,
while on the right the distribution 8¢ € B from (3.13) acts on ¢ € D.

Proof. Assume for a moment that the series in (3.13) converges in B and hence
in D’. Then we have for ¢ € D

<§5’¢> = < Z <T_1w777’(/~}5>1;777¢> = Z(T_llﬂn,izgﬂ(b, 1L7I> = é§(¢)7

fex fex
where for the last equality we used (3.9); this verifies (3.14).

To show that the series in (3.13) converges in B, we observe that as i, € D C B
by (3.1) ¢, = Zwexwrl,l&w)d}w VYn € X with convergence in B. Hence, using that
the operator 7! is bounded on B it follows that T~ !¢, = > (y, )Ty,
in B and hence in D’. Therefore, as )¢ € D

<T_1¢777 1/;§> = Z <T_1'¢}wv 1L€><¢77’ ¢w>

weX
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However, by Lemma 3.3 the operator H with matrix H := (<T*1ww,7fjg>)§7wex
is bounded on By, and ((1!17,,1/;@)776)( = (@wd’n))nex € By since zﬂw eDcCB
and using A2-A3. Therefore, (<T_1¢77’1;5>)ne2( € By and using A3 we have

(T—1apy, 1[)§>)nex € By. Then from A2 it follows that the series in (3.13) converges
in B and 9~5 eB. O

We next show that in a sense {f¢}, {f¢} is a pair of dual frames for B if ¢ is
sufficiently small.

Theorem 3.5. If ¢ in (3.4) is sufficiently small, with the above defined {0¢}, {0¢},
forany f € B

(3.15) F="(f,0¢)0e,
fex
where the convergence is unconditional in B, and

(3.16) 1£1ls ~ 11((f. 86l

with constants of equivalence independent of f.
Moreover, the operator T, defined by Tyh := dex hebe for sequences of complex
numbers h = (he)ecx s bounded as a map Ty : By — B.

Proof. Representation (3.15) was already established in (3.12). To prove that
(3.17) 1£1l5 < ell((f, )5, f€B,
we first use A2 to obtain || f||s < ¢||((f,%¢))|s,. Using (3.11) we write

(fodhe) = (f =T fodbe) + (T frdbe) = (T 1 (I = T) f,be) + (£, O)-
Now from A2, (3.7), (3.8), and ||I — T||p—5 < c«c (Lemma 3.2) it follows that
1£1ls < el ({f, @D lsa < ell((THT = D) f,de))lls, + el ((F,06) 15,

< ellT™HT = D fll5 + ell((f. 6e)) |

< ellT 5o IT = Hsssllflls + cll((F,0) 15, < coell flls + el ((f: 0¢)) |54

with ¢, > 0 a constant independent of . Therefore,

171l < F=2 1A Bl

which implies (3.17) if we choose € so that coe < 1.
In the other direction, we use (3.11), A2, and (3.8) to obtain

1((f 0B, = (T be)) s < T flls < cll £
The boundedness of T, : By — B is established in Lemma 3.1. [

3.3. Construction of frames in the case of existence of a single frame.
There are many cases when there is a single (old) frame {¢¢} for a quasi-Banach
space B. More specifically, assume that in the setting of §3.1 1;5 =1, £ € X, e
for any f € B

(3.18) F=Y (fvee and |Iflls ~ ((F,ve) s,

fex



14 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

In this situation the construction of a new pair of frames {f¢}, {f¢} can be sim-
plified. More precisely, {0¢} is constructed as in §3.2 and {55} is defined by
9} = 85710, ¢ € X, where S is the frame operator: Sf := > cex(f,0¢)b¢. This
method is developed in [16], where it is shown that if the the operators with ma-
trices B, D from (3.3) and their adjoints B*, D* are bounded on By and ¢?, and
for a sufficiently small ¢, ||D|| 5,5, < &, |D*|l5,—8, < & |D|lr2—e2 < €, then S~1
exists and is bounded on B and for any f € B

(3.19) F=> (f0)0: and | flls ~II((f.0¢))lls,-

gex

We refer the reader to [16] for details and proofs.

3.4. Construction of frames for classes of quasi-Banach spaces. Let Y be
a class (set) of quasi-Banach spaces B of distributions and assume that {t¢}ecx,
{ig}gex is a pair of dual frames, just as in §3.1, for each B € Y. We shall denote
by Y, the class consisting of the respective sequence spaces By.

Now, our main assumption is that all constants in §3.1 are uniform with respect
to Be€Y and B, € Yy, i.e. they are the same for all B € Y and By € Yy.

In the construction in §3.2 of new frames {f¢}ecx, {0¢}eex for B € Y our
main assumption now is that the constants are also uniform. Thus we assume that
0: € D, £ € X, can be constructed so that ||B||p,~5, < ¢ and ||D| p,~p, < € for
all By € Yy, where € > 0 is sufficiently small.

A careful examination of the arguments shows that under the above assumptions
Theorem 3.5 holds for all B € Y, where the constants in (3.16) are independent of
B as well; they may depend on Y, Yy, and the constants from the assumptions.

4. COMPACTLY SUPPORTED FRAMES IN DIRICHLET SPACES

In this section we present the construction of a compactly supported frame {6}

in the general setting of §1 and its dual frame {55}, and show how they can be used
for characterization of Besov and Triebel-lizorkin spaces.

4.1. The construction. Let ¥y := ® and ¥ be the compactly supported C'*°
functions from the construction of Frame # 1 in §2.3. The first step is to construct
band limited functions ©g and © which approximate well ¥5 and ¥ in a specific
sense given below.

Proposition 4.1. Let Uy and ¥ be the even extensions of the functions ¥y and ¥
from the construction of Frame # 1 in §2.3. Then for anye >0 and N > K > 1
there exist functions ©y,© € C* and R > 0 such that ©¢ and © are even and real
valued, supp ©g C [—R, R], supp © C [—R, R],

t|N
41 0w < M iR L—01.. K
( ) | 0 () eO ()|— (1+‘t|)2N’ € 9 v 07 9 ) 9
and

N
4.2 @ —emm < Mt cr 01 K

Furthermore, supp F(t~"0(t)) C [-R,R], 0 < m < N, with F being the Fourier
transform.
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Proof. For this proof we shall borrow from [12] and [16]. Evidently, it suffices to
prove the proposition in the case when N = K =k > 1.

We first construct ©. Define f(t) := (sin~yt)~2*W(t) with y := 7/2b, and observe
that f € C°(R) , f is even, and supp f =supp ¥ C [—b,b], b > 2.

Our next step is to construct a band limited function f4, A > 1, which approxi-
mates well f. To this end we shall proceed similarly as in the proof of Theorem 3.1
n [12]. Just as in [12] we define the function ¢ on R by its Fourier transform

A _ 1
¢ =11 519 *Hs* - xHs, where Hs:=(20) s, 0= 2kt 2)

k+1
Evidently, ¢ is even, supp ¢ C [<1,1],0 < ¢ <1, (&) =1 for £ € [-1/2,1/2], and
16® oo <877 < (2(k +2)) < (4k)” for v=0,1,....k+ L.

Define fa = f % ¢pa, where ¢a(t) := Ap(At). Note that ¢A( ) = ¢(£/A)
and hence supp¢a C [—A4, A]. On the other hand, fA = fngA and, therefore,
supp fa C [—A, A]. Since f and ¢ are even, f4 is even. In going further,

£(0) = 1a0) = 2m) A [ o) P/t
where F(&) = (1 — ¢(£))¢*. From this we infer

FO) — 191 = i (@2m) A / R (6 (/A et d

and hence
(43) Y = 1l < ATHISE s Falloe
< ATHFE o[ Fallps < FATH 0.
Here we used that ||Fa| g1 = ||F||: < ¥, where ¢ > 1 is an absolute constant [12].

As in [12] we have
[pa(t)] < c(R)AQL+ Alt)) ™1, e(k) = (R~
We use this and supp f C [—b, b] to obtain for ¢ > b

b
t+b b
<17l / (64 (w)ldu < c(k) | £ / A(L + Au) ™ du
t—b b

() oo /Oo (14 0) " Ldu < c(k) A fO || oo (t — b)

A(t—b)
Therefore,
£ = 10 < AT oo (4 )™ o Jt] = 2.
This coupled with (4 3) yields
(44)  |f) — £ < eA” komfgk 1F P oo (X4 1) 7" < SATFL+ [t) 7
forte Rand v =0,1,...,k, where ¢’ > 0 is independent of ¢ and A.

We set
O(t) := (sinyt)*  fo(t) with v := 7/2b as above.



16 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

We next show that © and t7™0O(¢) (1 < m < 2k) are band limited. Indeed,
set A%’“ = (T, — T_,)?*, where T, is the shift to the left operator, defined by
T,9(&) = g(§ + ). It is readily seen that

(AZFa)" (1) = (~1)F 2 (sinyt)* fa(r) = (~1)*2* (1)
and hence
O(&) = (—1)" 272 A% Fa().
Since supp ﬁ C [—A4, 4], it follows that supp© C [—A — 2kvy, A + 2ky].
In going further, set G, (t) := (sinyt)?*=2" f4(t), 0 < v < k. Then
t72O(t) = (sinyt/t)* G, (t).
As above supp G, C [—~A—2(k—v)y, A+2(k—v)q]. Clearly, F(sin~yt/t) = Ty
and hence
.F(tim/@(t)) = (71)”7‘(21} ]]-[—'y,'y] koo Xk ]]‘[—’YKY] *éy.
2v

Therefore, supp .F(t_z”@(t)) C [-A — 2kvy, A+ 2k~], 0 < v < k. This along with
the obvious fact that supp F(tf(t)) = supp F(f’) yields

supp]—"(tfm@(t)) C[-A—-2ky,A+2ky]=:[-R,R], 0<m <2k,

as claimed.
We now establish (4.2). From the definition of f and ©

V(1) — O(t) = (sinyt)*[f(t) — fa(t)]
and using (4.4)
. X /A7k|t|k
@)~ o) < ol s k @ () — £ il L
(1) O (0) < clsinatl s 79~ 15 0)] < e
forv=0,1,...,k.

Finally, choosing A so that ¢/ A=% = ¢ and setting R := A + 2k~ we get © with
the claimed properties.

To construct Oy, we first note that U, € C°, supp ¥} C [—b, —b~1]U[b~1, 1], and
U(, is odd. Then just as above we construct an odd function 6, which approximate
U{ as above and supp ©f C [—R, R]. Finally, we set O(t) := 1+ fot 0)(u)du. It is
easy to see that this will give us ©g with the claimed properties. O

Construction of compactly supported frame. The constants N, K, and ¢
(sufficiently small) will be selected later on. With these constants fixed, we use the
functions ©g, © from Proposition 4.1 to define the new frame. Similarly as in (2.14)
we set

(4.5) 0;(u) :=0(b"7u), j>1.

Let the sets X}, {A¢}ecx,;, and X := U;j>oX; be from the definition of Frame # 1
in §2.3. We define the jth level (j > 0) elements of the new system by

(4.6) bc(2) = |Ae[/20;(VL)(2,), €€ ;.

Then {f¢}ecx is the new Frame #1. A dual frame {¢}ec is produced using the
general scheme from §3.
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Observe immediately that since supp ©y C [-R, R] and supp© C [-R, R], by
Proposition 2.1 it follows that each 0 is compactly supported, more precisely

(4.7) supp e C B(¢,¢Rb™7), €€ X;, j>0.
We shall assume that ¢, R > 1.

4.2. Main result. Our goal is to show that the above defined system {6¢}ecx
along with a dual system {55}56 x constructed by the recipe from §3 form a pair of
frames for the Besov and Triebel-Lizorkin spaces B, , B;;q, F;,, and ﬁ'zfq defined in
§2.4 for the following range of indices determined by constants so > 0, pg, p1,q0 > 0:

(4.8) Q:={(s,p,9) : |s| <50, po <p < p1, and gy < g < 00}.
To state the result we also introduce the constant: Jy := d/ min{1, py} in the case

of B-spaces and Jy := d/ min{1,po,qo} in the case of F-spaces.

Theorem 4.2. Suppose sop > 0, po,p1,90 > 0, p1 > po, and let {Oc}tecx be the
system constructed in (4.6), where

K>s0+Jo+d/2+1 and N >K + 59+ Jo+3d/2+ 1.

If € in the construction of {0¢}ecx is sufficiently small the following holds true for
(s,p,q) € Q with Q from (4.8): (a) The operator

(4.9) Tfi=" (f,de)0e,

fex

is invertible on B, and T, T~ are bounded on B2, uniformly with respect to

pg’
(s;p,q) € Q2. N
(b) The system {0¢}ecx consists of bounded linear functionals on By, defined by

(4.10) Oc(f) = (f.0¢) ==Y (T 0y, &) {f,1hy) for f € Bjy,

nex

with the series converging absolutely, and 9}, & e X, can be identified with

- - B —j\|—1/
(411) e i= S (T "y, )by, where |g(a)| < | B(&,b=7)|71/2

7 —— T € M,
nex (1+bjp(177£))

in the sense that for any ¢ € D we have ég((/ﬁ) = (qb,ég) (inner product). Here
o > 0 is arbitrary but fized.

Moreover, {0¢}ecx, {ég}gex form a pair of dual frames for B, in the following
sense: For any f € By,

(4.12) f=> (f0¢)0: and |f|

fex

B3, ~ I1((f.06) b,

where the convergence is unconditional in B, .
(¢) The operator Ty defined by Tgh = de){ hebe for sequences of numbers

h = (h¢)ecx is bounded as a map Ty : by, — By, uniformly relative to (s,p, q) € Q.

Furthermore, (a) — (c) above hold true when Bj, is replaced by B;q, Ej,, or o,

and by, by by, fpqs 07 fpqs TESPECtively.
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4.3. Almost diagonal matrices. On account of Theorem 3.5 and the discussion
in §3.4 it is clear that to show that {6¢}ecx, {0¢}ecr is a pair of frames for the B-

and F-spaces B, , B;’q, F;,, and F;q for (s,p,q) € Q (see (4.8)) it suffices to show

that the operators with matrices

A= (agn)enex, agn = (g, e),
(4.13) B = (ben)emex; ben = (O, ),
D = (dim)é,ne?ﬁ de = W’n - 07771/}6)

are bounded on the respective sequence spaces by, l;;q, bqr and f;q, defined by
Definitions 2.8-2.9, and

1D

<e

bpebhq sé6 HD Hf,‘fq -7

bs,—bs, <e |D Fra=T5q <e, and ”DHf;q
for a sufficiently small e, where the norm bounds and ¢ are uniform with respect to
(s,p,q) € 2. Asin the classical case on R™ (see [7]), we shall show the boundedness
of the above operators by using the machinery of almost diagonal operators.

It will be convenient to us to denote

(4.14) 0¢)=b"7 for £€Xj, j>0.

Here b > 2 is the constant from the construction of the frames in §2.3. Evidently,
£(¢) is a constant multiple of the radius of the neighborhood A of .

Definition 4.3. Let A be a linear operator acting on by,, by,, [pgs 07 [pg, with

an associated matric (agy)encx. Let J = d/min{l,p} in the case of the spaces
bpgs bogs and J :=d/min{1,p,q} for f,, f5,- We say that A is almost diagonal if
there exists § > 0 such that

|agy|
sup —————
enex ws(&,m)

ws(§,m) = <min{§§f]§’ igg}> |s|+T+4+6 (1 . Hmféé%)lsjgs.

BS S

pq’ Jpq’

< oo, where

We next show that the almost diagonal operators are bounded on by,

and fz‘fq. More precisely, with the notation
|agy|
(4.15) |Alls := sup ——=
emex ws(&,m)
we have:
Theorem 4.4. Suppose s € R and 0 < p,q < o0, and let ||A|ls < oo (in the sense

of Definition 4.3) for some 6 > 0. Then there exists a constant ¢ > 0 such that for
any sequence h = {h¢}eex € by,

(4.16) [ ARy, < cllAllsl|Plls;,,
and the same holds true with by, replaced by qu, bqs O ;fq. Here the constant
¢ can be written in the form ¢ = c1(p + l)clzs‘cé/p"_l/q(l/q)l/q, where c1,ca,c3 > 1

depend only on §,b,7, and cg.
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To streamline the presentation we divert the proof of this theorem to the appen-

dix.
Remark. Observe that ws(€,n) in the definition of almost diagonal operators can
be optimized depending on the specific space by, l;;q, pqs OF fgq As a result this
would enable us to work with smaller parameters N and K in the construction of
{0¢} and in Theorem 4.2. However, we have no restrictions on N, K and opted to
go for a simpler version of ws(&,n).

The above theorem and the construction from §3.2 indicate that to prove that
{0¢}, {0¢} is a pair of frames for B, , Bf,q, Fg,, or Flfq it suffices to show that the
operators with matrices A, B, and D, defined in (4.13) are almost diagonal and
ID|ls < g, for fixed 6 > 0 and sufficiently small ¢ > 0.

4.4. Inner products. We next estimate the inner product involved in (4.13) which
in a sense characterize the localization and approximation properties of the new
system {f¢} relative to the old frame {t¢}.

Theorem 4.5. For any £ € X, n € X, we have

—|i— _K— mind{ 7 -K
(4.17) (e, )| < b WAV TR (1 g pminta (e ) ™7,
—|7— —K— min{7j, -K
(4.18) (O, )| < o™ T—HIN=E=d) (1 4 pminddifd pie )7,
and
—|7— —K-— min{7j -K
(4.19) [(the — Og, thy)| < ceb™HIN=E=d) (1 4 pmin{ditd pie 1)) ™7

where ¢ > 0 is a constant independent of €. Moreover, the above inequalities hold
with 1, replaced by y,.

Proof. We shall only prove (4.19); the proof of (4.17) or (4.18) is similar and will
be omitted. Assume j,¢ > 1. The other cases are similar. From (2.16) and (4.6)
we get

(e — Oc, 1n)|
< e B(E0)V2Bn, b~ )[VA([W(bIVL) = 007V (- €), W2~ VL) ()
= ¢|B& b2 B(n, b~ )2 [W (b VL) — ©(67IVL) W2 VL)(E )|
Two cases present themselves here.
Case 1: £ > 4. Set F(\) := [T(\) — O(N)]¥ (b~ ¥~ )\). Evidently,
F(b™IVL) = [U(bVL) — 00 VL)|U (b VL), suppF c [p*I71 p=I+1),
and by Proposition 4.1

1F®) < b(f v=01,...,K.

L
Now applying Theorem 2.2 we infer
Cb(é_j)d(HFHoo + b(é—j)KHF(K)HOO)
| B(2,b=9)[1/2]B(y, b=9)['2(1 + b p(, ) K
ceb— =) (N-K—d)

< , . ,
~ B, b7 )[M2B(y, b ) VA(1 4 W p(x, y))

IF(0VL)(2,y)| <

and hence
Cgb_(g_j)(N_K_d)
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which verifies (4.19).
Case 2: £ < j. Set F(\) := [U(b=U=ON) — ©(b~U=HN\)¥()). Evidently,
FOb—'VL) = [9(bVL) - 00 VL) ¥ (b VL), suppF c [b},b%,
and by Proposition 4.1
[F) oo < ccb™0=ON 1 =0,1,..., K.

Now, again by Theorem 2.2

c(IFlloo + [1F5)] o)
|B(z, b=4)[*/2|B(y, b=)[V/2(1 + bp(x, y))

ceb=U=ON

= |B(z, b=4)[*/2|B(y, b=)[*/2(1 + bp(x, y))

[P~ VI)(z,y)| <

and hence

C5b7 (jfZ)N

|<1/)£ - 957"/’n>| < W’

which confirms (4.19). O

4.5. Proof of Theorem 4.2. Observe first that a careful examination of the de-
velopment in [12] shows that the pair of frames {¢¢}ecx, {1¢}ecx, constructed in
[12], satisfy condition A1-A2 in §3.1 with B, B, being any of the pairs of spaces
B, by, or B;'q, l;;q or Fy., fpg OF F;q, ;‘jq, and all relevant constants, in particu-
lar, the constants in Theorems 2.10-2.11, are uniform with respect to (s,p,q) € Q,
where Q is defined in (4.8). In fact, the maximal inequality (2.40) is the main
nontrivial contributor to the constants of interest in [12]. Condition A3 (§3.1) is
also satisfied since we assume p,q < co. The validity of condition A4 is included
in the argument in what follows.

Note that, if (s,p,q) € €2, then the constant ¢ from Theorem 4.4 applied with
e.g. 6 =1 can be bounded as follows

c< 01(]91 + 1)030cé/Po-‘rl/QO(:[/qo)l/qo7
where the constants ¢y, ca, cg > 0 depend only on b, 7, ¢g. Here, any § > 0 would do
the job. Therefore, Theorem 4.2 will follow from Theorem 3.5 if we prove that the

operators with matrices A, B, D defined in (4.13) are almost diagonal with 6 = 1

on by, byos fpgs o fpy and in addition for sufficiently small € > 0
(4.20) |ID|ls <& withd=1.

We shall only prove (4.20); the boundedness of the operators associated with the
other matrices follows similarly. Recall that

D = (de,p)emex; degy = (g — by, ¥e).
It will be convenient to introduce the more detailed notation ws(€,n; s, J) for the
quantity ws (€, n) from Definition 4.3. We claim that using that K > so+Jo+d/2+1
and N > K + so + Jo + 3d/2 + 1 it follows that

(421) |dfﬂ7| = |<1/)77_97]a1/}§>| S C€W1(§77’]; SOvjo)a 57776 Xa
where the constant c¢ is independent of €. This along with the obvious fact that
w1 (&5 8, T) = wi(&,m; S0, Jo), whenever (s,p,q) € €2, yields

|d£77
Dl = sup —————+
121 emex wi(&,m58,T)

< ce.
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However, ¢ is independent of M, N, and c¢. Therefore, ce above can be replaced by
¢ and (4.20) would hold.

For the proof of (4.21) consider the case when £(§) > £(n), i.e. £ € X;,n € &,
and ¢ > j. From estimate (4.19) in Theorem 4.5 we get

|ag,y| < ceb™THIN=E=d) (1 4 97 p(¢ ) =K

L) \N-K—d P&\~ K _
—CE(@> (1+ 5 ) < cewi (€, m; 50, Jo),
where in the last inequality we used that K > so+ Jo+d/2+1and N > K +so+
Jo +3d/2+ 1.
The proof of (4.21) in the case £(§) < £(n) is the same and will be omitted.

The claimed properties of the dual frame elements 6¢, { € X, are established in
Theorem 4.6 below. [

4.6. Localization of 55. From our general construction of new frames in §3 it only
follows that the dual frame elements 95, £ € X, are continuous linear functional on
the underlying space B, that is, the respective B- or F-space in the current setting.
Now, we would like to provide more information about the dual frame elements,
and in particular, to identify them with well localized functions.

Theorem 4.6. For any v,0 > 0 the parameters K, N and ¢ in the construction
of {6} can be selected so that for any & € Xj, j > 0, the linear functional ¢ can
be identified with a function

~ ~ cb_‘j_ylfy
(4.22) 0 = aenthy, where  |agy| < . =,
2 5, 1= vt )
and
- —jy|—1/2
(4.23) |0 (x)] < dB(& )"~ x e M.

(1+b7p(x, )"

The following two lemmas will be instrumental in the proof of this theorem.
Lemma 4.7. Let 0 >2d+1,b>1,0<s,t<m, and x,y € M. Then
1 Cb(m—s\/t)a

(424) wez);m (1 n bsp(l‘,u]))a(l + btp(y,w))g < (1 + bSAtp(x,y))m

where ¢ > 0 depends only on d,b and o.

Proof. Assume 0 < s <t < m. Denote the quantity on the left in (4.24) by ¥ and
set

Xy = {w € X 2 p(a,w) > p(a,y)/2}, X5 = {w € Xy 2 ply,w) > pl,y)/2}.

Then ¥ can be represented as X < Y7 1 ---+ > cpo oo+ =: X1 + Xy, For the
first sum we have
(m—t)o (m—t)o
Z1 < b - [ Z ! [ < b ]
(L +bop(z,y)” S5, (L+bmp(y,w)” — (1+bp(z,y))

Here we used the following simple inequality

(4.25) S (g w) T < e <,
WEX,
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see [2], inequality (2.20).
To estimate Yo we consider two cases depending on whether bp(x,y) > 1 or
b*p(z,y) < 1. In the first case, just as above we get

cb(m—s)a cb(m—s)o Cb(m—t)o Czab(m—t)a
Yo < < = <

(L4 btp(z,y)” = (Wp(z,)”  (b%p(z,y))” ~ (1+b%p(x,y))"

If b°p(x,y) < 1, then using (4.25) we obtain

m—t)o
b( ) < Cb(m t)a

1
2 < Z (1+btp(y,w))a SWZ (1—|-bmp(y,w)) ( +b‘3 p(z, ))a

weX, eXnm,

The above estimates for 31 and s yield (4.24). O

Lemma 4.8. Letc >2d+1 and j,v >0,8 >0,b> 1, and x,y € M. Then

p—Im—ile p—Im—vl(a+6) cobli—vlo
(4.26) _ _ < : _
L 2 T (e b < (o)
and
plm—il(o+9) 1 .
(4.27) 5 5 < . >,
mz>0w§ L+ biMmp(z,w))” (14 bmp(y,w))” — (1+bip(z,y))

where ¢, > 0 depends only on d,b,6, and o.

Proof. Assume v < j and denote by ¥ the quantity on the left in (4.26). We split
Y into three X = Zogm<u SR Zygmgj SR o Zm>j <o =12 + Yo + X3. Now,
using Lemma 4.7

—(j—m)o p—(v—m)(o+9)
Y= Z Z b _ o _
0<m<v weX,, 1 + )) (1 + p(y,w))
Z cb—— m)Jb*(V*m)(UJré)
a 0<m<v (1 + bmp(m,y))g
(j—v)o
el DL e
(1 + bV O<m<1/ (]‘ + v ( )>
We estimate 35 using again (4.24)
—(G—m)o p—(m—v)(o+3)

Z Z 1—|—bm ))U (1+b”p(y,w))a

v<m<jweX,,
h-U- m)ob—(m—u)<a+6>

< (e
- V<zm:<j (1+0vp(z,y))
ch——v)o

T (14 bp(a

ch—G—v)e

b (m— y)6 )
7 2 T (1 +bvp(z,y)”

U<m<]
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To estimate X3 we proceed in the same way
b~ (m—j)o b—(m—u)(o+6)

Ss=) Z (1+bip(w,w))” (1+bp(y,w))”

m>jweXy,

(m—v)(c+46) be(jfu)a

<> 4 1+b” 2,9))° = (1+ 0 p(x,y))°

m>]

The above estimates for X1, X9, X3 yield (4.26). The proof of (4.26) when v > j
follows the same lines. The proof of (4.27) is similar and simpler; we omit it. O

Proof of Theorem 4.6. Clearly, it suffices to prove the theorem only whenever
v =0 >5d/2+ 2. Given ¢ > 5d/2 + 2 we impose on the parameters K, M from
Theorem 4.2 the additional conditions: N — K —d > o + 1 and K > o. Later on
an additional condition will be imposed on € as well. By Theorem 4.5 we have for
§eX;andne Xy, j,v >0,

(4.28) (b = O, )| < peb™ PP TD (14 070 p(g,m)) ™7
and
(4.29) [ (e, Py)| < b1 (1407 (&, m))
Note that by (4.11) the linear functional f¢ can be identified with
(4.30) é& = Z <T—1¢,7,1;5>1/~117,
nex

and our next step is to obtain a suitable representation for T~14),,.

Lemma 4.9. For any o > 0 the parameters K, N, and € in the construction of
{0c} can be selected so that for anyn € X, v > 0, we have

(4.31) T~ 1/}77 Z Z nw(Vw — 0u),  where  |tp,| <

m>0 weX,,

Cb—\y—m|o

(1 + bvAmp(n, w))o ’

and

c 1/2
(432 Tl < P

The above series converges uniformly on M.

x € M.

Proof. From the construction of {f¢} in §3.2 (Lemma 3.2) we have
Tf=> (I-T)"f, where Tf:=> (f )b,
k>1 gex

for any distribution f from the underlying B- or F-space B with convergence in the
norm of the space and as a consequence in D’. From this and the representation

[ =2 wexlf 1/~Jw>¢w (Proposition 2.5) we infer
(433) (I - T)f = Z Z <fa 1;@(1% - ew)
m>0wedX,,
We apply the above to v, (n € &, v > 0). We claim that for any £ > 1 we have

(4.34) (I =T) =Y > Th(th —0u),

m>0 weX,,
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where the convergence is in B and hence in D', and
| . c(c*g)kflb*"’*m“’
el = (1 —|—b”Amp(77,w))m
Here the constants ¢, ¢, are from Lemma 4.8 and (4.28). 3
Indeed, using (4.33) identity (4.34) holds for k = 1 with T}), = (4, ¢.,) and by

(4.29) it follows that inequality (4.35) holds for k& = 1. Assume now that (4.34)-
(4.35) hold for some k > 1. Then

(T =Ty =3 > (I = T) 4y, ) (Y — O)

m>0 weX,,

and using (4.28), (4.35), and Lemma 4.8 we obtain (n € X,, w € X,)
(T =TV, )l < D0 D 1Tl (e — by )|

(4.35) w € Xy, Cy = CoCh.

£>0 ac X,
b~ lv—L|o b—|m—é|(a+1)
<c c*a “lee e e
2 &, T (7 ptona)
X b~ \1/ m\o’
< c(eqe) Cy i= CoCp.

(14 bAmp(n,w))”
Therefore, by induction (4.34)-(4.35) hold for all k& > 1.

We now impose on ¢ the additional condition £ < i = 20 o Summing up we
obtain
—|lv—mlo 2Cb7|u7m|o
Tk, | < (cee)f 1 <
;; T (L b (W) ,;1 (L + 0 m (g, )

This, the representation 714, = Zk21(I—T)kwn, and (4.34)-(4.35) imply (4.31).
By the localization of ¢ and )¢, given in Proposition 2.5, it follows that
c|B(g,b7)| 1/
(1+bip(z, €))7
On the other hand, by (4.6)-(4.7) it follows that
10elloo < ¢|B(€,077)|7Y2 and suppfe C B(E,cb™) for € € X;.
Therefore,

(4.36) e (@), [ve ()] < reM, e dj j=>0.

ey < BB
oela) = 0c(a)| < T

This along with the estimate for |t,,| in (4.31) yield

‘T 11/)71 Z Z |tnw”¢w _aw(x)‘

e M, e X;.

m>0weX,,
b lv—m|o |B(w’b7m)|71/2
< C o o
Tnz;owg 1+ v mp( )) (1 + bmp(amw))

By (1.2) and (2.2) it readily follows that
-V v—m vV/AM d —m
|B(n,b™")| < g™ (146" p(n,w)) | B(w, b~™)].
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‘We insert this above and obtain
T4 ()] < el Bl b™)| ) ]
gow;m 1+ bAmp(n,w) "2 (1+0mp(e,w))
c|B(n,b=")|~1/?
< (1 b, x))a—d/2—1

Here for the last inequality we used (4.27) with o replaced by 0 —d/2—1 > 2d + 1.
Finally, observe that since o can be selected selected arbitrarily large then above o
can be replaced by o + d/2 + 1, which leads to (4.32). This completes the proof of
the lemma. O

p—lv—ml(c—d/2) 1

We are now ready to complete the proof of Theorem 4.6. Using Lemmas 4.8-4.9
we obtain

|<T71w7]71/;f>| S Z Z |t7]w||<1/}w 70@)712)5”

m>0 weX,,
—ly—mlo p=Im—il(o+1)
SC o . o
2 3 T ()
ch™ IV J\o

T (L +bp(n, )7

Using this in (4.30) implies (4.22) with v = 0.
To establish (4.23) we use the estimate for |ag,| in (4.22) (with v = o) and the
localization of ¢ from (4.36). We get

(@) <D D UT ™ 4y, G Iy (@)

v>0neX,
p—li-vle \B(n,b*”)rl/?

<c = .
;},7; L+0Vvp(&,m))” (14 bp(z,n))

Now, just as in the proof of Lemma 4.9 we conclude that (4.23) holds true. O

5. APPLICATION OF COMPACTLY SUPPORTED FRAMES TO HARDY SPACES

In this section we consider atomic Hardy spaces HY, 0 < p < 1, in the general
setting of this article (§1). We use the compactly supported frames from §4 to
establish Littlewood-Paley characterization, and as a consequence, frame decompo-
sition of the atomic Hardy spaces H'. This result can also be viewed as an atomic
decomposition of the Triebel-Lizorkin spaces F] pz, 0<p< 1l

Inhomogeneous atomic Hardy spaces. In introducing atoms we follow to
a large extent [10, 4]. The inhomogeneous nature of our setting, however, compels
us to introduce two kinds of atoms.

Definition 5.1. Let 0 < p < 1 and n := [d/2p] + 1, where d is from (1.2).
A function a is called an atom (of type A or B) associated with the operator L if it
satisfies one of the following sets of conditions:

(A) There exists a ball B of radius r = rg, r > 1, such that

(i) suppa C B and
(ii) flallze < [B]/271P.
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(B) There exists a function b € D(L™) and a ball B of radius r = rp, r > 0 such
that
(i) a = L™,
(ii) supp L*¥b C B, k=0,1,...,n, and
(iil) ||LFb||p> < 72(=R)|B|V/2-1/P |k =0,1,...,n.

Being in a setting different from the one in [10, 4] we define the atomic Hardy
spaces H' as spaces of distributions (§2.4).

Definition 5.2. The atomic Hardy space HY, 0 < p <1, is defined as the set of
all distributions f € D' that can be represented in the form

(5.1) f= Z)\jaj, where Z AP < o0,
j=1 j=1
{a;} are atoms, and the convergence is in D'. We set
; )P P
(5:2) Il == e (SDINP) L e Y
f=2j21 Aja; i>1

Our first order of business is to give an example of atoms.

Lemma 5.3. Assume that the constant N from the construction of © in Proposi-
tion 4.1 obeys the condition N > 2n = 2|d/2p]| + 2.
(7) For any & € Xy the function

ag := |B(&,1)|"*71/P60;  with suppag C B(E,ER),

is a constant multiple of an atom of type A.
(1) For any & € X;, j > 1, the function

ag := |B(&,b7)|Y271/Pg,  with suppae C B(E,ERb),

is a constant multiple of an atom of type B.
Above the constants ¢, R are from (4.7).

Proof. Part (i) is immediate from the construction of ¢, £ € Xp.
To prove Part (ii) we put

be(w) := [B(&, b))V 2P| A PLT O (0 IV (,€) for € € Xy, > 1.
Clearly, L"b¢ = a¢ and
(5.3) L*be(x) = |B(&,b7) V2P| AP L RO (b VL) (x, €)
= |B(&b77)[V/27 1P| A 2o R g (57IV ) (w0, €),

where g(t) := t=2(*=%@Q(t). By Proposition 4.1 supp§ C [~R, R] and applying
Proposition 2.1 we obtain supp L*bs = g(b=IVL)(-,€) C B(&,r) with r = ERb ™,
k=0,1,...,n.

On the other hand, by Theorem 2.2 it follows that

lg(b~ VL) (-, O)llos < €| B(E 77!
and we know that |A¢| < |B(&,b77)], € € X;. These coupled with (5.3) imply
(5:4) IL*beloe < b= BB, b70)| 7P < 2P| B(E, )71,
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where the constant ¢’ > 0 depends on b, R,¢,n. Here for the last inequality we
used (1.2). Now, the estimate ||L¥bg||z2 < cr2(=F)|B(¢,r)|Y/271/P follows by (5.4)
and supp L*be C B(¢,r). O

‘We now come to the main result in this section.
Theorem 5.4. We have HYy = F, 0 <p <1, and
(5.5) [l ~ W fllgo, for fe€HE.

Proof. For the proof of the estimate Hf||pg2 < cl\fllaz, f € H" | we need this
lemma:

Lemma 5.5. For any atom a and 0 < p <1, we have

(5.6) Ha||F192 <e<oo.

Proof. Let a be an atom of type B in the sense of Definition 5.1 and suppose

suppa C B, B = B(z,r). Denote briefly B, := B(z,2r). Let {¢;};>0 be the
functions from the definition of the B- and F-spaces in §2.4. From Spectral theory

1/2
it follows that T'f := (ijo |<p](\/f)f()|2) is a bounded operator on L?(M).

Therefore,

”(;)le(ﬁ)a(.)IQ)l/?‘ Lo (Ba) = H(;I@j(ﬁ)a(.ﬂg)l/z‘ L2(32>|BQ|UP_1/2
<SR | ., e

< cllallzz|B|'/P712 < e,
where we used Holder’s inequality and that ||al||z> < |B|'/2~1/P.
we split the index set into two,

) 1/2
To estimate H(Ejzo |¢J(\/f)a()|2) ‘ B
depending on whether 27 > 1/r or 27 < 1/r.
Let 27 > 1/r. From Theorem 2.2 and (2.3) it follows that for any o > 0 and
Jj=1
(5.7)  les(VL)(z,9)| = [p(277VL)(z,y))] < ol Bly,27)| 7 (1 +27p(z,)) "
For the same reason this estimate holds for j = 0 as well. We choose o > d(2+1/p).

Let 7 € M \ By and y € B. By (1.2) and using that p(x,z) > r and 727 > 1 we
get

|B| = |B(z,7)| < co(r2)¥B(z,277)| < co(l + 2jp($,z))d|B(z,2_j)|.
On the other hand, by (2.2) and since p(z,y) < r < p(z, 2) we have
1B(2,279)| < eo(1+27p(2,9)) " [B(y,279)| < co(1+27p(x, 2))"| By, 277)|
Therefore,
1B < (1427 p(x, )| B(y,277).

We use this and the obvious inequalities p(z,z) < p(z,y) + p(y,2) < 2p(z,y) in
(5.7) to obtain

o, (VL) (@, y)| < ¢/ B (1 + 27 p(x,2)) """, 2€ M\ By, y€B.
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In turn, this and the fact that suppa C B and ||al|s < |B|Y/?~/? lead to
l;(VL)a(z)| = ‘/ 027 VIL)(x,y)a(y)du(y)| < llallelle VL) (@, )| 2(s)
B

. B|—1/p
<|B|*VP|lp(27VL I L < C|—
< Bl @ VD) e lmo) < g oy
for x € M \ By with oy := 0 — 2d > 0. Summing up using that p(z,2) > r > 277
we infer

Z |90j(\FL)a(a:)|2 §c|B\—2/p Z

2i>1/r 2i>1/r

1 < c|B|_2/p
(5 2077 = (L5 Lol )

Therefore,

68 (X leivVDa)R)

2i>1/r

1/2‘ P < c/ |B|~tdu(x)
Le(M\B>) — Jpr (L+7r71p(z,2))por —

For the last inequality we used (2.4) and that po; = p(o — 2d) > d.
Let 27 < 1/r. By Corollary 2.3 and (2.3) it follows that for any o > 0 and j > 1
c 22jn
| < . . .
[B(y,277)[(1 + 27 p(x,y))”
Exactly in the same way replacing ¢ with g we infer that this estimate holds for
7 = 0. We choose o > 2n.

Let © € M \ By and y € B. Clearly, B(z,7) C B(y,2r) and using (1.1) and
r < 277 we obtain

B = [B(z,7)] < [B(y, 2r)| < co2/| By, 7)| < co2|B(y,277)].

(5.9)  |IL"0;(VL)(z,y)| = [L"p(27 VL) (z,y))

This along with the obvious inequality p(x,z) < 2p(z,y) and (5.9) yield, for any
reM \ Bs,

o (VDa(@)] = | [ 176V )bty
. clB —1/p j?" 2n
< Bl o2 V) o e B < SO

By Definition 5.1 we have n > d/2p. Choose € > 0 so that p(4n —¢)/2 > d. Then,
from above

2j,r.)4n

(VL 2 <e|B|Tr (

Z |<PJ(\/>)CL(1')| < ¢|B| Z (1+2ip(x, 2))4n—=
2i<1/r 27<1/r

B (277)dn
<cBI?P Y o e
25<1/r (27r) (1 + =

c|B|~%/P -
S T in—= (2/r)*
(1+ 7’)(?2))4 ) Zj;/r
c|B|*2/P
— (1 + p(z,z))4n—s7

)471—5

JZEM\BQ.
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This implies

(X e (vVDa()P)

29<1/r

For the last inequality we used (2.4) and that p(4n — €)/2 > d. Putting together
the above estimates we arrive at (5.6).

Consider now the case when a is an atom of type A. Then suppa C B, where
B = B(z,r) for some z € M and r > 1, and ||a||z> < |B|'/?7'/?. In this case, we
proceed exactly as above with one important distinction. As r > 1 the set of all
§ > 0 such that 2/ < 1/r is empty and, therefore, the estimate ||a||z> < |B|*/?~1/?
is sufficient to obtain the same result. This completes the proof of Lemma 5.5. [

’ < c|B|—1/ dp(x) e
LP(M\B2) M (1+ M)p(4n75)/2

r

1/2‘

Assume f € HY. Then there exist atoms {aj}r>1 (see Definition 5.1) such that
f =21 Awar (with convergence in D’) and >, [Ax|? < 2||f||1;fﬁ' By the properties

of ¢, it follows that ¢; (VL) f(x) = >, M (VL)ag(x), z € M, j > 0. Therefore,
1/2
with the notation (as above) T'f := (ijo |¢](\E)f()\2) we have for x € M

Tf@) = | (X Ao VDar@) |, < 32 Wl (0 (VD)ax(@) 2 = 3 el Tan(@).
k k

k
Using the above and Lemma 5.5 we obtain

1, = ITFIZ < 37 INPITarl? < 7 Dwl? < el fll
k k

as claimed. This completes the first part of the proof.

Assume f € Ff. We shall show that f € HY} and I fllzz < cllfll 7o, To this end
for the given 0 < p < 1 we set sg =0, pg = p, p1 = 2, and gp = 2, and impose on the
parameters K, N in the construction of {f¢}¢cx and Theorem 4.2 the additional
conditions
(5.10) K >3d/2+1 and N >2K+4n+3d+2,

where n := [d/2p] + 1 as in Definition 5.1. Then for sufficiently small € in the
construction of {0} Theorem 4.2 remains valid with B, , by, replaced by F192’ 32.
In particular, denoting X’ := U;>1X;, we have

(5.11) F= (00 = " (£.0)0c + > (f.0¢)0c =: fo + fi,
fex EEX) cex’

where the convergence is unconditional in F192, and

71, ~ || (X 0 80ima01?) |
fex
12) ~ (X I Bllad ) (3 (4 d0lia)?)
£€Xo seX’

We split the atomic decomposition of f into two steps by decomposing first fj
and then f; (see (5.11)).

From Lemma 5.3 we know that there exists a constant ¢, > 0 such that for any
¢ € Ap the function ag¢ := c,|B(&,1)['/271/Pg; is an atom (of type A). On the other
hand, from the definition of {A.} in §2.3 it follows that |A¢| ~ |B(&,1)|, £ € Ap.
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Setting A¢ := ¢ (f,0)|B(E, 1)[V/P71/2 we get [Ae| < cl(f,00)[|Ae'/P71/2, € € X
From this and (5.12) we infer
(5.13) fo= D (f0)0e = ) Acac and D Ael” < el fl

£eXy £eXy £eXy

We now turn to the atomic decomposition of f;. By (4.7) we have supp 95 C By,
where Be := B(€,0;), §; := ¢Rb™7 for £ € X;. Denote briefly ag := (f, 05> We
may assume that o # 0 for £ € X’ (0therw1se we remove £ from X”’). Set

= (3 loe1Bd 15 (@)

fex’

and write Q, := {x € M : g(z) > 2"}, r € Z. Obviously, Q41 C Q, for r € Z and
Urez€r = Ugexr Be. It is easy to see that

(5.14) Sl <e [ owrduts)

reZ
Indeed, we have

S 2710, = 3027 ST Q| = DI\ 2t S 2

rEZL rEZ v>r VEZ r<v
<ep > 2|0\ Q| < o Z/ )Pdp(x) = cp/ g(x)Pdp(z).
ver vez \Qv+1 M

Define

B, = {Bg : |B§ QQT‘ > ‘BEI/Q and |B§ ﬂﬂr+1| < |BE‘/2}
and observe that B, N By = 0 if r # s and {Be¢ }ecxr = UpezBr. We next introduce
a partial order on the set {B¢}. Namely, we write B, < By if

(i) Be, By, € B, for some r € Z, and

(i) if & € &, n € A}, for some j < k, there exists a chain Be,,...,Bg, € B,
such that B¢, = Be, Be,, = By, Be, N Be,,, # 0 and level (§,) < level (§,41) for
1<v<m-1.

Denote by M(B,) the set of all maximal elements By € B, with respect to <
and for each Bg € M(B,) set T¢ := {B,, € B, : B;, < B¢}. By assigning each ball
B, € B, to only one 7¢ we may assume that these are disjoint sets. Therefore, we
have the following decomposition into disjoint “trees”:

{Bn}nexr = Urez Up.em(s,) Te-

We associate with each such “tree” T¢ (€ € &) the function fe := )"
set
(5.15) ag := ¢, |B(£,38,)|7YP277 fe, be := L™ "ae, and \¢ := c; | B(€,36;)|1/P2".
We next show that a¢ is an atom if the constant ¢, > 0 is selected sufficiently small.

Observe first that each ball B, € T¢ (£ € &) is connected to B := B(§, ;) by
a chain of balls and hence B, C B(,v) with v:=d;(1+ 3,5, 2b7") < 34;, using
that b > 2. On the other hand, from the proof of Lemma 5.3 supp L=, C B,
for 0 < m < n, and hence supp L¥be C Upere By C B(£,365), 0 <k <n. Thus, to
prove that a¢ is an atom, it remains to show that if the constant c, is sufficiently
small, then

(5.16) | LEbe| L2 < (30;)2 M| B(¢,36,)|Y27VP, 0 <k <n,

nETe apf, and
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which is equivalent to
(5.17) 1L agl|z2 < (36;)" [ B(&,38,)*7 1P, 0 <m <.
For this we need the following Bessel type property of {L~"0, }:
Lemma 5.6. For any sequence of numbers {By,}nex: and 0 < m < n we have
(5.18) H S B,L7m0 H <ec Z b=4min |, |2,
nex’

Here, j, is the level of n, i.e. n € X}, .

Proof. To prove the above inequality we shall show that the elements of the Gram
matrix of {L 76, } decay sufficiently fast away from the main diagonal, namely, if
EeXj,neX, >j>1,and 0 <m < n then

(5.19) (L0, Lm0, < cb™ b= (DN (1 (e, ) ™

To prove (5.19) we proceed similarly as in the proof of Theorem 4.5. From (4.6)
we obtain

(L0, L7™0,)| < c| B(&, b)Y |B(n, b= )| ?|L7*"0 (b VL)O (b VL)(&,1)].
Set F(\) := A~*mO(\)O(b~(¢=7))). Then

(5.20) FObTIVL) = "™ L0 (b 'VL)O(b~'VL),
and by Proposition 4.1 we obtain for v =0,1,..., K
(L—3)N \2N (L—j)N/2
FO() < G Sl Y
)\4m(1 +)\)2N(1 + b (e— ]))\)2N ( +)\)N/2
and
ch—(—i)N \2N ch—U—3)N/2
[Pt 0<A<l.

<
Wl < NAIMAE (1 4 N)2N(1 4 b= (E=DN)2N = (1 \)N/27
Here we used that 2N > K +4n and for the same reason F*)(0) =0, v =0,..., K.
Now, we apply Theorem 2.4 using that N/2 > K 4+ d+ 1 (see (5.10)) and obtain
ch—(E=N/2

| B(2,b77)[1/2B(y, b=9)['/2(1 + b p(, y)) K
This along with (5.20) implies (5.19).

Denote briefly ve(z) := b*™IL™™0¢(z) for £ € X;. Then, if £ € Xj, n € Ay,
£>3j >1, then

[P0V (z,y)| <

. . _ L , _3d_
[(ve, )| < b= EDN2=2m) (1 p(e, ) ™5 < b= EDED (147 p(e, )"
where we used that N/2 > 2n+3d/2+1 and K > 3d/2+1. This and Definition 4.3
imply that the Gram matrix G := ((vg, vy,))e near is almost diagonal for f9, = ¢
and by Theorem 4.4 the operator associated with this matrix is bounded on ¢2.
Therefore, for any sequence of numbers {f,},cx and 0 < m < n,

2 2
— —2mj
| X s, = || 3 7],
nex’ nex’
<NGllasa Y 2B P <o Y b, 2,
nex’ nex’

which verifies (5.18). O
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We are now prepared to prove (5.17). Let £ € X}, Be € M(B,.) for some r > 0,
and 0 < m < n. Then using (5.18) we get

2 ;
(5.21) 12 el = | 32 ankm0, | < bt S o

neTe neTe
On the other hand, for any B, € 7¢ we have B, C B(&,30;), which gives
1< 2B, B\ Q| =21, [ 1, d.
B(£,36,)\ Q11
Thus,

> laof <2 3 lanf?1By 1, di

neTe B(£,36;)\Qr 11 a7

<2 / l9() Pdu() < e[ B(€,36;)]2%"
B(&,30;)\Q2r+41

This coupled with (5.21) implies
1L agllze = .| B(&,36;)17 /P27 |IL7" fell e
< ce, b2 |B(E,35)[/2 7P < ce.(85;)™ | BE, 35,2,
Choosing ¢, so that cc, = 1 we arrive at |L™"ag||r2 < (36;)>™|B(€,35;)|1/2>~1/P.
Therefore, with this choice of ¢, the function a¢ from (5.15) is an atom.
By assumption f € ng and hence the representation (5.11) is valid, where the
convergence is unconditional in Fz?2' As F292 is continuously embedded in D’ [12,

Prposition 7.3], the series in (5.11) converges unconditionally in D’ as well. Thus,
we can rearrange the terms in the representation of f; as we please, in particular,

(5.22) A=Y> Aa inD.
r€Z Bee M(B;)
Now, using (5.14)-(5.15) and the fact that each a¢, when By € M(B,), is an atom

we obtain
Z Z \AE\chc;”Z Z 2P"| Be|

r€Z B¢€M(B,) r€Z Bee M(B,)

(523 <} ¥ iBnal

r€Z Bee M(B,)
P
<ey 27|, < dllgllh < cll I, -
reZ
Here for the last inequality we used that 1, (z) < cMil, (), § € A”, and applied

the maximal inequality (2.40).
From (5.13) and (5.22)-(5.23) it follows that f € H} and || f|| gz < | f|| o, This

completes the proof of Theorem 5.4. O

6. FRAMES WITH SMALL SUPPORTS ON THE INTERVAL, BALL, AND SIMPLEX

The purpose of this section is to illustrate our heat kernel based method for
construction of frames in three classical cases (interval, ball, and simplex), where
orthogonal polynomials appear naturally as eigenfunctions; the case on the sphere
is completed in [20, 16].
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6.1. Frames with small shrinking supports on [—1, 1] with Jacobi weights.
Consider the case when M = [—1,1], du(x) = wqa g(x)dr, where

Wap(2) = w(z) == (1-2)*(1+2)", o> -1,

and
[w(z)a(z) f'(z)] 2
Lf(z) = - 220 A1 = (1—2?).
(@) O ) = (=)
As is well known [24] the (normalized) Jacobi polynomials Py, k = 0,1,..., are

eigenfunctions of the operator L, i.e. LP, = A\ Py with A\ = k(k+a+ 8+ 1).

It is not hard to see that the operator L is essentially self-adjoint and positive.
In [2] it is shown that L generates a complete strictly local Dirichlet space with
an intrinsic metric on [—1,1] defined by

(6.1) p(z,y) = | arccosx — arccos y|.

The doubling property of the measure du follows readily by the following estimates
on [B(z,r)| = u(B(z,r)):

|B(z,7)| ~r(l — 2+ 7“2)0‘“/2(1 + x4+ TQ)’B'H/Q.

The Poincaré inequality holds true and appears in the form: For any weakly differ-
entiable function f :[—1,1] — C and an interval I = [a,b] C [-1,1]

(6.2) /I|f(x) — f1l*w(z)dz < ¢(diam , /|f 2(1 — 2*)w(x)dx

where diam ,(I) = arccos a — arccos b, f; = w(l f[ z)dz, w(l) = [, w(z)dx
We refer the reader to [2] for details and proofs.

Thus we are in a situation which fits in the general setting of complete strictly
local Dirichlet spaces, where the local Poincaré inequality and doubling condition
on the measure are obeyed (see [2]). The heat kernel associated with the Jacobi
operator takes the form

(6.3) pi(,y) =Y e M P(2)Pi(y), Mo =k(k+a+B+1),
k>0

and the general theory leads to Gaussian bounds on pi(z,y): For any 0 < ¢t <1
and z,y € [—1,1]

4 exp{—iclpi(x’y) } chexp{—

<
/2 = /2"
(IB(z, V)| By, v1)]) (IB(af,\/f)HB(y, Vi)
In turn, the upper bound above implies that the finite speed propagation property
holds and as a consequence we arrive at the following fundamental property of
Jacobi polynomials: If f is even, supp f C [—A, A] for some A > 0, and f € W2
ie. |f® e < o0, then for § >0 and z,y € [-1,1]

(6.5) > F 6V ) Pela Y=0 if p(z,y) > cbA.

k>0

Czﬂ ﬂ/)}

(6.4) pe(z,y) <

In this case the eigenspaces have the polynomial property (the product of two
polynomials of degree n is a polynomial of degree 2n) and, therefore, the “simple”
scheme from §5.3 in [2] or §4.4 in [12] produces a frame {1 }¢cx, which can be used
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for decomposition of weighted Besov and Triebel-Lizorkin spaces on [—1,1] in the
form

(6.6) F=" (f e,

fex

and the B- and F-norms of f are characterized by respective sequence norms of
{{(f,%e)} just as in Theorems 2.10-2.11 above.

Now, the scheme from §3.3, §4 produces a pair of dual frames {0¢ }¢cx, {55}5625

which can be used for decomposition of the B- and F-spaces with frame characteriza-
tion of the norms as in Theorem 4.2. Here X" has a multilevel structure: X = U;>0X;
and the frame elements {0¢ } have shrinking supports, namely, supp 8¢ C B(&, cb™7),
e Xj, 3 =>0.
Remark. Here we have an example where the general method presented in this
paper allows to improve on well known results and produce new results in a con-
crete classical setting. The Gaussian bounds (6.4) for the heat kernel (6.3) were
established in [2] and also independently in [21] in the case when «,f > —1/2.
The finite speed propagation property and its important consequence (6.5) to the
best of our knowledge appear explicitly first in this article and implicitly in [12].
Frames as in (6.6) and their utilization for decomposition of weighted Besov and
Triebel-Lizorkin spaces on [—1, 1] with weight wq g(x) are developed in [18] under
the condition a, 8 > —1/2, while above we assume a, 3 > —1. Up to now frames
with small shrinking supports on [—1,1] with weight w, g(z) were only possible
from [17] in the case when o = 3, « is a half integer, and o > —1/2, while here we
operate under the assumption «, 8 > —1. Therefore, as a whole the proposed heat
kernel based development of Jacobi frames is more complete.

6.2. Heat kernel and frames with small shrinking supports on the ball.
Let M be the unit ball B := {x € R? : |z| < 1} in R? and the measure be
dv(x) = wy(z)dx, where

w, () = (1 — |22 u>—1/2.

Here |z is the Euclidean norm of z € R?. Consider the differential operator

d d d
(67) LM = —A—l—Zinxjaiaj + (Q,u—&—d)inai,
i=1j=1 j=1
which has orthogonal polynomials on B? with weight w,, as eigenfunctions. To be
more specific, denote by V¢ the space for all polynomials of degree n in d vari-
ables which are orthogonal to lower degree polynomials in L?(BY, wy). These are
eigenspaces of the differential operator L, (see e.g. [3, 5]), i.e.

L,P=)\,P for PcV! with\, =n(n+d+2u—1).

In [13] it is shown that the operator L, from (6.7) is essentially self-adjoint and
positive, and L,, generates a complete strictly local Dirichlet space with an intrinsic
metric on B¢ defined by

p(x,y) := arccos {(:c, y) + /1 — |z]2y/1 - |y|2} .
More importantly, the respective local scale-invariant Poincaré inequality holds.
Furthermore, it is easy to see that v(B(x,7)) ~ r¢(r? +1 — |z|?), which implies the
validity of the doubling condition on the measure.
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Therefore, the machinery of Dirichlet spaces applies and the results from [2, 12]
and the current article apply in full. We next describe their main implications.
If {Py}a|=n is an orthonormal basis for the space V,¢, then the kernel of the
the orthogonal projector Proj,, : Lz(Bd,wH) + V4 can be written in the form
Po(wusz,y) = 3 41=p Pa(2)Pa(y); it is independent of the particular selection of
the basis { P, }|a|=n in V4. The associated heat kernel takes the form

(6.8) pr(m,y) =D e Py(wy;,y).

n>0

The Poincaré inequality and doubling property of the measure yield Gaussian
bounds on the heat kernel p;(z,y), which appear just as in (6.4). In turn, the
Gaussian upper bound implies the finite speed propagation property which implies
the following property: If f is even, supp f C [—A, A] for some A > 0, and few?
then for § > 0 and z,y € B¢

(6.9) Zf (6+/2n)P, (W z,y) =0 if  p(z,y) > éSA.

n>0

The polynomial property of the eigenspaces V4 allows to apply the “simple”
scheme from [2] or [12] and construct a frame {i}ecx for the weighted Besov
and Triebel-Lizorkin spaces just as in Theorems 2.10-2.11 above. Furthermore, the
scheme from §3.3, §4 enables us to construct a pair of dual frames {0¢ }ecx, {ég}ge)(
for the weighted B- and F-spaces with weight w,(z). The supports of the frame
elements {0¢ }¢cx shrink, more precisely, supp 6 C B(&,cb™7), £ € X;, j > 0.

Remark. The weighted Besov and Triebel-Lizorkin spaces on B¢ with weight
w,(z) and their frame decomposition have already been developed in [19] under
the condition p > 0. Frames with small shrinking supports for the same spaces are
developed in [17] under the condition that p is a half-integer and p > 0. The main
points in our development on the ball are that, first, with the use of the heat kernel
technology from [2, 12, 13] we free the development of spaces and frames on the
ball from the restriction p > 0, replacing it by u > —1/2, second, we develop here
frames with small shrinking supports under the natural condition p > —1/2, and
third, we have a characterization of atomic Hardy spaces on the ball.

6.3. Heat kernel and frames with small supports on the simplex. We con-
sider now the case when M is the simplex
T'={zeR:2;>0,...,24>0,1—|z|js >0}, || :=|z|+...+ |zq],
with measure dv(z) := wy(z)dz, where
1
1—73 .

= gt 1— Rar1—3 S _1/92
wi () = 1) zg" (1= lz]1) ;> —1/2

Consider the differential operator (with 0; := 9/0z; and |k| := k1 + -+ + Kq)
szaz—l—Zszx]aa —Z(m—i— 5 — (s + 1)%)81
=1 j=1 1=1

As is well known (see [3]) the orthogonal polynomials on T¢ with respect to w,, are
eigenfunctions of L,. More explicitly, if V¢ denotes the space of all polynomials of
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degree n which are orthogonal to lower degree polynomials in L?(T¢,w,), then

d—1
L.P=X\,P for PecV? with \,:=n(n+2l), L =]l + 5

In [13] it is shown that L, is an essentially self-adjoint positive operator which
generates a complete strictly local Dirichlet space with an intrinsic metric on T¢
defined by

play) = axccos {/zryr + -+ vEaya + VI~ a1~ o]} -

Moreover, the respective local scale-invariant Poincaré inequality is valid [13]. Also,
it is easy to see that

d+1
|B(z,7)| = v(B(z,r)) ~r? 1_[(7“2 + ;)™
i=1
which implies the doubling property of the measure. Thus, we are again in a
position to run the machinery of Dirichlet spaces and the results from [2, 12] and
the previous sections apply in full.

Assuming that {Py}|q|=p is an orthonormal basis for the space V4, the kernel
of the orthogonal projector Proj,, : L?(T% w,) + V¢ can be written in the form
Po(we;x,y) = 32412 Pal(z)Pa(y). Therefore, the associated heat kernel can be
written as
(6.10) pe(w,y) = Z@*)‘"tpn(wﬁ;x’y)_

n>0
Gaussian bounds on pi(z,y) follow by the Poincaré inequality and the doubling
property of the measure, namely, for 0 < ¢t < 1 and z,y € T¢

c 2:1:, c 21’,
1pt( y)} 2/))5 y)}

¢y exp{— ¢ exp{—
(IB(z, V)| B(y, V1)) (IB(z, V)| B(y, V1))
As a consequence the finite speed propagation property is valid, and therefore, the

following property holds: If f is even, supp f C [—A, A] for some A > 0, and
f € W2, then for 6 > 0 and 2,y € T¢

(6.12) D FEVA)Pa(wisz,y) =0 i ple,y) > EA.

n>0

(6.11)

1/2 Spt(x7y)§ 1/2°

For more details and proofs, see [13].

As on the interval and ball, the “simple” scheme from [2] or [12] produces a frame
{¥}¢ex for the weighted Besov and Triebel-Lizorkin spaces on T¢ with weight w,, ()
just as in Theorems 2.10-2.11 above. In turn, the scheme from §3.3 and §4 produces
a pair of dual frames {0¢}ecr, {0 }eex for the weighted B- and F-spaces, where
suppfe C B(&,cb™7), £ € X;, j > 0.

Remark. Note that the theory of weighted Besov and Triebel-Lizorkin spaces with
full indices on T? with weight wy (), k; > —1/2, and their frame decomposition
follows by the general theory from [2, 12] and the development of the heat kernel
on T? in [13]. However, most of the components of this theory have already been
developed in [11] in the case when k; > 0. Now, the advances in [2, 12, 13] allow
to handle the general case when k; > —1/2. Another challenging problem that was
solved using the heat kernel technology is the establishment of sharp lower bound
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estimates on LP norms of frame elements and operator kernels. The development
of frames on T? with small shrinking supports and atomic Hardy spaces on T? is
entirely new.

7. APPENDIX
Here we carry out the proof of Theorem 4.4. For this we need two lemmas.

Lemma 7.1. Let 0 < t < 1 and M > d/t. Then for any sequence of complex
numbers {hytnex,,, m > 0, we have for x € Ag, £ € X,

> |hn|(1+nm{pé(§é%>_”{ < comax {p DU LM (T hyl1a, ) (2)

NEXm NEXm

Here the constant c, takes the form c, = clcé/té’l with c1,co > 1 constants inde-

pendent of t,0 if M > d/t+0,0< 6 < 1.

Proof. Consider the case ¢(§) > £(n). The proof in the case £(§) < €(n) is similar
and will be omitted. Let £ € X; (j < m) and set Qo := {n € Xy, : p(n, &) < b7}
and .
Q,={neXy: W <bpnE <y, v>1,
where ¢® = v/4 with « the constant from the construction of Frame # 1 in §2.3.
Set
B, := B(&,c¢°b™™(1+b"77t™), v >0.
Note that A, C B, if n € Q, and hence B, C B(n,2¢°b~™(1 4 b*~9+™)) implying
|By| < [B(n,2¢°b7™ (1 +b"77F™))]
< (1 + By By, 271 < b,
where we used (1.2) and the fact that B(n,27'c¢®b~™) C A, C B(n,c°b~™) for
1N € Xy, see §2.3. Thus
(7.1) 1B, |/|Ay| < cb=Itmd e q,,.
Since 0 < t < 1 we have

Z ‘hn|(1+bjp(§777)) < (2/c) Zb_VM Z |h|

neXy, v>0 ned,
< @/EM I r M (Y Il
v>0 neQ,

From this and (7.1) we obtain for z € A¢

Siml=[ (% hn||An1/t1A7,<y>)tdu<y>

neQ, neQ,
B, |

\BI/ Ay

jmya '
< bt >d‘B . <Z |h,,|]lAn(y)> du(y)

VIS

< = 7y (3 a1, ) (@)]
neXn,

), 00) duto)
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Therefore, since M > d/t we get for x € A
Z ‘h’l’[|(1 4 b]d(é-,’r]))_M S CZ b—l/Mb(V—j"r’rn)d/tMt( Z |hn|]lAn)(x)
NEXm v>0 nEXy,
< b DM (S |hylia,) (@),

NEXm

where the constant ¢, is of the form ¢, = clcéwcé/té_l it M >d/t+0.
If M >d/t+0,0< 6 <1, then everywhere above M can be replaced by d/t + 4,

which will result in a constant ¢, of the form ¢, = clc;/ '5—1 as claimed. [

In the next lemma we specify the constants in certain discrete Hardy inequalities
that will be needed.

Lemma 7.2. Let v >0,0<g<o0,b>1, and a,, >0 form > 0. Then
—(m—7) a\ 1/q 1/q
(7.2) (;} (mz;]b J 'Yam) ) < ch(ngoaga
and
g —(j—m) a\ 1/q 1/q
(7.3) (;)(mz_:ob J 'yam> ) §ch(mz>:oafn) .

Above the constant ¢y is of the form ¢y = ¢1 (c2/q)'9, where c1,co > 0 are constants
depending only on v and b.

The proof of this lemma is standard and simple; we omit it.

Proof of Theorem 4.4. We shall only establish the result for the spaces fz‘fq, that
is,

(7.4) | AR

< cll Al -

Ipq

The proof in the other cases is similar and will be omitted.

Let A be an almost diagonal operator on f,, in the sense of Definition 4.3 with

associated matrix (ag,)enex and let h € fgq. As compactly supported sequences
are dense in f;q (p,q < o0) we may assume that the sequence h is compactly

supported. Then we have (Ah)e = >, _, agyhyy. By the definition of f;q, we have

nex

bz, = || (3 (14l canelia ()]7) "

Lr
gex
B H ( Z [|A§|_S/d Z |af’7||h"|ﬂf4£(')]q)l/qHLp < c(Q1+ Q2),
£ex nex

where ¢ = 21/Pt1/a,

N /
0= |[( S04 Y lagalltalia ]?) || . and
cex £(n)<L(€)
~ /
Q= || (14 3 laealltalLa0]) ]

cex L(n)>£(&)



COMPACTLY SUPPORTED FRAMES IN DIRICHLET SPACES 39

We next estimate Q. Suppose { € X, n € X,,,, and m > j; hence £(n) < £(€).
We know that B(&,271c®b™7) C Ag C B(€,¢°b™7) with ¢® =4b2, 0 <y < 1, and
similarly for A,. We use the above, (2.2), and (1.2) to obtain

. d .
4¢) < |Bl&. )] < o (14 28) By )

. . d
< A2/ (14 W p(,m)) B0, 27 ™)

. . d
< A2/ (14 ¥ p(e,m) ) Ay
Therefore,

(7.5) |[Ae] < ¢t (27%)(1(1 + p;fé;ﬂ>d‘477|7 ci = 63(2/00)11,

Using this and [|A]|s < oo (see Definition 4.3) it readily follows that whenever
£(n) < £(¢)

NI AN pEm T e
ol <o) () (%) o=

Denote briefly A¢ := [A¢|~%/471/21 4,(-) and choose t so that d/t = J + 6/2. Then
0 <t <min{l,p,q} and J + 3 — d/t > 0. We have

s/d+1/2
iu ch( > (iig)w(:ﬁ)

€X T e(m=L(©)
p(&,m)\—T—9 ol
X (1+ o ) |hn|)\£(.)] ) .
- H(Z Z {Zb(j—M)(J+5) Z @ s/d+1/2
o ' 4,
Jj20€ex; m>j nEX,

< gl (L4 () re)]")

We now apply Lemma 7.1, the Hardy inequality (7.2), and the maximal inequality
(2.40) to obtain

”i” c*ch<Z Z [Zb(] m)(J+6—d/t)

j>0&eX; m>j

) Mt( Z <|j£|)5/d+1/2hnllAn>('))‘5(')}q)é

e

nEXy 4] v
1
j—m)d 7\«
<eof (ST sl 3 wn)]'),,
ji>0 m>j NE€EXm
N
< C*CthH(ZMt< \h§|)\§) ) o < ey
7>0 X
Here ¢, = clcé/té’ is from Lemma 7.1, ¢; = c3(cs/q)'/? is from Lemma 7.2,

Cp —cgland

cﬁfcgmax{p, (p/t—1)" }max{l (¢g/t —1)~ }
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is from (2.40). It is readily seen that the constant ¢ = c.cyeyc, is of the claimed
form.

To estimate Qo we again use that ||A|s < oo and (7.5) with the roles of £ and 7
interchanged to obtain whenever £(n) > ¢(£)

|aen| < o | Alls (ﬁgf};)& (éj)smﬂm <1 + péf;??))_j_é.
Setting again A¢ 1= |Ag| 75/ 121 4 (-) we get
Qs NS (A
<ol 2, ) (i

X £(n)>L(8)
(1 2 et

(X [y ()

j>0£eXx; m<j NEXm

)s/d+l/2

Lp

1

% | (1+57p(6m) 7" 2e()]')"

We use again Lemma 7.1, the Hardy inequality (7.3), and the maximal inequality
(2.40) to obtain

IIiﬁ C*CbH(Z > [Zb@n 06

j>0&eXx; m<j

) Mt( > ("})s/d+1/2|hn|11An>A€(')r);

e

1E X | Ay L
<eol (S[Z 22l 2 mn)])',,
720 m<j NEXm

e < C*Chcﬁcb||h| FE

<o (2 P E o)

where the constants c., ¢y, ¢4, ¢, are as above. The above estimates for Q; and Qs
yield (7.4). O

REFERENCES

[1] O. Christensen, C. Heil, Perturbation of Banach frames and atomic decompositions,
Math. Nachr. 185 (1997) 33-47.

[2] T. Coulhon, G. Kerkyacharian, P. Petrushev, Heat kernel generated frames in the setting
of Dirichlet spaces, J. Fourier Anal. Appl. 18 (2012), 995-1066.

[3] C. Dunkl, Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Math-
ematics and its Applications, Vol. 81, Cambridge Univ. Press, 2001.

[4] X. Duong and L. Yan, Spectral multipliers for Hardy spaces associated to non-negative
self-adjoint operators satisfying Davies-Gaffney estimates, J. Math. Soc. Japan 63 (2011),
295-319.

[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental
functions, Vol II, McGraw-Hill, New York, 1953.

[6] M. Frazier, B. Jawerth, Decomposition of Besov Spaces, Indiana Univ. Math. J. 34
(1985), 777-799.



COMPACTLY SUPPORTED FRAMES IN DIRICHLET SPACES 41

[7] M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution, J. of
Funct. Anal. 93 (1990), 34-170.

[8] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Func-
tion Spaces, CBMS 79 (1991), AMS.

[9] L. Grafakos, L. Liu, and D. Yang Vector-valued singular integrals and maximal functions
on spaces of homogeneous type, Math. Scand. 104 (2009), 296-310.

[10] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, and L. Yan, Hardy spaces associated to non-
negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math.
Soc. 214 (2011), no. 1007.

[11] K. Ivanov, P. Petrushev, and Yuan Xu, Sub-exponentially localized kernels and frames
induced by orthogonal expansions, Math. Z. 264 (2010), 361-397.

[12] G. Kerkyacharian, P. Petrushev, Heat kernel based decomposition of spaces of distribu-
tions in the framework of Dirichlet spaces, Trans. Amer. Math. Soc. (to appear).

[13] G. Kerkyacharian, P. Petrushev, and Yuan Xu, Gaussian bounds for the heat kernel on
the ball and simplex, preprint.

[14] G. Kyriazis, P. Petrushev, New Bases for Treibel-Lizorkin and Besov spaces, Trans.
Amer. Math. Soc. 354 (2002), 749-776.

[15] G. Kyriazis, P. Petrushev, On the construction of frames for Treibel-Lizorkin and Besov
spaces, Proc. Amer. Math. Soc. 134 (2006), 1759-1770.

[16] G. Kyriazis, P. Petrushev, On the construction of frames for spaces of distributions, J.
Funct. Anal. 257 (2009), 2159-2187.

[17] G. Kyriazis, P. Petrushev, ” Compactly” supported frames for spaces of distributions on
the ball, Monatsh. Math. 165 (2012), 365-391.

[18] G. Kyriazis, P. Petrushev and Yuan Xu, Jacobi decomposition of weighted Triebel-
Lizorkin and Besov spaces, Studia Math. 186 (2008), 161-202.

[19] G. Kyriazis, P. Petrushev and Yuan Xu, Decomposition of weighted Triebel-Lizorkin and
Besov spaces on the ball, Proc. London Math. Soc. 97 (2008), 477-513.

[20] F. J. Narcowich, P. Petrushev and J. D. Ward, Decomposition of Besov and Triebel-
Lizorkin spaces on the sphere, J. Funct. Anal. 238 (2006), 530-564.

[21] A. Nowak, P. Sogren, Sharp estimates of the Jacobi heat kernel, preprint.

[22] P. Petrushev, Bases consisting of rational functions of uniformly bounded degrees or
more general functions, J. Funct. Anal. 174 (2000), 18-75.

[23] E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals, Princeton University Press, Princeton, NJ, 1993.

[24] G. Szegod, Orthogonal Polynomials, Amer. Math. Soc. Collog. Publ. Vol. 23, Providence,
4th edition, 1975.

HAMANOFIM ST. 9, HERZELIA, ISRAEL
E-mail address: Shai.Dekel@ge.com

LABORATOIRE DE PROBABILITES ET MODELES ALEATOIRES, CNRS-UMR 7599, UNIVERSITE
PaRIS VI ET UNIVERSITE PARIS VII, RUE DE CLISSON, F-75013 PARIS
E-mail address: kerk@math. jussieu.fr

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CYPRUS, 1678 Nicosia, CYPRUS
E-mail address: kyriazis@ucy.ac.cy

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208
E-mail address: pencho@math.sc.edu



	2013_04_PreprintCover
	DKKP-2013-web

