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Abstract

We are interested in approximation of a multivariate function
f(x1, . . . , xd) by linear combinations of products u1(x1) · · ·ud(xd) of
univariate functions ui(xi), i = 1, . . . , d. In the case d = 2 it is a
classical problem of bilinear approximation. In the case of approxi-
mation in the L2 space the bilinear approximation problem is closely
related to the problem of singular value decomposition (also called
Schmidt expansion) of the corresponding integral operator with the
kernel f(x1, x2). There are known results on the rate of decay of er-
rors of best bilinear approximation in Lp under different smoothness
assumptions on f . The problem of multilinear approximation (nonlin-
ear tensor product approximation) in the case d ≥ 3 is more difficult
and much less studied than the bilinear approximation problem. We
will present results on best multilinear approximation in Lp under
mixed smoothness assumption on f .
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1 Introduction

In this paper we study multilinear approximation (nonlinear tensor product
approximation) of functions. For a function f(x1, . . . , xd) denote

ΘM(f)X := inf
{uij},j=1,...,M,i=1,...,d

‖f(x1, . . . , xd)−
M∑
j=1

d∏
i=1

uij(xi)‖X

and for a function class F define

ΘM(F )X := sup
f∈F

ΘM(f)X .

In the caseX = Lp we write p instead of Lp in the notation. In other words we
are interested in studying M -term approximations of functions with respect
to the dictionary

Πd := {g(x1, . . . , xd) : g(x1, . . . , xd) =
d∏
i=1

ui(xi)}

where ui(xi) are arbitrary univariate functions. We discuss the case of 2π-
periodic functions of d variables and approximate them in the Lp spaces.
Denote by Πd

p the normalized in Lp dictionary Πd of 2π-periodic functions.
We say that a dictionary D has a tensor product structure if all its elements
have a form of products u1(x1) · · ·ud(xd) of univariate functions ui(xi), i =
1, . . . , d. Then any dictionary with tensor product structure is a subset of Πd.
The classical example of a dictionary with tensor product structure is the d-
variate trigonometric system {ei(k,x)}. Other examples include the hyperbolic
wavelets and the hyperbolic wavelet type system Ud defined in Section 3.

The nonlinear tensor product approximation is very important in numer-
ical applications. We refer the reader to the monograph [1] which presents
the state of the art on the topic. Also, the reader can find a very recent
discussion of related results in [3].

In the case d = 2 the multilinear approximation problem is a classical
problem of bilinear approximation. In the case of approximation in the L2

space the bilinear approximation problem is closely related to the problem
of singular value decomposition (also called Schmidt expansion) of the corre-
sponding integral operator with the kernel f(x1, x2). There are known results
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on the rate of decay of errors of best bilinear approximation in Lp under dif-
ferent smoothness assumptions on f . We only mention some known results
for classes of functions which are studied in this paper. We study the classes
W r
q of functions with bounded mixed derivative which we define for positive

r (not necessarily an integer). Let

Fr(t) := 1 + 2
∞∑
k=1

k−r cos(kt− πr/2)

be the univariate Bernoulli kernel and let

Fr(x) := Fr(x1, . . . , xd) :=
d∏
i=1

Fr(xi)

be its multivariate analog. We define

W r
q := {f : f = Fr ∗ ϕ, ‖ϕ‖q ≤ 1},

where ∗ denotes the convolution.
The problem of estimating ΘM(f)2 in case d = 2 (best M -term bilinear

approximation in L2) is a classical one and was considered for the first time by
E. Schmidt [2] in 1907. For many function classes F an asymptotic behavior
of ΘM(F )p is known. For instance, the relation

ΘM(W r
q )p �M−2r+(1/q−max(1/2,1/p))+ (1.1)

for r > 1 and 1 ≤ q ≤ p ≤ ∞ follows from more general results in [5]. In the
case d > 2 almost nothing is known. There is (see [6]) an upper estimate in
the case q = p = 2

ΘM(W r
2 )2 �M−rd/(d−1). (1.2)

Results of this paper are around the bound (1.2). First of all we discuss
the lower bound matching the upper bound (1.2). In the case d = 2 the lower
bound

ΘM(W r
p )p �M−2r, 1 ≤ p ≤ ∞, (1.3)

follows from more general results in [5] (see (1.1) above). A stronger result

ΘM(W r
∞)1 �M−2r (1.4)

follows from Theorem 1.1 in [7].
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We could not prove the lower bound matching the upper bound (1.2) for
d > 2. Instead, we prove a weaker lower bound. For a function f(x1, . . . , xd)
denote

Θb
M(f)X := inf

{uij},‖uij‖X≤b‖f‖
1/d
X

‖f(x1, . . . , xd)−
M∑
j=1

d∏
i=1

uij(xi)‖X

and for a function class F define

Θb
M(F )X := sup

f∈F
Θb
M(f)X .

In Section 2 we prove the following lower bound (see Corollary 2.2)

Θb
M(W r

∞)1 � (M lnM)−
rd
d−1 .

This lower bound indicates that probably the exponent rd
d−1

is the right one
in the power decay of the ΘM(W r

p )p.
Secondly, we discuss some upper bounds which extend the bound (1.2).

The relation (1.1) shows that for 2 ≤ p ≤ ∞ in the case d = 2 one has

ΘM(W r
2 )p �M−2r. (1.5)

In Section 3 we extend (1.5) for d > 2.

Theorem 1.1. Let 2 ≤ p <∞ and r > (d− 1)/d. Then

ΘM(W r
2 )p �

(
M

(logM)d−1

)− rd
d−1

.

The proof of Theorem 1.1 in Section 3 is not constructive. It goes by in-
duction and uses a nonconstructive bound in the case d = 2. In Section 4 we
discuss constructive ways of building good multilinear approximations. The
simplest way would be to use known results about M -term approximation
with respect to special systems with tensor product structure. We illustrate
this idea on the example of the system Ud defined and discussed in Section
3. We define a well-known Thresholding Greedy Algorithm with respect to
a basis. It is convenient for us to enumerate the basis functions by dyadic
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intervals. Assume a given system Ψ of functions ψI indexed by dyadic inter-
vals can be enumerated in such a way that {ψIj}∞j=1 is a basis for Lp. Then
we define the greedy algorithm Gp(·,Ψ) as follows. Let

f =
∞∑
j=1

cIj(f,Ψ)ψIj

and
cI(f, p,Ψ) := ‖cI(f,Ψ)ψI‖p.

Then cI(f, p,Ψ) → 0 as |I| → 0. Denote Λm a set of m dyadic intervals I
such that

min
I∈Λm

cI(f, p,Ψ) ≥ max
J /∈Λm

cJ(f, p,Ψ).

We define Gp(·,Ψ) by formula

Gp
m(f,Ψ) :=

∑
I∈Λm

cI(f,Ψ)ψI .

For a system (dictionary) of elements D define the best M -term approx-
imation in X as follows

σM(f,D)X := inf
gj∈D,cj ,j=1,...,M

‖f −
M∑
j=1

cjgj‖X .

With this standard notation we have

ΘM(f)p = σM(f,Πd)Lp .

It is proved in [9] that for 1 < q, p <∞ and big enough r

sup
f∈W r

q

‖f −Gp
M(f,Ud)‖p � σM(W r

q ,Ud)p �M−r(logM)(d−1)r. (1.6)

The above relation (1.6) illustrates two phenomena: (I) for the class W r
q the

simple Thresholding Greedy Algorithm provides near best M -term approxi-
mation; (II) the rate M−r(logM)(d−1)r of best M -term approximation with
respect to the basis Ud, which has a tensor product structure, is not as good
as best M -term approximation with respect to Πd (we have exponent r for
Ud instead of rd

d−1
for Πd).
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In Section 4 we use two very different greedy-type algorithms to provide
a constructive multilinear approximant. Surprisingly, these two algorithms
give the same error bound. For instance, Theorems 4.3 and 4.4 give for big
enough r the following constructive upper bound for 2 ≤ p <∞

ΘM(W r
2 )p �

(
M

(lnM)d−1

)− rd
d−1

+ β
d−1

, β :=
1

2
− 1

p
.

This constructive upper bound has an extra term β
d−1

in the exponent com-
pared to the best M -term approximation. It would be interesting to find a
constructive way to obtain the near best approximation in this case.

2 The lower bound

Let X be a Banach space and let BX denote the unit ball of X with the
center at 0. Denote by BX(y, r) a ball with center y and radius r: {x ∈ X :
‖x − y‖ ≤ r}. For a compact set A and a positive number ε we define the
covering number Nε(A) as follows

Nε(A) := Nε(A,X)

:= min{n : ∃y1, . . . , yn : A ⊆ ∪nj=1BX(yj, ε)}.

The following bound is well known (see, for instance, [12], Ch. 3).

Lemma 2.1. For any n-dimensional Banach space X we have

ε−n ≤ Nε(BX , X) ≤ (1 + 2/ε)n.

For N = (N1, . . . , Nd) let T (N) be the set of trigonometric polynomials
of order Nj in the jth variable. Denote

T (N)p := {t ∈ T (N) : ‖t‖p ≤ 1}

and

Πd(N, n, b) := {f ∈ T (N)2, f(x) =
n∑
j=1

u1
j(x1) · · ·udj (xd), ‖uij‖2 ≤ b}.
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Lemma 2.2. We have

Nε(Π
d(N, n, b), L2) ≤ (C(b, d)/ε)Cn ln(n+1)

∑d
i=1(2Ni+1), 0 < ε ≤ 1.

Proof. First of all it is clear that we can assume that uij ∈ T (Ni), j = 1, . . . , n,
i = 1, . . . , d. Second, in the b-ball of the T (Ni)2 we build a δ-net. It is known
(see Lemma 2.1) that we can build a net with cardinality Si satisfying

Si ≤ (Cb/δ)2Ni+1.

Third, for each uij(xi) choose an vs(i,j)(xi), s(i, j) ∈ [1, Si] from the corre-
sponding δ-net such that

‖uij(xi)− vs(i,j)(xi)‖2 ≤ δ.

Then

‖
d∏
i=1

uij(xi)−
d∏
i=1

vs(i,j)(xi)‖2 ≤ dbd−1δ

and

‖
n∑
j=1

d∏
i=1

uij(xi)−
n∑
j=1

d∏
i=1

vs(i,j)(xi)‖2 ≤ ndbd−1δ.

The total number of functions
∑n

j=1

∏d
i=1 vs(i,j)(xi) when vs(i,j)(xi) are taken

from sets of cardinalities Si, i = 1, . . . , d, does not exceed(
d∏
i=1

Si

)n

≤ (Cb/δ)n
∑d
i=1(2Ni+1).

Specifying δ = ε
ndbd−1 we obtain

(Cb/δ)n
∑d
i=1(2Ni+1) ≤ nn

∑d
i=1(2Ni+1)

(
C(b, d)

ε

)n∑d
i=1(2Ni+1)

which completes the proof.

We are interested in lower bounds for the following quantities. For a
function f(x1, . . . , xd) denote

Θb
M(f)X := inf

{uij},‖uij‖X≤b‖f‖
1/d
X

‖f(x1, . . . , xd)−
M∑
j=1

d∏
i=1

uij(xi)‖X
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and for a function class F define

Θb
M(F )X := sup

f∈F
Θb
M(f)X .

Theorem 2.1. Let N1 = · · · = Nd = N . There is c(b, d) > 0 such that for
any M satisfying M lnM ≤ c(b, d)Nd−1 there exists an f ∈ T (N)∞ with the
property: for any uij(xi), ‖uij‖1 ≤ b, we have

‖f(x)−
M∑
j=1

d∏
i=1

uij(xi)‖1 ≥ C(b, d) > 0.

Proof. The proof repeats the proof of Theorem 1.1 from [7]. We use notations
from [7]. Denoting

ε := Θb
M(T (N)∞)1

we prove, using Lemma 2.2, in the same way as in [7] the following bound

N2ε(KN(T (N)∞)2 ≤ C1(b, d)N
d

(C2(b, d)/ε)C3(d)NM lnM , N > 0. (2.1)

Lemma 1.2 from [7] gives the lower bound

N2ε(KN(T (N)∞)1 ≥ (C(d)/ε)N
d

, N > 0. (2.2)

Comparing (2.1) and (2.2) we complete the proof of Theorem 2.1.

Corollary 2.1. Let N1 = · · · = Nd = N . There is c(b, d) > 0 such that for
any M satisfying M lnM ≤ c(b, d)Nd−1 we have

Θb
M(T (N)∞)1 ≥ C(b, d) > 0.

Proof. By the definition of Θb
M(f)1 for all f ∈ T (N)∞ we can only use uij

satisfying the condition

‖uij‖1 ≤ b‖f‖1/d
1 ≤ b‖f‖1/d

∞ ≤ b.

Therefore, Theorem 2.1 implies Corollary 2.1.

Corollary 2.2. One has

Θb
M(W r

∞)L1 � (M lnM)−
rd
d−1 .

Proof. By the Bernstein inequality

CN−rdT (N)∞ ⊂ W r
∞.

By Theorem 2.1 with N � (M lnM)
1
d−1 we obtain the required bound.
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3 Upper bounds. Proof of Theorem 1.1

We define the system U := {UI} in the univariate case. Denote

U+
n (x) :=

2n−1∑
k=0

eikx =
ei2

nx − 1

eix − 1
, n = 0, 1, 2, . . . ;

U+
n,k(x) := ei2

nxU+
n (x− 2πk2−n), k = 0, 1, . . . , 2n − 1;

U−n,k(x) := e−i2
nxU+

n (−x+ 2πk2−n), k = 0, 1, . . . , 2n − 1.

It will be more convenient for us to normalize in L2 the system of functions
{U+

m,k, U
−
n,k} and enumerate it by dyadic intervals. We write

UI(x) := 2−n/2U+
n,k(x) with I = [(k + 1/2)2−n, (k + 1)2−n);

UI(x) := 2−n/2U−n,k(x) with I = [k2−n, (k + 1/2)2−n);

and
U[0,1)(x) := 1.

Denote

D+
n := {I : I = [(k + 1/2)2−n, (k + 1)2−n), k = 0, 1, . . . , 2n − 1}

and

D−n := {I : I = [k2−n, (k + 1/2)2−n), k = 0, 1, . . . , 2n − 1},

D0 := [0, 1), D := ∪n≥0(D+
n ∪D−n ) ∪D0.

It is easy to check that for any I, J ∈ D, I 6= J we have

〈UI , UJ〉 = (2π)−1

∫ 2π

0

UI(x)ŪJ(x)dx = 0,

and
‖UI‖2

2 = 1.

In the multivariate case of x = (x1, . . . , xd) we define the system Ud as
the tensor product of the univariate systems U . Let I = I1×· · ·×Id, Ij ∈ D,
j = 1, . . . , d, then

UI(x) :=
d∏
j=1

UIj(xj).
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It is known (see [13]) that Ud is an unconditional basis for Lp, 1 < p <∞.
We use the notations for f ∈ L1

f̂(k) := (2π)−d
∫
Td
f(x)e−i(k,x)dx

and for s = (s1, . . . , sd) ∈ Nd
0

δs(f) :=
∑
k∈ρ(s)

f̂(k)ei(k,x)

where

ρ(s) := {k = (k1, . . . , kd) ∈ Zd : [2sj−1] ≤ |kj| < 2sj , j = 1, . . . , d}.

The convergence

lim
minj µj→∞

‖f −
∑

sj≤µj ,j=1,...,d

δs(f)‖p = 0, 1 < p <∞, (3.1)

and the Littlewood-Paley inequalities

‖f‖p � ‖(
∑
s

|δs(f)|2)1/2‖p, 1 < p <∞, (3.2)

are well-known.
We now proceed to the key lemma of this section.

Lemma 3.1. Let f ∈ T (N). Denote v(N) :=
∏d

j=1 N̄j. Then for 2 ≤ p <∞
one has

ΘM(f)p � v(N)1− 1
d (M̄)−1‖f‖2, M̄ = max(M, 1).

Proof. The proof is by induction. In the case d = 2 it follows from Lemma
2.2 of [6]. Let d > 2. Assume Nj = miniNi. Represent

f =
1

2Nj + 1

2Nj∑
k=0

DNj(xj − xkj )ψk(xj),

where DN(t) is the univariate Dirichlet kernel, xkj = 2πk
2Nj+1

, and ψk(x
j) =

f(x1, . . . , xj−1, x
k
j , xj+1, . . . , xd). Then it is well known that

‖f‖2
2 =

1

2Nj + 1

2Nj∑
k=0

‖ψk(xj)‖2
2.
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By the induction assumption we obtain for m =
∑

kmk

Θm(f)pp �
1

2Nj + 1

2Nj∑
k=0

Θmk(ψk)
p
p

�

(∏
i 6=j

(2Ni + 1)

)(1− 1
d−1

)p

(2Nj + 1)−1

2Nj∑
k=0

((m̄k)
−1‖ψk‖2)p.

Define

mk :=

[
‖ψk‖2

‖f‖2

M

2Nj + 1

]
.

Then

2Nj∑
k=0

mk ≤
M

(2Nj + 1)‖f‖2

(2Nj + 1)1/2

2Nj∑
k=0

‖ψk‖2
2

1/2

= M.

We continue

ΘM(f)p �

(∏
i 6=j

(2Ni + 1)

)(1− 1
d−1

)

(2Nj+1)−1/p

2Nj∑
k=0

((2Nj + 1)‖f‖2M
−1)p

1/p

=

(∏
i 6=j

(2Ni + 1)

)(1− 1
d−1

)

(2Nj + 1)M−1‖f‖2.

By our choice of Nj we have(∏
i 6=j

(2Ni + 1)

) d−2
d−1

(2Nj + 1) ≤

(
d∏
i=1

(2Ni + 1)

) d−1
d

,

which follows from

(2Nj + 1)1/d ≤

(∏
i 6=j

(2Ni + 1)

) 1
d(d−1)

.

This completes the proof of Lemma 3.1.
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Remark 3.1. It is clear that the approximating functions uij(xi) in Lemma
3.1 can be chosen from T (Ni).

Proof of Theorem 1.1. We consider the following class of functions
which is equivalent to the class of functions with bounded mixed derivatives
in L2:

W r
2A := {f :

∑
s

22r‖s‖1‖δs(f)‖2
2 ≤ A2}.

For ‖s‖1 ≤ n set ms � 2‖s‖1(d−1)/d such that for any t ∈ T (ρ(s)), Θms(t) = 0.
For ‖s‖1 > n set

ms :=
[
2(n−κ(‖s‖1−n))(d−1)/d

]
with κ > 0 small enough to satisfy r > d−1

d
+ κ. Then

M1 :=
∑
‖s‖1≤n

ms � 2n(d−1)/dnd−1

and
M2 :=

∑
‖s‖1>n

ms � 2n(d−1)/dnd−1.

By Lemma 3.1 and Remark 3.1 we obtain for M := M1 +M2

ΘM(f)p �

 ∑
‖s‖1>n

Θms(δs(f))2
p

1/2

�

 ∑
‖s‖1>n

(2−r‖s‖12‖s‖1(d−1)/d(m̄s)
−1‖δs(f)‖22r‖s‖1)2

1/2

� 2n(−r+(d−1)/d−(d−1)/d)A� 2−rn �
(

M

(logM)d−1

)− rd
d−1

.

4 Constructive upper bounds

In this section we discuss two algorithms for construction of good multilinear
approximations. As in Section 3 we concentrate on the case 2 ≤ p < ∞.
Our constructive upper bounds are not as good as the corresponding upper
bounds for best approximations from Section 3. We begin with two main
lemmas.
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Lemma 4.1. Suppose that f ∈ T (N). Denote v(N) :=
∏d

j=1 N̄j. Then for
1 ≤ q ≤ p ≤ ∞

Θm(f)p � v(N)β(m̄)−β‖f‖q, β :=
1

q
− 1

p
, m̄ := max(1,m). (4.1)

The bound (4.1) is realized by a simple greedy-type algorithm.

Proof. In the case 1 ≤ q ≤ p ≤ 2, d = 2, this lemma follows from Lemma
1.1 of [6]. That proof from [6] works in the general case 1 ≤ q ≤ p ≤ ∞,
d ≥ 2. We will give a sketch of this proof to illustrate the algorithm used
in the construction of the approximant. Let P (N) denote the set of points
zh = (zh11 , . . . , z

hd
d ), h = (h1, . . . , hd) such that

z
hj
j :=

πhj
4N̄j

, hj = 0, 1, . . . , 8N̄j − 1, j = 1, . . . , d.

Denote by Vn(t) the univariate de la Vallée Poussin kernel of order 2n − 1
for n ≥ 1 and V0(t) = 1. Define the multivariate de la Vallée Poussin kernel
as follows

VN(z) :=
d∏
j=1

VNj(zj), N = (N1, . . . , Nd).

Then it is well known that any f ∈ T (N) has the representation

f(z) =

(
d∏
j=1

(8N̄j)

)−1 ∑
zh∈P (N)

f(zh)V(z − zh). (4.2)

We have the following equivalence relation (see [6], Theorem 1).

Theorem 4.1. For all 1 ≤ q ≤ ∞ and for f ∈ T (N)

‖f‖q � v(N)−1/q

 ∑
zh∈P (N)

|f(zh)|q
1/q

.

This is the Marcinkiewicz-Zygmund theorem in the case d = 1 (see [14],
Vol II, pp. 28–33), and the general case (d > 1) is an immediate consequence
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of the one-dimensional theorem. We note that Theorem 4.1 and Lemma 4.2
(see below) hold with P (N) replaced by a smaller net of points

P ′(N) := {zh : z
hj
j :=

πhj
2N̄j

, hj = 0, 1, . . . , 4N̄j − 1, j = 1, . . . , d}.

The reader can find the corresponding results in [8] Chapter 2, Theorem 2.4
and Lemma 2.6.

We also have the following inequality (see [6], Lemma 2).

Lemma 4.2. For arbitrary numbers Ah

‖
∑

zh∈P (N)

AhV(z − zh)‖p � v(N)1−1/p

(∑
h

|Ah|p
)1/p

.

We now complete the proof of Lemma 4.1. Using representation (4.2)
we choose a set G(m) of m points zh with the largest |f(zh)|. Then we use
Theorem 4.1, Lemma 4.2 and the following known lemma (see, for instance,
[4]).

Lemma 4.3. Let b1 ≥ b2 ≥ . . . bn ≥ 0, 1 ≤ q ≤ p ≤ ∞ and

n∑
j=1

bqj ≤ Aq.

Then for any m ≤ n we have (with natural modification for p =∞)(
n∑

j=m

bpj

)1/p

≤ m1/p−1/qA.

It gives us

‖f(z)−
∑

zh∈G(m)

f(zh)VN(z − zh)‖p � v(N)βm−β‖f‖q.

The algorithm used above in the proof of Lemma 4.1 is a simple greedy-
type algorithm which uses a special dictionary {VN(z−zh)}zh∈P (N). We now
proceed to a discussion of general greedy-type algorithms which will use the
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dictionary Πd. We begin with a brief description of greedy approximation
methods in Banach spaces. The reader can find a detailed discussion of
greedy approximation in the book [12]. Let X be a Banach space with norm
‖ · ‖. We say that a set of elements (functions) D from X is a symmetric
dictionary, if each g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and the closure of spanD is X. We denote the closure (in X) of the convex
hull of D by A1(D). In other words A1(D) is the closure of conv(D). We use
this notation because it has become a standard notation in relevant greedy
approximation literature. For a nonzero element f ∈ X we let Ff denote
a norming (peak) functional for f that is a functional with the following
properties

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by the Hahn-Banach theo-
rem. The norming functional Ff is a linear functional (in other words is an
element of the dual to X space X∗) which can be explicitly written in some
cases. In a Hilbert space Ff can be identified with f‖f‖−1. In the real Lp,
1 < p < ∞, it can be identified with f |f |p−2‖f‖1−p

p . We describe a typical
greedy algorithm which uses a norming functional. We call this family of
algorithms dual greedy algorithms. Let τ := {tk}∞k=1 be a given weakness se-
quence of nonnegative numbers tk ≤ 1, k = 1, . . . . We first define the Weak
Chebyshev Greedy Algorithm (WCGA) (see [10]) that is a generalization for
Banach spaces of the Weak Orthogonal Greedy Algorithm.

Weak Chebyshev Greedy Algorithm (WCGA). We define f c0 :=
f c,τ0 := f . Then for each m ≥ 1 we have the following inductive definition.

(1) ϕcm := ϕc,τm ∈ D is any element satisfying

Ffcm−1
(ϕcm) ≥ tm sup

g∈D
Ffcm−1

(g).

(2) Define
Φm := Φτ

m := span{ϕcj}mj=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
(3) Let

f cm := f c,τm := f −Gc
m.
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The index c in the notation refers to Chebyshev. We use the name Chebyshev
in this algorithm because at step (2) of the algorithm we use best approx-
imation operator which bears the name of the Chebyshev projection or the
Chebyshev operator. In the case of Hilbert space the Chebyshev projection
is the orthogonal projection and it is reflected in the name of the algorithm.
We use notation fm for the residual of the algorithm after m iterations. This
standard in approximation theory notation is justified by the fact that we
interpret f as a residual after 0 iterations and iterate the algorithm replacing
f0 by f1, f2, and so on. In signal processing the residual after m iterations
is often denoted by rm or rm.

For a Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖+ ‖x− uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

The following proposition is well-known (see, [12], p.336).

Proposition 4.1. Let X be a uniformly smooth Banach space. Then, for
any x 6= 0 and y we have

Fx(y) =

(
d

du
‖x+ uy‖

)
(0) = lim

u→0
(‖x+ uy‖ − ‖x‖)/u.

Proposition 4.1 shows that in the WCGA we are looking for an element
ϕm ∈ D that provides a big derivative of the quantity ‖fm−1 + uϕm‖. Here
is one more important greedy algorithm.

Weak Greedy Algorithm with Free Relaxation (WGAFR). Let
τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f and
G0 := 0. Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D

Ffm−1(g).

(2) Find wm and λm such that

‖f − ((1− wm)Gm−1 + λmϕm)‖ = inf
λ,w
‖f − ((1− w)Gm−1 + λϕm)‖
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and define
Gm := (1− wm)Gm−1 + λmϕm.

(3) Let
fm := f −Gm.

It is known that both algorithms WCGA and WGAFR converge in any uni-
formly smooth Banach space under mild conditions on the weakness sequence
{tk}, for instance, tk = t, k = 1, 2, . . . , t > 0, guarantees such convergence.
The following theorem provides rate of convergence (see [12], pp. 347, 353).

Theorem 4.2. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two elements
f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/B ∈ A1(D),

with some number B = C(f, ε,D, X) > 0. Then, for both algorithms WCGA
and WGAFR we have (p := q/(q − 1))

‖fm‖ ≤ max

(
2ε, C(q, γ)(B + ε)(1 +

m∑
k=1

tpk)
−1/p

)
.

Lemma 4.4. Let f ∈ T (N). Then for 2 ≤ p <∞

Θm(f)p � v(N)
1
2
− 1
pd (m̄)−1/2‖f‖2.

The above bound is realized by the WCGA and the WGAFR with τ = {t}.

Proof. Assume Nj = maxiNi. Represent

f(x) =
∑

k∈Q(N)

f̂(k)ei(k,x) =
∑

kj∈Q(Nj)

ukj(xj)e
i(kj ,xj),

where kj := (k1, . . . , kj−1, kj+1, . . . , kd) and xj := (x1, . . . , xj−1, xj+1, . . . , xd),

ukj(xj) :=
∑
|kj |≤Nj

f̂(k)eikjxj ,

Q(N) := {k = (k1, . . . , kd) : |ki| ≤ Ni, i = 1, . . . , d}.
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Denote
ψkj(x) := ukj(xj)e

i(kj ,xj).

It is clear that ψkj ∈ Πd. We now bound∑
kj∈Q(Nj)

‖ψkj‖p =
∑

kj∈Q(Nj)

‖ukj‖p ≤ CN
1/2−1/p
j

∑
kj∈Q(Nj)

‖ukj‖2

≤ CN
1/2−1/p
j v(Nj)1/2

 ∑
kj∈Q(Nj)

‖ukj‖2
2

1/2

= CN
−1/p
j v(N)1/2‖f‖2 ≤ Cv(N)

1
2
− 1
pd‖f‖2.

Therefore,

f/B ∈ A1(Πd
p), B = Cv(N)

1
2
− 1
pd‖f‖2. (4.3)

We proved (4.3) for complex trigonometric polynomials. Clearly, the same
proof works for real trigonometric polynomials from T (N). We switch to
real polynomials because the theory of greedy approximation, in particular
the theory for the WCGA and WGAFR, is developed in real Banach spaces.
We apply Theorem 4.2. It is known that the Lp space with 2 ≤ p < ∞ is
a uniformly smooth Banach space with modulus of smoothness ρ(u) ≤ γu2.
Applying Theorem 4.2 with ε = 0 and τ = {t} we obtain the required
bound.

Remark 4.1. It is clear that the approximant in Lemma 4.4 and the approx-
imant in Lemma 4.1 in case 1 < p <∞ can be taken from T (N).

Theorem 4.3. Let 2 ≤ p < ∞. Denote β := 1/2 − 1/p. Then there is a
constructive way provided by Lemma 4.4 to obtain the bound

ΘM(W r
2 )p �

(
M

(lnM)d−1

)− rd
d−1

+ β
d−1

, r >
1

2
− 1

pd
.

Proof. For ‖s‖1 ≤ n set ms � 2‖s‖1(d−1)/d such that for any t ∈ T (ρ(s)),
Θms(t)p = 0. For ‖s‖1 > n set

ms :=
[
2(n−κ(‖s‖1−n))(d−1)/d

]
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with κ > 0 small enough to satisfy r > 1
2
− 1

pd
+ κ. Then

M1 :=
∑
‖s‖1≤n

ms � 2n(d−1)/dnd−1

and
M2 :=

∑
‖s‖1>n

ms � 2n(d−1)/dnd−1.

By Lemma 4.4 we obtain for M := M1 +M2

ΘM(f)p �

 ∑
‖s‖1>n

Θms(δs(f))2
p

1/2

�

 ∑
‖s‖1>n

(2−r‖s‖12( 1
2
− 1
pd)‖s‖1(m̄s)

−1/2‖δs(f)‖22r‖s‖1)2

1/2

� 2n(−r+( 1
2
− 1
pd)−

1
2

(d−1)/d) = 2n(−r+β/d).

Theorem 4.4. Let 2 ≤ p < ∞. Denote β := 1/2 − 1/p. Then there is a
constructive way provided by Lemma 4.1 to obtain the bound

ΘM(W r
2 )p �

(
M

(lnM)d−1

)− rd
d−1

+ β
d−1

, r > β.

Proof. The proof of this theorem is similar to the proof of Theorem 4.3.
We use the same notations as above. Then by Lemma 4.1 we obtain for
M := M1 +M2

ΘM(f)p �

 ∑
‖s‖1>n

Θms(δs(f))2
p

1/2

�

 ∑
‖s‖1>n

(2−r‖s‖12β‖s‖1(m̄s)
−β‖δs(f)‖22r‖s‖1)2

1/2

� 2n(−r+β−β(d−1)/d) = 2n(−r+β/d).

19



Some improvements. In this subsection we explain how Theorems 1.1,
4.3, and 4.4 can be slightly improved by changing the subdivision of the set
of s. The rest of the proofs including the use of Lemmas 3.1, 4.1, and 4.4 is
the same. For a nonnegative (d− 1)-dimensional integer vector w define

S(w, j) := {s : sj = max
i
si, s

j = w}, j = 1, . . . , d.

For the set ∪s∈S(w,j)ρ(s) we set mw � 2‖w‖1 in such a way that for any
t ∈ T

(
∪s∈S(w,j)ρ(s)

)
we have Θmw(t)p = 0. Then

M ′
1 :=

d∑
j=1

∑
‖w‖1≤n(d−1)/d

mw ≤ 2n(d−1)/dnd−2.

For the remaining set Sc of s we have

Sc := {s : s /∈ ∪dj=1 ∪‖w‖1≤n(d−1)/d S(w, j)} = {s : min
j
‖sj‖1 > n(d− 1)/d}.

For s ∈ Sc we define as above

ms :=
[
2(n−κ(‖s‖1−n))(d−1)/d

]
with κ > 0 small enough. Then

M ′
2 :=

∑
s∈Sc

ms ≤ d
∑

‖s1‖1≥n(d−1)/d

∑
s1≥‖s1‖1/(d−1)

ms

�
∑

‖s1‖1≥n(d−1)/d

2(n−κ(‖s1‖1+‖s1‖1/(d−1)−n))(d−1)/d � 2n(d−1)/dnd−2.

The rest of the proofs is the same as in Theorems 1.1, 4.3, and 4.4. We only
need to notice that for s ∈ Sc we have

‖s‖1 =
1

d− 1

d∑
j=1

‖sj‖1 > n.

The above argument gives us the following slightly stronger versions of The-
orems 1.1, 4.3, and 4.4.

Theorem 4.5. Let 2 ≤ p <∞ and r > (d− 1)/d. Then

ΘM(W r
2 )p �

(
M

(logM)d−2

)− rd
d−1

.
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Theorem 4.6. Let 2 ≤ p < ∞. Denote β := 1/2 − 1/p. Then there is a
constructive way provided by Lemma 4.4 to obtain the bound

ΘM(W r
2 )p �

(
M

(lnM)d−2

)− rd
d−1

+ β
d−1

, r >
1

2
− 1

pd
.

Theorem 4.7. Let 2 ≤ p < ∞. Denote β := 1/2 − 1/p. Then there is a
constructive way provided by Lemma 4.1 to obtain the bound

ΘM(W r
2 )p �

(
M

(lnM)d−2

)− rd
d−1

+ β
d−1

, r > β.
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