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Abstract

In the late stage of the mitotic cycle of eukaryotic cells , cytokinesis ensues where a
parent cell replicates its nucleus with the necessary genetical substances (i.e., DNAs and
chromosomes) and splits into two similar offspring cells. This mitotic process involves
complex chemical, biophysical and mechanical processes whose details are just begin
to be unfolded experimentally. In this paper, we propose a full 3-D hydrodynamical
model using a phase field approach to study the cellular morphological change during
cytokinesis. In this model, the force along the contracting ring or cytokinetic ring,
induced by remodeling of actin-myosin filament on cell cortex layer at a division plane
of the parent cell during cytokinesis, is approximated using a proxy force anchored on
the newly formed nuclei. The symmetric or asymmetric cell division, i.e. a parent cell
dividing its cytoplasm to produce two equal sized or unequal sized offspring cells, is
simulated numerically with the model. Our numerical results show that the location of
the division plane and the contracting force along the cytokinetic ring on the division
plane is essential for the cell division. In addition, our numerical study also shows
that, during cytokinesis, surface tension of the cell membrane also contributes to this
process by retaining the morphological integrity of the offspring cells. This model and
the accompanying numerical simulation tool provides a solid framework to build upon
with more sophisticated whole cell models to probe the cell mitotic process.

1 Introduction

Cell is the fundamental unit in all living organisms since animals and plants are all made
up of cells of different varieties. The study of cells is therefore an essential part of research
in biological science and medicine. Among many functions of a cell, one important function
is the cell’s ability to reproduce, which is also known as cell proliferation. Because of cell
proliferation, all living organisms can grow and acquire their life. Given its unique role played
in biological systems, cell study has been the focal point of biology for centuries. With the
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advancement of experimental technologies today, more cell functions and micro-structures
that endow the functions have been uncovered, which reveal an amazingly complex cosmo
on its own.

One fundamental part in cell study is the cell reproductive cycle, where a parent cell
undergoes a sequence of intercellular transformations and eventually divides into two or
more offspring cells. For prokaryotic cells, the cell proliferation process is called binary
division or binary fission, which is the primary method for reproduction. For eukaryotic
cells, it’s called cell mitotic process or mitosis. At the late stage of the cell mitotic process
for eukaryotic cells, after the nucleus has been divided and chromosomes separated, the cell
division process is also called cytokinesis. For eukaryotic cells, cell division is a much more
complicated process than the division of prokaryotic cells. Despite of extensive studies on
cells over the years, lots of important mechanisms in living cells still remain mysteries. A
lot more need to be discovered experimentally as well as theoretically in order for one to
fully understand how a tiny cell really works. It’s commonly agreed upon that cell division
is not simply driven by a single mechanism, but rather many factors which are intertwined.
As one of the most spectacular part of the cell cycle, any single step goes wrong may lead
to a catastrophe or failure, which may lead to an unwelcome outcome for instance cancer.
Thus, a detailed understanding on cytokinesis can be of great benefits for understanding
many diseases. For more details, readers are referred to the insightful review article on this
topic in [27]. Readers can also find comprehensive review materials for animal cytokinesis
in [7, 12] and for cytokinesis of bacteria in [8]. Besides, some works related to mechanical
properties of cells during cytokinesis such as material properties of cells and sources of stresses
can be found in [21, 25]. The study published in [9] discusses the molecular requirements
for cytokinesis and the work in [2] addresses some recent advances in the mechanism of
cytokinesis in animal, yeast and plant cells.

Experimental observations have provide us with a basic picture of cell mitosis. For eu-
karyotic cells, at the beginning of the cell mitotic process, the parent cell first duplicates its
genetic substances and then forms a mitotic spindle consisting of microtubules [20]. Through
a cascade of signaling processes [22], the actin and myosin molecules would undergo a self-
assembly process to remodel the cell cortical layer, a layer rich in actin-filaments located
immediately adjacent to the cell membrane [18]. In sync with the elongation of the mitotic
spindle, more actin and myosin molecules ascend to a ring like region in a plane roughly
orthogonal to the axis of the mitotic spindle to form the cytokinetic ring or contractile ring.
The plane is called the cleavage plane or division plane [5]. As more actomyosin molecules
are accumulated along the cytokinetic ring, a contracting force is generated directed inward
toward the axis of the spindle [18]. The contracting force pushes the membrane inward
to create what is known as the cleavage furrow [25]. The localized activation of the small
GTPase Rho family of proteins at the cell division plane controls the position of the contrac-
tile ring [28]. When Rho is specifically activated at the division plane within the cortex, it
promotes actin polymerization and myosin-2 activation via Rho effector proteins. Rho-GTP
promotes actin filament assembly and myosin-2 assembly [6]. The contractile ring is a dy-
namic structure, in which F-actin and myosin-2 are continuously assembled and disassembled
to maintain a contracting force to squeeze the cell along the contractible ring. For eukaryotic
cells, the positioning of contractile ring and cleavage furrow is regulated by distribution of
long astral microtubles (MT) [24]. Besides, it has been shown that the cell geometry can
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influence the position of the cell division plane [19] and ultimately affect the morphology of
the offspring cells.

In addition to the vast amount of data from experimental observations, theorists have
been trying to come up with testable hypothesis and models to decipher underlying mech-
anisms that control the cell division process. In [1], the author proposed a mathematical
model for cell cleavage for the sea urchin by considering chemotactic motion of the centro-
somes. In [23], the author developed a mechanical cell division model by a level-set approach,
highlighting the furrow thinning trajectories. In [26], the author formulated an immersed
boundary approach for modeling cell division focusing primarily on the mechanical aspect of
cell division, which has been extended by [15] to study a single axisymmetric cell growth and
division. The correlation between cell shape elongation and the orientation of the division
axis has been studied in [29]. Besides, a model based on polymer dynamics to study spindle
dynamics during cell division has been developed in [30].

Given the theoretical attempts made so far, there has been very little theoretical work
done to resolve cytokinesis in full 3D using hydrodynamic models. Hence, in this paper,
we set out to develop a 3D hydrodynamic model for cell division systematically by a phase
field approach. Phase field methods have gained tremendous attention in last few decades,
in particular, for the study of interfacial problems. The advantage of phase field methods,
compared to the traditional sharp interface method, is that the interface is naturally incor-
porated in the model formation such that it does not need to be tracked separately. This
reduces the computational cost tremendously. In the phase field formation, there is a param-
eter controling the thickness of the interface. The phase field model converges to its sharp
interface limit [4] as the thickness of the interface approaches zero. For cells, the coarse-
grained membrane and other interfaces within a cell do not need to be very sharp, which
makes the phase field formulation a good choice for describing the multiphasic structure in
a cell.

Our objective in modeling cell division is to by develop a mathematical model systemat-
ically based on a phase field approach, where the cytoplasm, cell nucleus, and extra-cellular
matrix are treated as three different multiphasic components of a complex fluid mixture.
Given the complexity of a cell, a viable model must be built step by step by incorporating
more complex mechanochemical details incrementally. The first important step is therefore
to build a framework to simulate the morphological change of the cell membrane during
cell division by highlighting the most dominant mechanism during the process. The most
dominating factor that one has identified is the existence of the contractile ring within the
cortex, which is primarily consisted of F-actins and myosins. Modeling the detail of the
cortex remains our goal for this project. However, the effective force that squeezes the cell
during cytokinesis is the contractile force exerted by the contractile ring. To highlight this
mechanism in a simplistic way, we employ a proxy force in lieu of the contractile force gen-
erated by the actomysin dynamics in the cortex in the model. We remain committed to
develop the more detailed model for the cortical layer and the contractile ring within it, but
defer it to a future paper. The governing system of equations in the model consists of the
transport equation for each phase variable in the form of the volume fraction for that phase,
continuity equation and the momentum balance equation. We discretize the governing par-
tial differential equations and solve it using a finite difference method on a GPU in full 3D
space and time. Numerical simulations, which will be discussed below, show several inspiring
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morphologies during cell division that match well with the experimental observations.
The rest of the paper is organized into three sections. In section two, we present the

multi-phase hydrodynamic model for the whole cell in a simplified picture. It is followed
by a brief discuss on its numerical discretization and implementation issues. Finally, we
present three numerical results and discuss their comparison with available experimental
observations.

2 Mathematical Formulations of MutliPhase-field Mod-

els

In this section, we propose a mathematical model for the cell division process given
in a phase field formulation. In this model, we treat the cell and the surrounding liquid
environment as a fluid mixture in the form of a single fluid with multiple components. The
volume fractions of cytoplasm, nucleus and the buffer fluid outside the cell are denoted by
ϕ1, ϕ2 and ϕ3, respectively. Here, we assume the buffer is a viscous fluid, so is the nucleus.
The cytoplasm can be treated as a viscoelastic fluid. In this paper, we also treat it as a viscous
fluid within the time scale of interest for simplicity. ηi, i = 1, 2, 3 are used to represent the
respective viscosities for the three phases, respectively. The cell membrane (together with
the cortical layer) is the level set defined by {ϕ1 =

1
2
= ϕ3} and the membrane of the nucleus

is the level set defined by {ϕ2 = 1
2
= ϕ1}. Notice that this is a globally multi-phase while

locally binary system since there is no contact between nucleus and buffer at any time. The
volume-average velocity and density for this fluid mixture is defined as

v =
3∑
i=1

ϕivi, ρ =
3∑
i=1

ϕiρi, (1)

where vi, ρi is the effective velocity and density for component i, i = 1, 2, 3. For incompress-
ible materials, we enforce

ϕ1 + ϕ2 + ϕ3 = 1. (2)

2.1 Thermodynamic free energy

We denote the domain in which the cell resides together with the buffer fluid as Ω. The
free energy of this mixture system is proposed as follows,

F =

∫
Ω

fdx, (3)

where f is the free energy density function. There are different choices for the free energy
density function of the three phase fluid. Here we adopt a simple one:

f = 1
2

(
γA∥∇ϕ1∥2 + γB∥∇ϕ2∥2 + γC∥∇ϕ3∥2

+γ1ϕ
2
1ϕ

2
2 + γ2ϕ

2
2ϕ

2
3 + γ3ϕ

2
3ϕ

2
1 + γ123ϕ

2
1ϕ

2
2ϕ

2
3

)
.

(4)
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An alternative is given by

f = 1
2

(
γA∥∇ϕ1∥2 + γB∥∇ϕ2∥2 + γC∥∇ϕ3∥2

+γ1ϕ
2
1(1− ϕ1)

2 + γ2ϕ
2
2(1− ϕ2)

2 + γ3ϕ
2
3(1− ϕ3)

2 + γ123ϕ
2
1ϕ

2
2ϕ

2
3

)
,

(5)

where γA, γB, γC govern the strength of the conformational entropy between different compo-
nents, γ1, γ2, γ3 control the strength of the bulk/mixing energy for each pair of components,
and γ123 is a Lagrangian multiplier to penalize the coexistence of the distinct phases. Our
numerical studies show that these two choices of free energy density functions yield qualita-
tively the same results. Thus, in our study presented in this paper, we choose the second,
i.e. equation (5). We remark that more features can be added to the model by augmenting
the corresponding free energy.

2.2 Transport equations for biomass

Given the specific form of the free energy density (5), we assume that each component
in the fluid mixture is convected by the volume-averaged velocity as well as transported via
the osmotic pressure. Then, the transport equation for phase variables are given as follows

∂tϕi +∇ · (vϕi) = ∇ ·

(
3∑
j=1

αij∇
δf

δϕj

)
+ gi, i = 1, 2, 3, (6)

where (αij) is the motility matrix and gi are the reactive terms, respectively.
Note that the volume fractions add up to 1:

∑3
i=1 ϕi = 1 for incompressible mixtures.

This along with the Onsager reciprocal principle implies [16, 17]

3∑
j=1

αij = 0, αij = αji. (7)

The off-diagonal mobility coefficients can be obtained from the diagonal coefficients

α12 =
1

2
(α33 − α11 − α22), α13 =

1

2
(α22 − α11 − α33), α23 =

1

2
(α11 − α22 − α33), (8)

where we assume the diagonal motility parameters have the following form

αii = λiϕi(1− ϕi), (9)

with λi representing the strength of motility parameters for the corresponding component i,
i=1,2,3.

By incompressibility condition, it follows that

3∑
i=1

gi = 0. (10)

At the onset of cell division, the parent cell normally increases in cytoplasmic and organelle
volume (the G1 phase) as well as increases in genetic materials (the G2 phase) right before
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the replication during the S phase. This process can be modeled by proposing the reactive
kinetics for the time rate of change in the volume fractions:

g1 = c1H1(t)ϕ1ϕ3 − c2H2(t)ϕ1ϕ2, (11)

g2 = c2H2(t)ϕ1ϕ2, (12)

g3 = −c1H1(t)ϕ1ϕ3. (13)

Here Hi(t), i = 1, 2, are Heviside functions defined by

H1(t) =

{
1, t < t1,
0, t ≥ t1,

H2(t) =

{
1, t < t2,
0, t ≥ t2,

(14)

where t1 is the critical checkpoint, at which the parent cell has just duplicated its volume,
t2 is the critical checkpoint, at which the nucleus has doubled its volume. Thus, before
t1 the parent cell keeps reproducing its cytoplasm to expand volume. After it doubles its
volume, reproduction of cytoplasm ceases and cell proliferation begins. The growth kinetics
is assumed to be originated from the interface between the buffer and cytoplasm as well as
the nucleus and the cytoplasm.

We remark that this multi-phase field model is consistent, in term of reducing to the
phase field model with less physical phases. First of all, when the component i is not present
in the mixture at the initial time, the component will be absent from the system during the
time evolution of the system, i.e. given i ∈ N ,

ϕi(0) = 0 → ϕi(t) = 0,∀t ≥ 0. (15)

Secondly, when there are only n < N phases in the model, the N-phase model naturally
reduces to the n-phase model.

Although our formulation in equation (6) is consistent, in real numerical simulations, we
don’t need to calculate every single phase due to the incompressibility constraint. In our
later discussion, we only keep track of the transport of ϕ2 and ϕ3, since ϕ1 can be obtained
through the incompressibility condition (2).

2.3 Continuity and momentum equation

In order to close this system, we need to supplement the system with the continuity
equation and momentum equation for the fluid mixture. By assuming the average velocity
in the fluid mixture solenoidal, we have

ρ(∂tv + v · ∇v) = −∇p+∇ · τ + Fe, (16)

∇ · v = 0, (17)

where p is the hydrostatic pressure and τ is the viscoelastic stress tensor and Fe is the elastic
body force yielding the surface tension of the cell membrane and the contractile force due to
actin-myosin filaments. The viscoelastic stress tensor is proposed as follows,

τ = 2
3∑
i=1

ηiDi + τe, (18)
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where the first term sums up the viscous stress from each component, and the second term
τe is the elastic stress for the cytoplasm. A constitutive equation could be proposed for τe
relating to the specific structure of the cortex layer. In this paper, however, we set τe = 0
for the time scale of our interest and simplicity.

For the elastic body force or the interfacial force Fe, we adopt the surface force yielded
by the variation of the free energy. In addition, we propose a proxy force mimicing the
cytokinetic ring, a contractible ring responsible for the cytokinesis of the animal cell, which
is similar to the one used in [15],

Fe =
3∑
j=1

δF

δϕj
∇ϕj + κϕ1fd1ϕ1∇ϕ1 + κϕ2fd2ϕ2∇ϕ2, (19)

where the first term is the interfacial force, due to the material change at the interface
beween each component and the second term is the proxy force mimicing the normal force
generated by the cytokinetic ring, consisting of actomyoisn networks immediate within the
cell membrane. We note, this proxy force provides the contractible force necessary for
dividing the cell. As we alluded to in the introduction, we will leave the model of tracking
the spatial distribution of actin-filament networks regulated by myosins in the cytokinetic
ring for a future work. Specifically, we use κ to denote the mean curvature,

κ = −∇ · n, n = − ∇ϕ
|∇ϕ|

. (20)

In phase field formulation, it is approximated by

κ =
1

|∇ϕ|

(
∇2ϕ− 2

ε
ϕ(1− ϕ)(1− 2ϕ)

)
, (21)

where ε is the thickness of the interface, and fdi, i=1,2 denote the strength of the cytokinetic
ring force, which by following the idea in [15] are proposed as follows

fd1 = Hd1(ϕ2, t)
γd1

||x− c1| − |x− c2||+ εd
, fd2 = Hd2(ϕ3, t)

γd2
||x− c1| − |x− c2||+ εd

, (22)

where

Hd1(ϕ2, t) =

{
0, otherwise,
1, ϕ2 = 0 &t > t3.

Hd2(ϕ3, t) =

{
0, otherwise,
1, ϕ3 = 0 & t2 < t < t3.

(23)

are heaviside functions to restrict the force on cell membrane and the nucleus membrane at
different stages of the cell division process, respectively, and c1 and c2 are the mass centers
of the separated nuclei, respectively, i.e.,

c1 =

∫
Ω1
ϕ2(x)xdx∫

Ω1
ϕ2(x)dx

, c2 =

∫
Ω2
ϕ2(x)xdx∫

Ω2
ϕ2(x)dx

Ω1 and Ω2 are the domains occupied by the two nuclei, γdi, i = 1, 2 are two parameters
characterizing the strength of fdi, respectively, and εd is a small number employed here to

7



avoid the singularity of fdi. Here, t2 is the checkpoint for the nucleus to begin separating
after the size of the cell has been doubled and t3 is the critical checkpoint when the nucleus
has been divided into two separate nuclei.

Notice that this cytokinetic ring force counters the force due to the one of surface tension
along the cytokinetic ring. We did not incorporate this cytokinetic ring force into the ther-
modynamic free energy since this is a proxy for the active force generated by actin-myosin
filament on the cytokinetic ring through the released of the hydrolyzed ATP. In the current
context, it is not a potential force.

2.4 Dimensionless governing equations in the three phase model

We denote the reference time scale as t0, reference length scale as h and reference mass
density as ρ0. Then, the variables and parameters are nondimensionalizsed as follows:

ρ̃ = ρ
ρ0
, x̃ = x

h
, t̃ = t

t0
, ṽ = vt0

h
, α̃ij =

αij

t0
, i, j = 12, 3,

Γ̃s =
γskT t20
ρh4

, s = A,B,C, Γ̃s =
γskT t20
ρ0h2

, s = 1, 2, 3, 123, Rei =
ρ0h2

ηit0
, i = 1, 2, 3.

(24)

The governing equations in dimensionless form are summarized below.
ρ(∂tv + v · ∇v) = ∇ ·

(∑3
i=1 ηiϕi(∇v +∇vT )

)
−∇p+ Fe,

∇ · v = 0,

∂tϕi +∇ · (vϕi) = ∇ · (
∑3

j=1 αij∇
δF
δϕi

) + gi, i = 1, 2, 3,

(25)

where
g1 = c1H1(t)ϕ1ϕ3 − c2H2(t)ϕ1ϕ2,

g2 = c2H2(t)ϕ1ϕ2,

g3 = −c1H1(t)ϕ1ϕ3,

Fe =
∑3

j=1
δF
δϕj

∇ϕj +
∑2

i=1 κϕifdiϕi∇ϕi.

(26)

This partial differential equation system will be discretized using a finite difference method.

3 Numerical methods

For these coupled PDEs, we use the extrapolation strategies to decouple them. That
is, for each time step, we solve the momentum equation firstly using the extrapolated data
for the biomass and functional components. Then with the updated velocity, we solve the
transport equations for the volume fractions and the functional components one by one.
We note that, in the following context, any variable with an overline (•)n+1 represents a
second-order extrapolation from n and n− 1 steps.
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For the momentum equation, we use the modified Gauge-Uzawa method [11] to calculate
the average velocity. Recall that the momentum equation is given by

ρ(
∂v

∂t
+ v · ∇v) = ∇ · τ −∇p+ Fe. (27)

By adding a second order term − 1
Rea

∇2v on both sides, where Rea is the averaged Reynolds
number, we rewrite the momentum equation into

ρ(
∂v

∂t
+ v · ∇v)− 1

Rea

∇2v = −∇p+ Fe −
1

Rea

∇2v. (28)

The Gauge-Uzawa method is given by three steps listed below.

1. Prediction:
ρn+1[3u

n+1−4vn+vn−1

2δt
] + ρn+1vn+1 · ∇vn+1 + 1

2
(∇ · (ρn+1vn+1))vn+1,

+ 1
Res

∇sn +∇pn − 1
Rea

∇2un+1 = R
n+1 − 1

Rea
∇2vn+1−ε,

un+1 · n|y=0,Ly = 0,

(29)

2. Projection: 
−∇ · ( 1

ρn+1∇ψn+1) = ∇ · un+1,

∂ψn+1

∂n
|y=0,Ly = 0,

(30)

3. Correction: 

vn+1 = un+1 + 1
ρn+1∇ψn+1,

sn+1 = sn −∇ · un+1,

pn+1 = pn − 3ψn+1

2δt
+ 1

Rea
sn+1,

(31)

where

R
n+1

=
1

2
∇·
(
(

3∑
i=1

ϕ
n+1

i ηi)(∇vn+1+∇vT
n+1

)
)
+

3∑
i=1

µn+1∇ϕn+1

i +
2∑
i=1

κϕifdiϕ
n+1

i ∇ϕn+1

i , (32)

and ε = 0.05. The averaged Reynolds number Rea is computed by

1

Rea

= min(
1

Re1

,
1

Re2

,
1

Re3

), (33)

Where Re1 , Re2 and Re3 are the Reynolds numbers for cytoplasm, nucleus and ECM respec-
tively. Here s0 = 0 and v1, s1, ϕ1

b , c
1 are computed by a first order scheme.

For the multiphase field model, the coupled Cahn-Hilliard equations could be solved
simultaneously, using preconditioned bicgstab strategy. However, we need to extrapolation
the nonlinear terms, which results in a coupled system of the form

∂tϕi +∇ · (vϕi) = ∇ ·
(
αij∇ϕj + βij∇∇2ϕj

)
+ gi, i = 2, 3.
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where αj and βj are functions of ϕ′
is. Thus, the following two equations are solved simulta-

neously,

3ϕn+1
i − 4ϕni + ϕn−1

i

2δt
+∇ · (vn+1ϕn+1

i ) = ∇ · (αn+1
ij ∇ϕn+1

j + β
n+1

ij ∇∇2ϕn+1
j ) + gn+1

i , i = 2, 3.

The numerical scheme is implemented on a graphic processing unit using CUDA. The
Nvidia CUFFT, Thrust [13], as well as CUSP [3] have been used to solve the linearized
system. The resultant solver is tested in both time and space to ensure it is convergent and
attains roughly second order.

4 Numerical results and discussion

4.1 Parameters and initial setup

For convenience, all parameters used in the model are listed in Table 1 unless noticed
otherwise. These parameters are chosen from the published literature or user-defined based
on our best guesses. We note that, although we have formulated the three-phase model by
treating the nucleus separately as a new phase for eukaryotic cells, this model is also well-
suited for studying cytoplasmic dynamics and cytokinesis without considering the nucleus.
In those cases, we simply set the initial condition of ϕ2 as zero and assume that c1 and
c2 are the centers of mass for the cytoplasm distributed on each side of the division plane,
respectively. In this two phase model, ϕ1 represents the volume fraction of the substance
inside the cell membrane and ϕ3 represents the volume fraction of the buffer, i.e. extra
cellular matrix (ECM) outside of the cell membrane.

4.2 Dynamics of cell growth and cytokinesis

During the cell mitotic process and before cytokinesis ensues, the parent cell doubles
its cytoplasmic volume while in the meantime duplicates its genetic substances (DNAs and
chromosomes). The cell morphological change during this process can be studied using the
current model by simply shutting down the contracting force and switch on the growth
dynamics of the cell, which are characterized by the moments known as the checkpoints
present in the current model. At the molecular level, the DNA and chromosome replicate
themselves and then separate into two distinct sets of DNAs and chromosomes. Immediately
following, two offspring nuclei form, each of which contains the genetic information inherited
from the parent cell. This is a complex process involving the formation of mitotic spindle
and its elongation in the axis perpendicular to the cytokinetic ring, which is beyond the
scope of our current multiphase model’s. In the current model, we focus on cytokinesis
after the offspring nuclei are separated. We coarse-grain the nucleus as a viscous bulk fluid
inside the cytoplasm. After the two offspring nuclei are separated, the nuclei effectively
position the division plane, known as the cleavage plane, after which cytokinesis ensues.
When the cleavage plane is placed right in the middle of the long axis of the cell, symmetric
cell division can be observed. Otherwise, cytokinesis may result in asymmetric division or
failure of cytokinesis. We will discuss the case of asymmetric division later, but will not
discuss the failure of cytokinesis since its cause is not fully explored yet even experimentally.
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In Figure 1, we show a detailed simulation of cytokinesis for eukaryotic cells mentioned
above. In particular, the 3D view of the cell growth and division process is portrayed in
Figure 1(a-e). The volume of the cytoplasm is doubled at the moment shown in Figure 1(b),
after which we see the formation of the cleavage furrow in Figure 1(c), and the abscission
that physically cleaves the parent cell into two offspring cells in Figure 1(d). In Figure 1(e),
we observe the offspring cell reshapes into round morphology under the influence of surface
tension on its own membrane. To our best knowledge, this is the first numerical simulation
in full 3D using a hydrodynamic phase field model. To better visualize the dynamics of
nucleus in the cytokinesis process, a series of 2D slices at x = 0.5 are plotted in Figure 1(f-j).
In particular, the cytoplasmic bridge connecting the two offspring cells is observed (shown
in Figure 1(i),) which agrees quantitatively with the morphogenetic pattern obtained from
the experimental observations shown in Figure 1(k).

We note that the advantage of the 3D hydrodynamic model is its capability to couple
the interior cytoplasmic fluid flow with the exterior fluid flow through the cell membrane
and visualize important hydrodynamic quantities such as stress tensors, forces and the hy-
drostatic pressure throughout the domain during the cellular morphological transformation.
In Figure 2, the detail of the viscous stress ηD, volume-averaged velocity v, as well as the
hydrostatic pressure p at time t = 8.5 are depicted. The stress tensor at (x, t) is visualized
as a 3D ellipsoidal object at x, whose semiaxes signify the length of the three eigenvalues
of the second order symmetric tensor, respectively. From Figure 2(b), a zoomed view of
viscous stress tensor is shown. The stress is highly inhomogeneous at the contractile ring
on the division plane (cleavage plane), which correlates well with the velocity field shown in
Figure 2(f-g), as the cytokinetic ring of the cell is contracting. Besides, the gradient of the
hydrostatic pressure is also high at the cleavage plane as well as the interface between the
cell nucleus and cytoplasm.

In addition, the distribution of the proxy force and the surface tension force are also
shown in Figure 3. Seen from Figure 3(a), the proxy force is mainly distributed on the cell
membrane (the interface between cytoplasm and ECM), with much higher values on the
division plane, contracting the cell membrane towards the center of the long axis of the cell.
This is shown in the 2D view of proxy force in Figure 3(b-c). Same as the proxy force, the
surface tension force is also distributed on the interfaces. However, surface tension is more
evenly distributed, aiming to smooth out the interface. These two forces oppose to each
other on the interface. It is the competition between the surface tension force and the proxy
force on the division plane that ultimately contributes to the success of cytokinesis.

4.3 Asymmetric Cell Cytokinesis

The positioning of the contractile ring (or cytokinetic ring) located on the division plane is
dictated by the mitotic spindle and other intercellular processes. It can affect the morphology
of the offspring cells significantly. If the contractile ring is positioned not in a symmetric
manner, then asymmetric cell division, or cell polarization could be observed. Asymmetric
cell division, which includes cell polarization and cytokinesis is essential for generating cell
diversity during development.

Here, we conducted two case studies, where we only concentrate on the cell membrane
dynamics by setting ϕ2 = 0. Note in this case, c1 and c2 in the model are chosen as mass
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centers of the half cell divided by the cleavage plane. For the first numerical study, we
choose the contractile ring on the plane at x = 0.9 with Lx = 2.0 for the whole domain. An
asymmetric cell division is simulated shown in Figure 4. The asymmetric cell division in the
intermediate stage resembles qualitatively to the budding yeast polarization.

Another case of asymmetric cell division is due to the fact that the concentration of actin-
myosin filament is distributed inhomogeneously during cytokinesis. As a simple experiment,
we set γd1, the contractile strength as a function of space, to mimic this inhomogenous con-
tractile force due to the heterogenous distribution of actin-myosin filaments on the division
plane. In this context, we set γ̃d1 = γd1y, i.e. the strength of the contractile force is higher
on upper membrane of the cell. As a result, a plane-cell type asymmetric cell division can
be observed, shown in Figure 5. The cleave furrow is observed in Figure 5(h), which agrees
qualitatively with the cleavage in the jellyfish aequorea.

5 Conclusion

In this paper, we use a multi-phase field model to study cytokinesis of an eukaryotic
cell during its mitotic process. Several interesting phenomena such as dynamics and mor-
phological patterns of symmetric or asymmetric cell division in cytokinesis are numerically
simulated with the model. These morphological patterns agree qualitatively with experimen-
tal observations. This simplified model is thus proven to be an effective tool for studying
cytokinesis during the cell division process.

Evidently, this simplified model needs significant improvement in order to make it capa-
ble to simulate the complex biological and chemical processes in addition to the mechanical
process during the real cell mitotic process. Nevertheless, it marks our first attempt in devel-
oping a full 3D hydrodynamic model for cell division in a hydrodynamically consistent way.
Within the framework for modeling cell dynamics that the model has provided, we can fur-
ther superimpose additional features to it or add additional cellular components/structures
to it. In our future work, we will incorporate the actomyosin microstructure to the cell
cortical layer and derive the contractile force on the cytokinetic ring based on their density
and orientational distribution instead of using the proxy force. In addition, the viscoelastic
properties of cytoplasm, the chromosome spindle, as well as its elongation on facilitating
cytokinesis could be added incrementally as well.
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Table 1: Dimensional Parameters.
Symbol Description value Unit Reference
T Absolute Temperature 303 Kelvin [31]
k Boltzmann constant 1.38× 10−23 m2kgs−2K−1 [31]
h Characteristic length scale 5× 10−5 m [23]
t0 Characteristic time scale 0.1 s [23]
ρ Reference density 1.1× 103 kgm−3 [10]
η1 Dynamic viscosity of cytoplasm 1× 10−2 kgm−1s−1 [14]
η2 Dynamics viscosity of nueclues 2× 10−2 kgm−1s−1

η3 Dynamics viscosity of ECM 5× 10−3 kgm−1s−1 [14]
γA,B,C Distortional energy coefficient 2.5× 107 m−1

γ1,2,3 Bulk free energy coefficient 1.875× 1020 m−3

γ123 Lagrangian multiplier strength 1.0 m−3

λ1,2,3 Motility parameter for each component 1× 10−11 kg−1m3s
c1 Growth rate of cytoplasm 5.0 s−1

c2 Growth rate for nucleus 5.0 s−1

γd1 Stimulating force strength 2.5 m−3

γd2 Stimulating force strength 15 m−3

εd 0.01
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(a) t = 0 (b) t = 1.25 (c) t = 8.5

(d) t = 14 (e) t = 27

(f) t = 0 (g) t = 1.25 (h) t = 2.5

(i) t = 15 (j) t = 26.5 (k)

Figure 1: Cell growth and cytokinesis. This figure shows a parent cell duplicates its
nucleus and cytoplasm, then splits into two identical offspring cells. (a)-(e) 3D Nu-
merical simulations of the cell division process at different stages; (f-j) 2D slices at
x = 0.5 for the cell division process; (k) a dividing melanoma cell just before it
divides into two offspring cells completely. Permission is needed from, http :
//php.med.unsw.edu.au/cellbiology/index.php?title = File :MelanomaCytokinesis.jpg).
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(a) ηD (b) Zoom view of ηD

(c) ηD at x = 0.75 (d) Zoom view of ηD at x = 0.75 (e) ηD at z = 0.5

(f) v at x = 0.75 (g) v at z = 0.5 (h) p at x = 0.75

Figure 2: Hydrodynamic variables at t = 8.5. This figure shows the hydrodynamic variables,
including viscous stress tensor βD, volume-averaged velocity v and the hydrostatic pressure
p distribution at time t = 8.5 for the simulation shown in Figure 1. (a) 3D view of the stress
tensor as ellipsoids; (b) a zoomed view of the stress tensor; (c-e) 2D slices of the stress tensor
field; (f-g) 2D slices of the velocity filed; (h) a 2D slice of the pressure field.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Visualization of the proxy force and the surface tension force. This figure shows
the proxy force and surface tension force at time t = 8.5 of the simulation shown in Figure
1.(a) 3D view of the proxy force; (b) a 2D slice of proxy force at x = 0.5; (c) a 2D slice of
proxy force at z = 0.5; (d) 3D view of the surface tension force; (e) a 2D slice of the surface
tension force at x = 0.5; (f) a 2D slice of the surface tension force at z = 0.5. The proxy
force opposes to the surface tension force at the cytokinetic ring.

18



(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 18

(e) t = 0 (f) t = 5 (g) t = 10

(h) t = 18 (i)

Figure 4: Asymmetric cell division due to the asymmetric positioning of cleavage plane. This
figure shows an asymmetric cell cytokinesis process in which the division plane is positioned
in an asymmetric fashion along the long axis of the cell. (a)-(d) 3D Numerically simulated cell
division process at different time; (e-h) 2D slices (z = 0.5 ) of cell division process at different
time; (f)a budding yeast. This asymmetric cell division resembles the yeast cell budding
process. A permission is needed from http : //www.ppdictionary.com/fungi.htm
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(a) t = 0 (b) t = 10

(c) t = 15 (d) t = 20

(e) t = 0 (f) t = 10

(g) t = 15 (h)

Figure 5: Asymmetric cleavage furrow formation due to inhomogeneous actomyosin dis-
tribution. This figure shows the asymmetric cleavage furrow formation due to the in-
homogenous contractile force along the cytokinetic ring induced by heterogenous acto-
myosin distribution on the contractile plane. (a-d) 3D view of the asymmetric cell divi-
sion at different time; (e-g) 2D slices (z = 0.5) of the asymmetric cell division at differ-
ent time; (h) cleavage furrow in the jellyfish Aequorea. A permission is needed from
http : //celldynamics.org/embryos/aequorea.html).20
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