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Abstract We are interested in the regularity of centered Gaussian processes (Zx(ω))x∈M indexed by
compact metric spaces (M,ρ). It is shown that the almost everywhere Besov space regularity of such
a process is (almost) equivalent to the Besov regularity of the covariance K(x, y) = E(ZxZy) under
the assumption that (i) there is an underlying Dirichlet structure on M which determines the Besov
space regularity, and (ii) the operator K with kernel K(x, y) and the underlying operator A of the
Dirichlet structure commute. As an application of this result we establish the Besov regularity of Gaussian
processes indexed by compact homogeneous spaces and, in particular, by the sphere.
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1 Introduction

Gaussian processes have been at the heart of probability theory for very long time. There is a huge
literature about it (see among many others [30], [27], [28] [2], [1] [32]). They also have been playing a
key role in applications for many years and seem to experience an active revival in the recent domains
of machine learning (see among others [34], [36]) as well as in Bayesian nonparametric statistics (see for
instance [45], [24]).

In many areas it is important to develop regularization procedures or sparse representations. Find-
ing adequate regularizations as well as the quantification of the sparsity play an essential role in the
accuracy of the algorithms in statistical theory as well as in Approximation theory. A way to regularize
or to improve sparsity which is at the same time genuine and easily explainable is to impose regularity
conditions.

The regularity of Gaussian processes has also been for a long time in the essentials of probability
theory. It goes back to Kolmogorov in the 1930s (see among many others [18], [42], [44] [26], [29]).

In applications, an important effort has been put on the construction of Gaussian processes on
manifolds or more general domains, with the two especially challenging examples of spaces of matrices
and spaces of graphs to contribute to the emerging field of signal processing on graphs and extending
high-dimensional data analysis to networks and other irregular domains.
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Motivated by these aspects we explore in this paper the regularity of Gaussian processes indexed
by compact metric domains verifying some conditions in such a way that regularity conditions can be
identified.

In effect, to prove regularity properties, we need a theory of regularity, compatible with the classical
examples: Lipschitz properties and differentiability. At the same time we want to be able to handle more
complicated geometries. For this aspect we borrow the geometrical framework developed in [14], [23].

Many of the constructions for regularity theorems are based on moments bounds for the increments
of the process. Our approach here is quite different, it utilizes the spectral properties of the covariance
operator. In particular, we use the Littlewood-Paley theory (this point of view was implicitly in [12]) to
show that the Besov space regularity of the process is (almost) equivalent to the Besov regularity of the
covariance operator. Especially, it is shown that the almost everywhere Besov space regularity of such a
process is (almost) equivalent to the Besov regularity of the covariance K(x, y) = E(ZxZy).

It is also important to notice that unlike many results in the literature, the regularity is expressed
using the genuine distance of the domain, not the distance induced by the covariance.

We illustrate our approach by revisiting the Brownian motion as well as the fractional Brownian
motion on the interval. We show the standard Besov regularity of these processes but also prove that
they can be associated to a genuine geometry which finally appears in a nontrivial way.

We also illustrate our main result on the more refined case of two points homogeneous spaces and
the special case of the unit sphere Sd in Rd+1.

In the two subsequent sections, we recall the background informations about Gaussian processes, the
geometrical framework introduced in [14], [23], and how it allows to develop a smooth functional calculus
as well as a description of regularity. In Section 4, we state and prove the main result of the paper.
Section 5 details the case of the standard Brownian motion and fractional Brownian motion. In this case,
the salient fact is not the regularity result (which is known) but the original geometry corresponding to
these processes. Section 6 deals with positive and negative definite functions on two points homogeneous
spaces. Section 7 establishes the Besov regularity of Gaussian processes indexed by the sphere.

2 Gaussian processes: Background

In this section we recall some basic facts about Gaussian processes and establish useful notation.

2.1 General setting for Gaussian processes

Let (Ω,A, P ) be a probability space. A centered Gaussian process on a set M is a family of random
variables Zx(ω) with x ∈M and ω ∈ Ω such that for all n ∈ N, x1, . . . , xn ∈M , and α1, . . . , αn ∈ R

n∑
i=1

αiZxi is a centered Gaussian random variable.

The covariance function K(x, y) associated to such a process (Zx)x∈M is defined by

K(x, y) := E(ZxZy) for (x, y) ∈M ×M.

It is readily seen that K(x, y) is real-valued, symmetric, and positive definite, i.e.

K(x, y) = K(y, x) ∈ R, and

∀n ∈ N, ∀ x1, . . . , xn ∈M, ∀α1, . . . , αn ∈ R,
∑
i,j≤n

αiαjK(xi, xj) ≥ 0.

Clearly, K(x, y) determines the law of all finite dimensional random variables (Zx1 , . . . , Zxn).
Conversely, if K(x, y) is a real valued, symmetric, and positive definite function on M ×M , there

exists a unique Hilbert space H of functions on M (the associated RKHS), for which K is a reproducing
kernel, i.e. f(x) = 〈f,K(x, •)〉H, ∀f ∈ H, ∀x ∈M (see [5], [37], [15]). Further, if (ui)i∈I is an orthonormal
basis for H, then the following representation in H holds:

K(x, y) =
∑
i∈I

ui(x)ui(y), ∀x, y ∈M.
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Therefore, if (Bi(ω))i∈I is a family of independent N(0, 1) variables, then

Zx(ω) :=
∑
i∈I

ui(x)Bi(ω)

is a centered Gaussian process with covariance K(x, y). Thus, this is a version of the previous process
Zx(ω).

2.2 Gaussian processes with a zest of topology

We now consider the following more specific setting. Let M be a compact space and let µ be a Radon
measure on (M,B) with support M and B being the Borel sigma algebra on M . Assuming that (Ω,A, P )
is a probability space we let

Z : (M,B)⊗ (Ω,A) 7→ Zx(ω) ∈ R, be a measurable map

such that (Zx)x∈M is a Gaussian process. In addition, we suppose that K(x, y) is a symmetric, continuous,
and positive definite function on M ×M . Then obviously the operator K defined by

Kf(x) :=

∫
M

K(x, y)f(y)dµ(y), f ∈ L2(M,µ),

is a self-adjoint compact positive operator (even trace-class) on L2(M,µ). Moreover, K(L2) ⊂ C(M),
the Banach space of continuous functions on M . Let ν1 ≥ ν2 ≥ · · · > 0 be the sequence of eigenvalues
of K repeated according to their multiplicities and let (uk)k≥1 be the sequence of respective normalized
eigenfunctions: ∫

M

K(x, y)uk(y)dµ(y) = νkuk(x).

The functions uk are continuous real-valued functions and the sequence (uk)k≥1 is an orthonormal basis
for L2(M,µ). By Mercer Theorem we have the following representation:

K(x, y) =
∑
k

νkuk(x)uk(y),

where the convergence is uniform.
Let H ⊂ L2(Ω,P ) be the closed Gaussian space spanned by finite linear combinations of (Zx)x∈M .

Clearly, interpreting the following integral as Bochner integral with value in the Hilbert space H, we
have

Bk(ω) =
1
√
νk

∫
M

Zx(ω)uk(x)dµ(x) ∈ H.

Furthermore,

E(Bk) = E
( 1
√
νk

∫
M

Zx(ω)uk(x)dµ(x)
)

=
1
√
νk

∫
M

E(Zx)uk(x)dµ(x) = 0

and

E(BkBl) =
1

√
νk
√
νl
E
(∫

M

Zy(ω)uk(y)dµ(y)

∫
M

Zx(ω)ul(x)dµ(x)
)

=
1

√
νk
√
νl

∫
M

∫
M

E(Zx(ω)Zy(ω))uk(y)ul(x)dµ(y)dµ(x)

=
1

√
νk
√
νl

∫
M

∫
M

K(x, y)uk(x)ul(y)dµ(x)dµ(y) =

{
1 if k = l
0 if k 6= l.

As the Bk’s belong to the Gaussian space H, Bk is a sequence of independent N(0, 1) variables. It is
easy to see that ∥∥∥Zy −∑

k

E(ZyBk)Bk

∥∥∥
L2(P )

= 0 ∀y ∈M. (1)
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Indeed, clearly E(Z2
y) = K(y, y) and

E(ZyBk) = E
(
Zy

1√
λk

∫
M

Zx(ω)uk(x)dµ(x)
)

=
1
√
νk

∫
M

K(y, x)uk(x)dµ(x) =
√
νkuk(y).

Hence

E(Z2
y) = K(y, y) =

∑
k

νku
2
k(y) =

∑
k

(E(ZyBk))2,

which implies (1). As a consequence, the process

Z̃x(ω) :=
∑
k

√
νkuk(x)Bk(ω)

is also a modification of Zx(ω), i.e. P (Zx = Z̃x) = 1, ∀x ∈M .
We are interested in the regularity of the ”trajectory” x ∈ M 7→ Zx(ω) for almost all ω ∈ Ω and for a
suitable modification of Zx(ω). In fact, we will focus on the version Z̃x(ω).

3 Regularity spaces on metric spaces with Dirichlet structure

On a compact metric space (M,ρ) one has the scale of s-Lipschitz spaces defined by the norm

‖f‖Lips := ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
ρ(x, y)s

, 0 < s ≤ 1. (2)

In Euclidian spaces a function can be much more regular than Lipschitz, for instance differentiable
at different order, or belong to some Sobolev space, or even in a more refine way to a Besov space. For
this purpose, we consider metric measure spaces with Dirichlet structure. This setting is rich enough
to develop a Littlewood-Paley theory in almost complete analogy with the classical case on Rd, see [14,
23]. In particular, it allows to develop Besov spaces Bspq with all set of indices. At the same time this
framework is sufficiently general to cover a number of interesting cases as will be shown in what follows.
We next describe the underlying setting in detail.

3.1 Metric spaces with Dirichlet structure

We assume that (M,µ) is a compact, connected measure space, where µ is a Radon measure with support
M . Also, assume that A is a self-adjoint non-negative operator with dense domain D(A) ⊂ L2(M,µ). Let
Pt = e−tA, t > 0, be the associate self-adjoint semi-group. Furthermore, we assume that A determines a
local and regular Dirichlet structure, see [14] and for details [19] , [40] ,[38] ,[39] ,[41] ,[11], [21]. In fact,
we assume that Pt is a Markov semi-group (A verifies the Beurling-Deny condition):

0 ≤ f ≤ 1 and f ∈ L2 imply 0 ≤ Ptf ≤ 1, and also Pt1M = 1M (equivalently A1M = 0).

From this it follows that Pt can be extended as a contraction operator on Lp(M,µ) for 1 ≤ p ≤ ∞, i.e.
‖Ptf‖p ≤ ‖f‖p, and PtPsf = Pt+sf , t, s > 0.

The next assumption is that there exists a sufficiently rich subspace D̃ ⊂ D(A) (see [11]) such that
f ∈ D̃ =⇒ f2 ∈ D(A). Then we define a bilinear operator “square gradiant” Γ : D̃ × D̃ 7→ L1 by

Γ (f, g) := −1

2
[A(fg)− fA(g)− gA(f)].

Then Γ (f, f) ≥ 0 and
∫
M
A(f)gdµ =

∫
M
Γ (f, g)dµ (Integration by part formula).
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Main assumptions:

1. Let

ρ(x, y) := sup
Γ (f,f)≤1

f(x)− f(y) for x, y ∈M . (3)

We assume that ρ is a metric on M that generates the original topology on M .

2. The doubling property: Denote B(x, r) = {y ∈ M : ρ(x, y) < r}. The assumption is that there exists
a constant d > 0 such that

µ(B(x, 2r)) ≤ 2dµ(B(x, r)), ∀x ∈M, ∀r > 0. (4)

This means that (M,ρ, µ) is a homogeneous space in the sense of Coifman and Weiss [13]. Observe
that from (4) it follows that

µ(B(x, λr)) ≤ c0λdµ(B(x, r)) for x ∈M , r > 0, and λ > 1, c0 = 2d. (5)

d is a constant playing the role of a dimension.
3. Poincaré inequality: There exists a constant c > 0 such that for all x ∈M , r > 0, and f ∈ D̃,

inf
λ∈R

∫
B(x,r)

(f − λ)2dµ ≤ cr2

∫
B(x,r)

Γ (f, f)dµ.

As a consequence the associated semi-group Pt = e−tA, t > 0, consists of integral operators of continuous
(heat) kernel pt(x, y) ≥ 0, with the following properties:

(a) Gaussian localization:

c1 exp{−ρ
2(x,y)
c2t
}√

µ(B(x,
√
t))µ(B(y,

√
t))
≤ pt(x, y) ≤

c3 exp{−ρ
2(x,y)
c4t
}√

µ(B(x,
√
t))µ(B(y,

√
t))

for x, y ∈M, t > 0. (6)

(b) Hölder continuity: There exists a constant κ > 0 such that

∣∣pt(x, y)− pt(x, y′)
∣∣ ≤ c1(ρ(y, y′)√

t

)κ exp{−ρ
2(x,y)
c2t
}√

µ(B(x,
√
t))µ(B(y,

√
t))

(7)

for x, y, y′ ∈M and t > 0, whenever ρ(y, y′) ≤
√
t.

(c) Markov property: ∫
M

pt(x, y)dµ(y) = 1 for x ∈M and t > 0. (8)

Above c1, c2, c3, c4 > 0 are structural constants.

Remark 1 The setting described above is quite general. This setting covers, in particular, the case of
compact Riemannian manifolds. It naturally contains the cases of the sphere, interval, ball, and simplex
with weights. For more details, see [14].

Notation. Throughout we will use the notation |E| := µ(E) and 1E will stand for the characteristic func-
tion of E ⊂M . Also ‖·‖p = ‖·‖Lp := ‖·‖Lp(M,µ). Positive constants will be denoted by c, c′, c1, C, C

′, . . .
and they may vary at every occurrence. The notation a ∼ b will stand for c1 ≤ a/b ≤ c2. As usual we
will denote by N the set of all natural numbers and N0 := N ∪ {0}.

Although general the setting described above entails a structure, which in particular allows to develop
a complete Littlewood-Paley theory. Next, we describe some basic traits of this framework (see [14,23]).
For any t > 0 the operator Pt := e−tA is a Hilbert-Schmidt operator:

‖e−tA‖2HS :=

∫
M

∫
M

|Pt(x, y)|2dµ(x)dµ(y) <∞. (9)
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The doubling property (4) implies that M being compact is equivalent to Diam(M) < ∞ as well as to
µ(M) <∞. It is also equivalent to∫

M

µ(B(y, r))−1dµ(y) <∞ for all r > 0. (10)

From the compactness of M and the fact that A is an essentially self-adjoint non-negative operator it
follows that the spectrum of A is discrete and of the form: 0 ≤ λ1 < λ2 < · · · . Furthermore, the respective
eigenspaces Hλk := Ker(A− λk Id) are finite dimensional and

L2(M,µ) =
⊕
k≥1

Hλk .

Denoting by PHλk the orthogonal projector onto Hλk the above means that f =
∑
k≥1 PHλk f in L2 for

all f ∈ L2(M,µ). In addition,

Af =
∑
k≥1

λkPHλk f, ∀f ∈ D(A), and Ptf =
∑
k≥1

e−tλkPHλk f, ∀f ∈ L2. (11)

In general, for a function g ∈ L∞(R+) the operator g(
√
A) is defined by

g(
√
A)f :=

∑
k≥1

g(
√
λk)PHλk f, ∀f ∈ L2. (12)

The spectral spaces Σλ, λ > 0, associated with
√
A are defined by

Σλ :=
⊕
√
λk≤λ

Hλk .

Observe that Σλ ⊂ C and hence Σλ ⊂ Lp for 1 ≤ p ≤ ∞.
From now on we will assume that the eigenvalues (λk)k≥1 are enumerated with algebraic multiplicities

taken into account, i.e. if the algebraic multiplicity of λ is m then λ is repeated m times in the sequence
0 ≤ λ1 ≤ λ2 ≤ · · · . We let (uk)k≥1 be respective real orthogonal and normalized in L2 eigenfunctions of
A, that is, Auk = λkuk.

Let Πδ(x, y) :=
∑
√
λk≤δ−1 uk(x)uk(y), δ > 0, be the kernel of the orthogonal projector onto Σ1/δ.

Then as is shown in [14, Lemma 3.19]

Πδ(x, x) ∼ |B(x, δ)|−1. (13)

Further, if N(δ,M) is the covering number of M (or the cardinality of a maximal δ−net), then

dim(Σ 1√
t
) ∼

∫
M

|B(x,
√
t)|−1dµ(x) ∼ N(

√
t,M) ∼ ‖e−tA‖2HS ≤ ct−d/2, t > 0. (14)

A key trait of our setting is that it allows to develop a smooth functional calculus. In particular,
if g ∈ C∞(R) is even, then the operator g(t

√
A) defined in (12) is an integral operator with kernel

g(t
√
A)(x, y) having this localization: For any σ > 0 there exists a constant cσ > 0 such that∣∣g(t

√
A)(x, y)

∣∣ ≤ cσ|B(x, t)|−1
(
1 + t−1ρ(x, y)

)−σ
, ∀x, y ∈M. (15)

Furthermore, g(t
√
A)(x, y) is Hölder continuous. An immediate consequence of (15) is that the operator

g(t
√
A) is bounded on Lp(M):

‖g(t
√
A)f‖p ≤ c‖f‖p, ∀f ∈ Lp(M), 1 ≤ p ≤ ∞. (16)

For more details and proofs, see [14,23].
For discretization (sampling) we will utilize maximal δ-nets. Recall that a set X ⊂ M is a maximal

δ-net on M (δ > 0) if ρ(x, y) ≥ δ for all x, y ∈ X , x 6= y, and X is maximal with this property. It is
easily seen that a maximal δ-net on M always exists. Of course, if δ > Diam(M), then X will consists of
a single point. The following useful assertion is part of Theorem 4.2 in [14].

Proposition 1 There exist a constant γ > 0, depending only on the structural constant of our setting,
such that for any λ > 0 and δ := γ/δ there exists a δ-net X obeying

2−1‖g‖∞ ≤ max
ξ∈X
|g(ξ)| ≤ ‖g‖∞, ∀g ∈ Σλ. (17)
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3.2 Regularity spaces

In the general setting described above, the full scales of Besov and Tribel-Lizorkin spaces are available
[14,23]. For the purposes of this study we will utilize mainly Besov spaces.

The Sobolev spaces W k
p = W k

p (A), k ≥ 1, 1 ≤ p ≤ ∞, are standardly defined by

W k
p :=

{
f ∈ D(A

k
2 ) : ‖f‖Wk

p
:= ‖f‖p + ‖A k

2 f‖p <∞
}
. (18)

Consequently, the Besov space Bspq = Bspq, s > 0, 1 ≤ p, q ≤ ∞, is standardly defined by interpolation as
in [33]

Bspq :=
(
Lp,W k

p

)
θ,q
, θ := s/k, (19)

where
(
Lp,W k

p

)
θ,q

is the real interpolation space between Lp and W k
p , see [14].

The following Littlewood-Paley decomposition of functions will play an important role in the sequel.
Suppose Φ ∈ C∞(R) is real-valued, even, and such that suppΦ ⊂ [−2, 2], 0 ≤ Φ ≤ 1, and Φ(λ) = 1 for
λ ∈ [0, 1]. Let Ψ(λ) := Φ(λ)− Φ(2λ). Evidently suppΨ ∩ R+ ⊂ [1/2, 2]. Set

Ψ0 := Φ and Ψj(λ) := Ψ(2−jλ) for j ≥ 1. (20)

It is readily seen that Ψ0, Ψ ∈ C∞(R), Ψ0, Ψ are even, suppΨ0 ⊂ [−2, 2], suppΨj ∩ R+ ⊂ [2j−1, 2j+1],
j ≥ 1, and

∑
j≥0 Ψj(λ) = 1 for λ ∈ R+. Consequently, for any f ∈ Lp(M,µ), 1 ≤ p ≤ ∞, (L∞ := C) one

has

f =
∑
j≥0

Ψj(
√
A)f in Lp. (21)

Note that this decomposition also holds for distributions f ∈ S ′, naturally defined in the setting of §3.1,
see [23].

The following Littlewood-Paley characterization of Besov spaces uses the functions Ψj from above:
Let s > 0 and 1 ≤ p, q ≤ ∞. For a function f ∈ Lp(M,µ) we have

f ∈ Bsp,q ⇐⇒ ‖Ψj(
√
A)f‖p = εj2

−js, j ≥ 0, with {εj} ∈ `q. (22)

Furthermore, if f ∈ Bsp,q, then ‖f‖Bsp,q ∼ ‖{εj}‖`q . We refer the reader to [14,23] for proofs and more
details on Besov spaces in the setting from §3.1.

We next clarify the relationship between Bs∞,∞ and Lip s.

Proposition 2 (a) For any 0 < s ≤ 1 we have Lip s ⊂ Bs∞,∞.

(b) Assuming that κ > 0 is the constant from (7), then Bs∞,∞ ⊂ Lip s for 0 < s < κ.

This claim follows readily from the results in [14,23].

Remark 2 In the most interesting case κ = 1, Proposition 2 yields Lip s = Bs∞,∞ for 0 < s < 1.

4 Main result

We consider a centered Gaussian process (Zx)x∈M with covariance function K(x, y) := E(ZxZy) as
described in § 2.2, indexed by a metric space M with Dirichlet structure just as described in § 3.1. We
will adhere to the assumptions and notation from § 3.1.
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4.1 Commutation property

We now make the fundamental assumption that K and A commute in the following sense:

Definition 1 If K is a bounded operator on a Banach space B (K ∈ L(B)) and A is an unbounded
operator with domain D(A) ⊂ B, we say that K and A commute if K(D(A)) ⊂ D(A) and

KAf = AKf, ∀f ∈ D(A).

Remark 3 Let A be the infinitesimal generator of a contraction semi-group Pt. Then K and A commute
in the sense of Definition 1 if and only if

KPt = PtK, ∀t > 0.

We refer the reader to [16], Theorem 6.1.27.

We now return to the covariance operator K and the underlying self-adjoint non-negative operator
A from our setting. In light of Proposition 3 our assumption that K and A commute implies that they
have the same eigenspaces.

Recall that the eigenvalues of A are ordered in a sequence 0 = λ1 ≤ λ2 ≤ . . . , where the eigenvalues
are repeated according to their multiplicities, and the respective eigenfunctions (uk)k≥1 are real-valued,
orthogonal, and normalized in L2. Hence

f =
∑
k≥1

〈f, uk〉uk, ∀f ∈ L2(M,µ). (23)

Let (νk)k≥1 be the eigenvalues of the covariance operator K. Thus we have

Auk = λkuk and Kuk = νkuk, k ≥ 1. (24)

Remark 4 As a consequence of the commutation property of K and A, the operator AK is defined
everywhere on L2(M,µ) and is closed as K is bounded and A is closed. Therefore, AK is a continuous
operator from L2(M,µ) to L2(M,µ). Clearly,

KAf =
∑
k≥1

〈f, uk〉λkνkuk for f ∈ L2 and hence sup
k≥1

λkνk = ‖KA‖L(L2) <∞.

4.2 Main Theorem

We now come to the main result of this article.

Theorem 1 Let (Zx)x∈M be a centered Gaussian process with covariance function K(x, y) := E(ZxZy)
indexed by a metric space M with Dirichlet structure induced by a self-adjoint operator A such that K
and A commute in the sense of Definition 1. Then the following assertions hold:

(a) If the covariance kernel K(x, y) has the regularity described by

sup
x∈M
‖K(x, •)‖Bs∞,∞ <∞ for some s > 0,

then the Gaussian process Zx(ω) has the following regularity: For any 0 < α < s
2

Zx(ω) ∈ Bα∞,1 for almost all ω (Bα∞,1 ⊂ Bα∞,∞).

(b) Moreover, there exists a unique probability measure Qα on the Borelian sets of Bα∞,1 such that the
(canonical) evaluation process:

∀x ∈M, δx : ω ∈ Bα∞,1 7→ ω(x)

is a centered Gaussian process of covariance

K(x, y) =

∫
Bα∞,∞

δx(ω)δy(ω)dQα(ω) [Ito-Nisio representation].

(c) Conversely, suppose there exists α > 0 such that Zx(ω) ∈ Bα∞,∞ for almost all ω. Then

sup
x∈M
‖K(x, •)‖B2α

∞,∞
<∞.
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Remark 5 A key point is that in the above theorem the Besov space smoothness parameter s > 0 can be
arbitrarily large, while 0 < s ≤ 1 in the case when the regularity is characterized in terms of Lipschitz
spaces.

For the proof of this theorem we need some preparation.

4.3 Uniform Besov property of K(x, y) and discretization

Observe that since the covariance function K(x, y) is a continuous positive definite function on M ×M ,
then from (24) it follows that

K(x, y) =
∑
k

νkuk(x)uk(y) and νk ≥ 0. (25)

We next represent the Besov norm of K(x, •) in terms of the eigenvalues and eigenfunctions of K and A.

Theorem 2 Let s > 0. Then

sup
x∈M
‖K(x, •)‖Bs∞,∞ ∼ max

{
sup
x∈M

∑
k:
√
λk≤1

νku
2
k(x), sup

j≥1
2js sup

x∈M

∑
k:2j−1<

√
λk≤2j

νku
2
k(x)

}
. (26)

Proof. Note first that from (22) it follows that (with Ψj from (20))

sup
x
‖K(x, •)‖Bs∞,∞ ∼ sup

j≥0
2js sup

x
‖Ψj(
√
A)K(x, •)‖∞.

But, using (25) we have
(
Ψj(
√
A)K(x, •)

)
(y) =

∑
k Ψj(

√
λk)νkuk(x)uk(y) and hence, applying the

Cauchy-Schwartz inequality it follows that

sup
x,y

∣∣(Ψj(√A)K(x, •)
)
(y)
∣∣ = sup

x

∑
k

Ψj(
√
λk)νku

2
k(x).

Consequently,

sup
x
‖K(x, •)‖Bs∞,∞ ∼ sup

j
2js sup

x

∑
k

Ψj(
√
λk)νku

2
k(x). (27)

Clearly, from (20) we have 0 ≤ Ψj ≤ 1, suppΨ0 ∩ R+ ⊂ [0, 2], and suppΨj ∩ R+ ⊂ [2j−1, 2j+1] for j ≥ 1.
Therefore,

sup
x

∑
k

Ψ0(
√
λk)νku

2
k(x) ≤ sup

x

∑
√
λk<2

νku
2
k(x) and

sup
x

∑
k

Ψj(
√
λk)νku

2
k(x) ≤ sup

x

∑
2j−1<

√
λk<2j+1

νku
2
k(x), j ≥ 1.

These estimates and (27) readily imply that the left-hand side quantity in (26) is dominated by a constant
multiple of the right-hand side.

In the other direction, observe that by construction Ψ0(λ) = 1 for λ ∈ [0, 1] and Ψj−1(λ) + Ψj(λ) = 1
for λ ∈ [2j−1, 2j ], j ≥ 1. Hence

sup
x

∑
√
λk≤1

νku
2
k(x) ≤ sup

x

∑
k

Ψ0(
√
λk)νku

2
k(x) and

sup
x

∑
2j−1<

√
λk≤2j

νku
2
k(x) ≤ sup

x

∑
k

Ψj−1(
√
λk)νku

2
k(x) + sup

x

∑
k

Ψj(
√
λk)νku

2
k(x), j ≥ 1.

These inequalities and (27) imply that the right-hand side in (26) is dominated by a constant multiple
of the left-hand side. This completes the proof. ut

The following corollary is an indication of how the Besov regularity relates with the “dimension” d
of the set M , which appears here through the doubling condition (4).
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Corollary 1 Let γ > d and s = γ − d. Then

νk = O
(√

λk
)−γ

=⇒ sup
x
‖K(x, •)‖Bs∞,∞ ≤ c.

Proof. If νk ≤ c
(√
λk
)−γ

, then using (13) and (5) we get for any j ≥ 1 and x ∈M∑
k:2j−1≤

√
λk≤2j

νku
2
k(x) ≤ c2−γ(j+1)

∑
k:2j−1≤

√
λk≤2j

u2
k(x) ≤ c2−γj

∑
k:
√
λk≤2j

u2
k(x)

= c2−γjΠ2j (x, x) ≤ c2−γj |B(x, 2−j)|−1 ≤ c2−j(γ−d).

A similar estimate with j = 0 holds for all k such that
√
λk ≤ 1. Then the corollary follows by Theorem 2.

ut

Remark 6 Observe that

sup
x

∑
k:2j−1≤

√
λk≤2j

νku
2
k(x) ≤ c2−js =⇒

∑
k:2j−1≤

√
λk≤2j

νk =
∑

k:2j−1≤
√
λk≤2j

∫
M

νku
2
k(x)dµ(x) ≤ c2−js|M |.

We will utilize maximal δ-nets on M along with Proposition 1 for discretization. For any j ≥ 0 we
denote by Xj the maximal δ-net from Proposition 1 with δ := γ2−j−1 such that

2−1‖g‖∞ ≤ max
ξ∈Xj

|g(ξ)| ≤ ‖g‖∞, ∀g ∈ Σ2j+1 . (28)

The following claim will be instrumental in the proof of Theorem 1.

Proposition 3 We have

sup
x∈M

∑
k:
√
λk≤1

νku
2
k(x) ∼ max

ξ∈X0

∑
k:
√
λk≤1

νku
2
k(ξ)

and for any j ≥ 1

sup
x∈M

∑
k:2j−1<

√
λk≤2j

νku
2
k(x) ∼ max

ξ∈Xj

∑
k:2j−1<

√
λk≤2j

νku
2
k(ξ)

with absolute constants of equivalence.

This proposition follows readily from the following

Lemma 1 Let Xj be the maximal δ-net from above with δ := γ2−j, j ≥ 0, and let

H(x, y) :=
∑
√
λk≤2j

αkuk(x)uk(y), where αk ≥ 0.

Then
max
ξ∈Xj

H(ξ, ξ) ≤ sup
x,y∈M

|H(x, y)| ≤ 4 max
ξ∈Xj

H(ξ, ξ).

Proof. Clearly H(x, y) is a positive definite function and hence |H(x, y)| ≤
√
H(x, x)H(y, y), implying

max
ξ,η∈Xj

|H(ξ, η)| = max
ξ∈Xj

H(ξ, ξ). (29)

Evidently, for any fixed x ∈M the function H(x, y) ∈ Σ2j as a function of y and by (28)

sup
y∈M
|H(x, y)| ≤ 2 max

η∈Xj
|H(x, η)|.

Now, using that H(x, η) ∈ Σ2j as a function of x, we again apply (28) to obtain

sup
x,y∈M

|H(x, y)| ≤ 2 sup
x∈M

max
η∈Xj

|H(x, ξ)| = 2 max
η∈Xj

sup
x∈M
|H(x, η)|

≤ 4 max
η∈Xj

max
ξ∈Xj

|H(ξ, η)| = 4 max
ξ∈Xj

H(ξ, ξ).

Here for the last equality we used (29). This completes the proof. ut
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4.4 Proof of Parts (a) and (c) of Theorem 1

(a) Assume supx∈M ‖K(x, •)‖Bs∞,∞ <∞. Let (Bk(ω))k≥1 be a sequence of independent N(0, 1) variables.
Then as alluded in §2.2

Z̃x(ω) :=
∑
k

√
νkuk(x)Bk(ω)

is also a version of Zx(ω). Let Ψj , j ≥ 0, be the functions from (20) and observe that f ∈ Bs∞,1 if and

only if ‖f‖Bs∞,1 ∼
∑
j≥0 2js‖Ψj(

√
A)f‖∞ <∞. Clearly,(

Ψj(
√
A)Z̃•(ω)

)
(x) =

∑
k

Ψj(
√
λk)
√
νkuk(x)Bk(ω). (30)

For each x ∈M this is a Gaussian variable of variance

σ2
j (x) =

∑
k

Ψ2
j (
√
λk)νkuk(x)2 ≤ c2−js.

Here we used that Ψ2
j (
√
λk) ≤ 1, the assumption supx∈M ‖K(x, •)‖Bs∞,∞ <∞, and Theorem 2.

For any α > 0 we have

E
(∑

j

2jα‖Ψj(
√
A)Z̃•(ω)‖∞

)
=
∑
j

2jαE
(
‖Ψj(
√
A)Z̃•(ω)‖∞

)
∼
∑
j

2jαE
(

sup
ξ∈Xj

|
(
Ψj(
√
A)Z̃•(ω)

)
(ξ)|
)

≤ c
∑
j

2jα2−js/2(1 + log(card(Xj))1/2.

Above for the equivalence we used (28) and for the last inequality the following well known lemma (called
the Pisier lemma, see for instance [43], lemma A.3.1): If Z1, . . . , ZN are centered Gaussian variables (with
arbitrary variances), then

E
(

max
1≤k≤N

|Zk|
)
≤ c(1 + logN)1/2 max

k

(
E|Zk|2

)1/2
.

By (14), we have card(Xj) ≤ c2jd. Therefore, if α < s
2 , then∑

j

2jα2−js/2(1 + log(card(Xj))1/2 ≤ c
∑
j

2−j(s/2−α)
(

log(c2jd)
)1/2

<∞.

Consequently, E
(∑

j 2jα‖Ψj(
√
A)Z•(ω)‖∞

)
<∞ and hence x 7→ Z̃x(ω) ∈ Bα∞,1, 0 < α < s/2, ω-a.s.

(c) Suppose now that ω − a.e., x 7→ Zx(ω) ∈ Bα∞,∞, α > 0. Then by (30) and (22):

sup
j

2jα
∥∥∥∑

k

Ψj(
√
λk)
√
νkuk(x)Bk(ω)

∥∥∥
∞
<∞, ω − a.s.

By (28) this is equivalent to

sup
j

2jα max
ξ∈Xj

∣∣∣∑
k

Ψj(
√
λk)
√
νkuk(ξ)Bk(ω)

∣∣∣ <∞, ω − a.s. (31)

However, {2jα
∑
k Ψj(

√
λk)
√
νkuk(ξ)Bk(ω)}j∈N,ξ∈Xj is a countable set of Gaussian centered variables.

The Borell-Ibragimov-Sudakov-Tsirelson theorem (see e.g. [27], §7), in particular, asserts that if (Gt)t∈T
is a centered Gaussian process indexed by a countable parameter set T and supt∈T Gt <∞ almost surely,
then supt∈T E(G2

t ) <∞. Consequently, (31) implies

sup
j∈N,ξ∈Xj

E
(

2jα
∑
k

Ψj(
√
λk)
√
νkuk(ξ)Bk

)2

<∞.

11



Therefore, there exists a constant C > 0 such that

max
ξ∈Xj

∑
k

Ψ2
j (
√
λk)νku

2
k(ξ) ≤ C2−2jα.

But as before, this yields

max
ξ∈X0

∑
k:
√
λk≤1

νku
2
k(ξ) ≤ max

ξ∈X0

∑
k

Ψ2
0 (
√
λk)νku

2
k(ξ)

and, for j ≥ 1,

max
ξ∈Xj

∑
k,2j−1≤

√
λk≤2j

νku
2
k(ξ) ≤ 2 max

ξ∈Xj

∑
k

Ψ2
j−1(

√
λk)νku

2
k(ξ) + 2 max

ξ∈Xj

∑
k

Ψ2
j (
√
λk)νku

2
k(ξ) ≤ c2−2jα.

Here we used that Ψj−1(λ) + Ψj(λ) = 1 for λ ∈ [2j−1, 2j ], implying Ψ2
j−1(λ) + Ψ2

j (λ) ≥ 1/2.

Finally, applying Proposition 3 we conclude from above that supx∈M ‖K(x, •)‖B2α
∞,∞

<∞. ut

4.5 Ito-Nisio theorem and construction of the Wiener measure

4.5.1 Wiener measure on Bs∞,1 associated to K

We begin with the following

Lemma 2 Assume s > 0 and 1 ≤ p ≤ ∞, and let Ψj, j ≥ 0, be the functions from (20). Then

f ∈ Bsp,1 ⇐⇒
∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 <∞ and ‖f‖Bsp,1 ∼

∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 .

Proof. From (21) we have for any f ∈ Lp

f =
∑
j≥0

Ψj(
√
A)f, ∀f ∈ Lp, (32)

implying ‖f‖Bsp,1 ≤
∑
j≥0 ‖Ψj(

√
A)f‖Bsp,1 .

For the estimate in the other direction, note that by (22)

‖Ψj(
√
A)f‖Bsp,1 ∼

∑
`≥0

2`s‖Ψ`(
√
A)Ψj(

√
A)f‖p.

However, suppΨj ∩ R+ ⊂ [2j−1, 2j+1], j ≥ 1, and hence Ψ`(
√
A)Ψj(

√
A) = 0 if |`− j| > 1. Therefore,

‖Ψj(
√
A)f‖Bsp,1 ∼

∑
j−1≤`≤j+1

2`s‖Ψ`(
√
A)Ψj(

√
A)f‖p.

On the other hand, by estimate (16) it follows that ‖Ψj(
√
A)g‖p ≤ c‖g‖p, ∀g ∈ Lp, and hence

‖Ψ`(
√
A)Ψj(

√
A)f‖p ≤ c‖Ψj(

√
A)f‖p, implying

‖Ψj(
√
A)f‖Bsp,1 ≤ c2

js‖Ψj(
√
A)f‖p =⇒

∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 ≤ c

∑
j≥0

2js‖Ψj(
√
A)f‖p ≤ c‖f‖Bsp,1 .

The proof is complete. ut
We now precise Theorem 1, (a) with the following
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Proposition 4 (Ito-Nisio property.)
Under the hypotheses of Theorem 1 and with the functions Ψj, j ≥ 0, from (20), if supx∈M ‖K(x, •)‖Bs∞,∞ <

∞, then

E
(∑
j≥0

‖Ψj(
√
A)Z•(ω))‖Bα∞,1

)
∼ E

(∑
j≥0

2jα‖Ψj(
√
A)Z•(ω)‖∞

)
<∞, (33)

the map

I : ω ∈ Ω 7→
∑
j

ψj(
√
A)Z•(ω)(·) ∈ Bα∞,1

is measurable, the serie is normally convergent in Bα∞,1, and the image probability Q on Bα∞,1 satisfies:

ω ∈ Bα∞,1
δx−→ ω(x)

is a centered Gaussian process with covariance K(x, y).

Proof. The equivalence (33) follows by the proof of Theorem 1, (a) and Lemma 2.
As is well known, for any Banach space B with a measure space (Ω,B), if G is a finite set of indices

bi ∈ B and Xi(ω) are real-valued measurable functions, then ω 7→
∑
i∈GXi(ω)bi is measurable from Ω

to B. Hence,

ω ∈ Ω 7→ Ψj(
√
A)Z•(ω) =

∑
k

Ψj(
√
λk)
√
νkuk(·)Bk(ω) ∈ Bα∞,1

is measurable. Consequently, by almost everywhere convergence

I : ω ∈ Ω 7→
∑
j

Ψj(
√
A)Z•(ω)(·) ∈ Bα∞,1

is also measurable, and I∗(P ) = Q is a probability measure on the Borelian sigma-algebra, such that
under Q the family of random variables δx

ω ∈ Bα∞,1
δx−→ ω(x)

is a centered Gaussian process with covariance K(x, y) =
∫
Bα∞,1

ω(x)ω(y)dQ(ω). ut

We next take on the uniqueness of Q.

4.5.2 Gaussian probability on Banach spaces. Proof of Theorem 1 (b)

For details in this section we refer to [10].
Let E be a Banach space and let B(E) be the sigma-algebra of Borel sets on E. Let E∗ be its

topological dual, and assume F is a vector space of real-valued functions defined on E, and γ(F , E) is
the sigma-algebra generated by F . If F = Cd(E,R) is the vector space of continuous bounded functions
on E, then γ(Cd(E,R), E) = B(E) is the Borel sigma-algebra.

As is well known the sigma-algebra γ(E∗, E) generated by E∗ is B(E) if E is separable (By separation
B(E)) is generated by open balls and by separation and Hahn-Banach theorem open balls are in γ(E∗, E)).

Proposition 5 Let E be a separable Banach space. Let H be a vector subspace of E∗, endowed with the
σ(E∗, E) topology. Then

H is closed ⇐⇒ H is stable by simple limit.

Proof. The implication ⇒ is obvious. We now prove ⇐. As E is a separable Banach space, this is a
consequence of:

∀R > 0, B(0, R) = {f ∈ E∗ : ‖f‖E∗ ≤ R} is metrizable for σ(E∗, E)

and, by Banach-Krein-Smulian theorem, H is σ(E∗, E)-closed if and only if ∀R > 0, B(0, R) ∩ H is
σ(E∗, E)-closed. But this is clear, since we only have to verify that for every sequence (fn) ⊂ B(0, R)∩H
such that limn 7→∞ fn(x) = f(x), ∀x ∈ E, we have f ∈ B(0, R) ∩H, which is what is assumed. ut
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Corollary 2 If E is a separable Banach space and H is a vector subspace of E∗, then H
σ(E∗,E)

coincides
with the smallest vector space of functions on E, stable by simple limit containing H. Moreover,

γ(H,E) = γ(H
σ(E∗,E)

, E).

Proof. Clearly, as E∗ is stable by simple limit (by Banach-Steinhauss theorem), the smallest vector
space of functions on E, stable by simple limit containing H is contained in E∗. And if γ(H,E) the
sigma-algebra generated by H, the vector subspace of E∗, γ(H,E)−measurable is also stable by simple
limit. ut

Lemma 3 Let E be a separable Banach space. Let H be a subspace of E∗ separating E. Then

γ(H,E) = γ(E∗, E) = B(E).

There is at most one probability measure P on the Borel sets of E such that, under P , γ ∈ H is a
centered Gaussian variable with a given covariance K(γ, γ′) on H.

Moreover if such a probability exists, then

1. E∗ is a Gaussian space, and E∗
L2(E,P )

is the Gaussian space generated by H.
2. There exists α > 0 such that ∫

E

eα‖x‖
2
EdP (x) <∞. (34)

Proof. By the Hahn-Banach theorem H
σ(E∗,E)

= E∗ and

γ(H,E) = γ(E∗, E) = B(E).

Now, if K(γ, γ′) is a positive definite function on H, it determines an additive function on the algebra
of cylindrical sets related to H:{

x ∈ E : (γ1(x), . . . , γn(x)) ∈ C
}
, γi ∈ H, C Borelian set of Rn.

Now, the sigma-algebra generated by this algebra is the Borelian of E.

Assume that such a probability P exists . Let H = E∗ ∩HL2(E,P )
. Clearly H

L2(E,P )
is the Gaussian

space generated by H, and if (γn)n≥1 ∈ H is such that ∀x ∈ E, limn 7→∞ γn(x) = γ(x) exists, then clearly

γ ∈ E∗ by the Banach-Stheinhauss theorem, and γ ∈ HL2(E,P )
since a simple limit of random variables

in a closed Gaussian space belongs to this Gaussian space. Therefore, γ ∈ H, which by Proposition 5

implies that H is closed. But H ⊂ H and H
σ(E∗,E)

= E∗ leads to H = E∗.
Finally, (34) is just the Fernique theorem. ut

Corollary 3 Let M be a set and let E be a separable Banach space of real-valued functions on M . Let

∀t ∈M, f ∈ E δt−→ f(t) ∈ R.

If δt ∈ E∗, then

B(E) = γ(H, E), H = {
∑
finite

αiδti}.

Let K(x, y) be a definite positive function on M ×M. There is at most one probability measure P on the
Borelian sets of E such that, under P , (δx)x∈M is a Gaussian process, with covariance K(x, y), and E∗

is a Gaussian space.

We now come to the main assertion here.

Theorem 3 (Wiener measure) In the setting defined above, if K(x, y) a continuous positive definite
function on M such that supx∈M ‖K(x, •)‖Bs∞,∞ < ∞ and the associated kernel operator K commutes
with A, then there is a unique probability measure Q on the Borelian sets of Bα∞,1, α < s

2 , such that the
family of random variables:

∀x ∈M, ω ∈ Bα∞,1
δx−→ ω(x) ∈ R

is a centered Gaussian process of covariance K(x, y).

This theorem holds due to the previous result and the fact that Bα∞,1 is separable. It also proves Part
(b) of Theorem 1.
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4.6 Regularity and reproducing kernel Hilbert spaces

Let K(x, y), (x, y) ∈M ×M , be a continuous real-valued positive definite kernel on a compact space M .
It is well known that K determines a real Hilbert space HK of functions, for which the evaluation:

∀x ∈M, δx : f ∈ H∗K 7→ f(x) is continuous.

Moreover,

y 7→ K(x, y) = Kx(y) ∈ HK , ∀f ∈ HK , δx(f) = 〈f,Kx〉HK , and (Kx)x∈M is a total set in HK .

The space HK is the completion of span {K(x, ·) : x ∈M}, more precisely

H◦K :=
{
h(y) =

∑
i∈F

αiK(xi, y) : ‖h‖2H =
∑
i,j∈F

αiαjK(xi, xj) =
∑
j∈F

αjh(xj)
}
.

It is well known (see e.g. [15]) that

‖h‖2H = 0 for h ∈ H◦K ⇐⇒ h(y) = 0, ∀y ∈M.

It is also well known (see [31]) that

K(x, y) =
∑
i∈I

gi(x)gi(y) ⇐⇒ gi ∈ HK , ∀i and (gi)i∈I is a tight frame for HK .

In our geometric framework, where the regularity spaces are linked to a suitable symmetric positive
operator, and K(x, y) is compatible with the geometry, we have

K(x, y) =
∑
k

νkuk(x)uk(y) =
∑
k

[
√
νkuk(x)][

√
νkuk(y)],

where (uk)k≥1 is an orthonormal basis for L2(M,µ) consisting of eigenfunctions of A associated to the
eigenvalues (λk)k≥1. Therefore, clearly (

√
νkuk)k∈N,νk 6=0 is a tight frame of H.

Moreover (δx)x∈M ⊂ H∗K is dense in H∗K in the weak σ(H∗K ,HK) topology. In fact, the following
theorem holds.

Theorem 4 (a) Let N(ν) := {k ∈ N, νk 6= 0} and define

H =
{
f : M 7→ R : f(x) =

∑
k∈N(ν)

αk
√
νk uk(x), (αk) ∈ `2

}
with inner product

〈f, g〉H =
〈 ∑
k∈N(ν)

αk
√
νk uk(·),

∑
k∈N(ν)

βk
√
νkuk(·)

〉
H

:= 〈(αk), (βk)〉`2(N(ν)).

Then H is a Hilbert space of continuous functions and (
√
νkuk)k∈N(ν) is an orthonormal basis for H. In

fact HK = H.
(b) We have for s > 0

HK ⊆ B
s
2∞,∞ ⇐⇒ sup

x∈M
‖K(x, •)‖Bs∞,∞ <∞.

(c) Let α < s
2 and denote by J : HK 7→W = Bα∞,1 the natural injection, and J∗ : W ∗ 7→ H∗K . Then

Im(J(HK) = span{uk ∈W : k ∈ N(ν)}.

Under the probability Qα on W = Bα∞,1, W
∗ is a Gaussian space, and∫

W

eiγ(ω)dQα(ω) = e
− 1

2‖J
∗(γ)‖2H∗

K ∀γ ∈W ∗ (γ ∼ N(0, ‖J∗(γ)‖2H∗K ).

Moreover, W ∗
L2(W,Qα)

is isometrically isomorphic to H∗K ∼ HK .
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Proof. (a) We have∑
k∈N(ν)

|αk|
√
νk |uk(x)| ≤

( ∑
k∈N(ν)

(|αk|2
) 1

2
( ∑
k∈N(ν)

νk|uk(x)|2
) 1

2

= ‖α‖`2(N(ν))

√
K(x, x).

Therefore, H is a space of continuous function, H is a Hilbert space, and (
√
νkuk)k∈N(ν) is an orthonormal

basis for H. Furthermore,

Kx(y) = K(x, y) =
∑

k∈N(ν)

νkuk(x)uk(y) =
∑

k∈N(ν)

[
√
νkuk(x)][

√
νkuk(y)] ∈ H

and

〈f,Kx〉H = f(x), ‖Kx‖2H =
∑

k∈N(ν)

(
√
νkuk(x))2 = K(x, x).

Also, clearly, H = HK .

(b) Suppose that supx∈M ‖K(x, •)‖Bs∞,∞ <∞ and let f(x) =
∑
k∈N(ν) αk

√
νk uk(x), where (αk) ∈ `2.

Then

Ψj(
√
A)f(x) =

∑
k∈N(ν)

Ψj(
√
λk)αk

√
νk uk(x),

implying, for j ≥ 1,

|Ψj(
√
A)f(x)| ≤

( ∑
k∈N(ν)

|αk|2
) 1

2
( ∑
k∈N(ν)

|Ψj(
√
λk)|2νk|uk(x)|2

) 1
2

≤ ‖f‖HK
( ∑
k:2j−1≤λk≤2j+1

νk|uk(x)|2
) 1

2 ≤ c‖f‖HK2−js/2,

where for the last inequality we used the assumption and Theorem 2. Similarly |Ψ0(
√
A)f(x)| ≤ c‖f‖HK .

Therefore, in light of (22),

‖f‖
B
s
2
∞,∞
≤ c‖f‖HK . (35)

Suppose now that (35) holds. Then for every sequence (αk) ∈ `2 with ‖(αk)‖`2 ≤ 1 we have∣∣ ∑
k∈N(ν)

Ψj(
√
λk)αk

√
νk uk(x)

∣∣∣ ≤ c2−js/2, ∀x ∈M,

which by duality implies ( ∑
k∈N(ν)

|ψj(
√
λk)|2νk |uk(x)|2

) 1
2 ≤ c2−js/2, j ≥ 0.

Just as in the proof of Theorem 2 we get for j ≥ 1∑
k:2j−1≤

√
λk≤2j

νku
2
k(x) ≤

∑
k∈N(ν)

|Ψj−1(
√
λk)|2νk |uk(x)|2 +

∑
k∈N(ν)

|Ψj(
√
λk)|2νk |uk(x)|2 ≤ c2−js

and similarly
∑
k:
√
λk≤1 νku

2
k(x) ≤ c. Consequently, supx∈M ‖K(x, •)‖Bs∞,∞ <∞.

(c) Clearly Im(J(HK) = span
{
uk ∈ W : k ∈ N(ν)

}
and from the previous results, under the

probability Qα on W = Bα∞,1, W
∗ under Qα is a Gaussian space. Let now F ⊂ M be finite and∑

i∈F αiδxi ∈W ∗. By construction∫
W

(∑
i∈F

αiδxi(ω)
)2

dQα(ω) =
∑
i,j∈F

αiαjK(xi, xj) =
∥∥∥∑
i∈F

αiδxi

∥∥∥2

H∗K
.

We obtain the result by density of the span of (δx)x∈M in H∗K . ut
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Remark 7 Let f ∈ L2(M,µ). Clearly

f̃(ω) : ω ∈W = Bα∞,1 7→
∫
M

f(x)ω(x)dµ(x)

belongs to W ∗. Hence, under Qα, f̃ is a Gaussian variable and

E(f̃)2 =

∫
W

(∫
M

f(x)ω(x)dµ(x)
)2

dQα(ω) =

∫
W

∫
M

f(x)ω(x)dµ(x)

∫
M

f(y)ω(y)dµ(y)dQα(ω)

=

∫
M

∫
M

f(x)f(y)
(∫

W

ω(x)ω(y)dQα(ω)
)
dµ(x)dµ(y) = 〈Kf, f〉L2(M,µ).

Consequently, ∫
W

eif̃(ω)dQα(ω) = e−
1
2 〈Kf,f〉L2(M,µ) and ‖J∗(f̃)‖2H∗K = 〈Kf, f〉L2(M,µ).

5 The examples of Brownian Motion and fractional Brownian motion

Here we illustrate our main result (Theorem 1) on the example of the standard Brownian motion.

5.1 Wiener representation of Brownian motion

Assuming M = [0, 1], consider the kernel

K(x, y) = x ∧ y =
1

2
(x+ y − |x− y|).

It is easy to find the eigenfunctions and eigenvalues of the operator K with kernel K(x, y). Indeed, we
wish to find sufficiently smooth solutions φ of the problem∫ 1

0

x ∧ yφ(y)dy = λφ(x), where φ(0) = 0, λ 6= 0.

Differentiating both sides of the above identity we obtain
∫ 1

x
φ(y) = λφ′(x), implying φ′(1) = 0. Another

differentiation leads to φ′′(x) + λ−1φ = 0. As a result, we obtain the following eigenfunctions and
eigenvalues:

φk(x) =
√

2 sin
(
k +

1

2

)
πx, λk =

1

(π(k + 1
2 ))2

, k = 0, 1, . . . .

Therefore,

K(x, y) =
∑
k≥0

2

((k + 1
2 )π)2

sin
(
k +

1

2

)
πx sin

(
k +

1

2

)
πy.

The associated Gaussian process takes the form

Zx(ω) =
∑
k≥0

1

(k + 1
2 )π

√
2 sin

(
k +

1

2

)
πx ·Bk(ω), where Bk ∼ N(0, 1), i.i.d.

A natural Dirichlet space (with Neumann-Dirichlet boundary conditions) is induced by the operator

Af := −f ′′, D(A) :=
{
f ∈ C2 ]0, 1[∩C1[0, 1] : f(0) = f ′(1) = 0

}
.

Clearly, ∫ 1

0

Af(x)f(x)dx =

∫ 1

0

f ′2(x)dx, f ∈ D(A),

and

A
(

sin
(
k +

1

2

)
π •
)
(x) =

((
k +

1

2

)
π
)2

sin
(
k +

1

2

)
πx.

17



Also, the distance on [0, 1] is defined by

ρ(x, y) = sup
|f ′|≤1

|f(x)− f(y)| = |x− y|.

In this setting, the Poincaré inequality and the doubling property are obvious, and clearly

|K(x, y)−K(x, y′)| ≤ |y − y′|, implying sup
x∈M
‖K(x, •)‖B1

∞,∞
≤ 1. (36)

So far everything looks fine, unfortunately the Dirichlet space induced here does not verifies all the
conditions described §3.1, e.g. the associated semi-group is not Markovian due to the fact that the
function 1 := 1M does not belong to D(A).

In the next subsections we will discuss a useful way to circumvent this problem, in particular, we will
identify a Dirichlet space adapted to the framework of Brownian motion. This will require careful study
of positive and negative definite kernels.

5.2 Positive and negative definite functions

For this subsection we refer the reader to [7], [35], [9]. Recall first the definitions of positive and negative
definite functions:

Definition 2 Given a set M , a real-valued function K(x, y) defined on M ×M is said to be positive
definite (P.D.), if

K(x, y) = K(y, x), and ∀α1, . . . , αn ∈ R, ∀x1, . . . , xn ∈M,

n∑
i,j=1

αiαjK(xi, xj) ≥ 0.

As shown in §2.1 the following characterization is valid:

K(x, y) is P.D. ⇐⇒ K(x, y) = E(ZxZy),

where (Zx)x∈M is a Gaussian process.
For any u ∈M we associate to K(x, y) the following P.D. kernel

Ku(x, y) := K(x, y) +K(u, u)−K(x, u)−K(y, u) = E[(Zx − Zu)(Zy − Zu)].

Clearly,

Ku ≡ K ⇐⇒ K(u, u) = 0.

Definition 3 Given a set M , a real-valued function ψ(x, y) defined on M ×M is said to be negative
definite (N.D.), if

ψ(x, y) = ψ(y, x),∀x, y ∈M, ψ(x, x) ≡ 0, and

∀α1, . . . , αn ∈ R s.t.
∑
i

λi = 0, ∀x1, . . . , xn ∈M,

n∑
i,j=1

αiαjψ(xi, xj) ≤ 0.

The following characterization is valid (see e.g. [7, Proposition 3.2]):

ψ(x, y) is N.D. ⇐⇒ ψ(x, y) = E(Zx − Zy)2,

where (Zx)x∈M is a Gaussian process. Consequently, ψ(x, y) ≥ 0, ∀x, y ∈M .
From above it readily follows that

√
ψ(x, y) verifies the triangular inequality:

|
√
ψ(x, y)−

√
ψ(z, y)| ≤

√
ψ(x, z), ∀x, y, z ∈M. (37)

The following proposition can easily be verified.
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Proposition 6 (a) Let K(x, y) be a P.D. kernel on a set M , and set

ψK(x, y) := K(x, x) +K(y, y)− 2K(x, y). (38)

Then ψK is negative definite. The kernel ψK will be termed the N.D. kernel associated to K. In fact, if
K(x, y) = E(ZxZy), then ψK(x, y) = E(Zx − Zy)2. Furthermore, ψK ≡ ψKu , ∀u ∈M .

(b) Let ψ be a N.D. kernel, and for any u ∈M define

N(u, ψ)(x, y) :=
1

2
[ψ(x, u) + ψ(y, u)− ψ(x, y)].

Thus, if ψ(x, y) = E(Zx − Zy)2, then N(u, ψ)(x, y) := E
[
(Zx − Zu)(Zy − Zu)

]
. Then N(u, ψ) is P.D.

Moreover,
N(u, ψK) = Ku.

The next assertion contains our key idea.

Proposition 7 Let ψ(x, y) be a real-valued continuous N.D. function on the compact space M , and set

K̃(x, y) :=
1

2|M |

∫
M

[ψ(x, u) + ψ(y, u)− ψ(x, y)]dµ(u).

Then
(a) K̃ is positive definite.
(b) 1 is an eigenfunction of the operator K̃ with kernel K̃(x, y), that is,∫
M

K̃(x, y)1(y)dµ(y) =

∫
M

K̃(x, y)dµ(y) = C1, with C =
1

2|M |

∫
M

∫
M

ψ(u, y)dµ(u)dµ(y) ≥ 0.

(c)
∃z ∈M s.t. K̃(z, z) = 0 ⇐⇒ K̃(x, y) ≡ 0 ⇐⇒ ψ(x, y) ≡ 0.

Proof. Parts (a) and (b) are straightforward. For the proof of (c) we first observe the obvious implications:

ψ(x, y) ≡ 0 =⇒ K̃(x, y) ≡ 0 =⇒ K̃(z, z) = 0, ∀z ∈M.

Now, let K̃(z, z) = 0 for some z ∈ M . Then 1
2|M |

∫
M

[ψ(z, u) + ψ(z, u) − ψ(z, z)]dµ(u) = 0. By

definition ψ(z, z) = 0 and hence
∫
M
ψ(z, u)dµ(u) = 0. However, ψ(z, u) is continuous and ψ(z, u) ≥ 0.

Therefore, ψ(z, u) = 0, ∀u ∈M . Now, employing (37) we obtain for x, y ∈M√
ψ(x, y) = |

√
ψ(x, y)−

√
ψ(z, y)| ≤

√
ψ(x, z) = 0,

and hence ψ(x, y) ≡ 0. This completes the proof. ut

Remark 8 The following useful assertions can be found in e.g. [7], [35], [9].
Let ψ(x, y), defined on M ×M , obey ψ(x, y) = ψ(y, x), ∀x, y ∈M , and ψ(x, x) ≡ 0. Then

ψ is N.D. ⇐⇒ ∀t > 0, e−tψ is P.D.

ψ is N.D. =⇒ ∀ 0 < α ≤ 1, ψα is N.D.

ψ is N.D. =⇒ log(1 + ψ) is N.D.

The following proposition can easily be verified.

Proposition 8 Let M be a compact space, equipped with a Radon measure µ. Assume that K(x, y) is
a continuous P.D. kernel and let ψ := ψK be the associated to K(x, y) N.D. kernel, i.e. ψ(x, y) :=
K(x, x) +K(y, y)− 2K(x, y). Set

Ku(x, y) :=
1

2
[ψ(x, u) + ψ(y, u)− ψ(x, y)],

and

K̃(x, y) :=
1

2|M |

∫
M

[ψ(x, u) + ψ(y, u)− ψ(x, y)]dµ(u) =
1

|M |

∫
M

Ku(x, y)dµ(u).
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Denote by K and K̃ the operators with kernels K(x, y) and K̃(x, y).
Then

K̃(x, y) = K(x, y) + |M |−1 Tr(K)− |M |−1K1(x)− |M |−1K1(y). (39)

Moreover, ψK̃ = ψ, K̃u = Ku, and

K̃1 = C1, C = Tr(K)− 1

|M |

∫
M

∫
M

K(x, y)dµ(x)dµ(y) =
1

2|M |

∫
M

∫
M

ψ(u, y)dµ(u)dµ(y) ≥ 0.

In addition,

K = K̃ + const . ⇐⇒ K1 = C ′1 (40)

and const . = −|M |−1(Tr(K)− 2C ′).

Proof. From the respective definitions, we infer

ψ(x, u) + ψ(y, u)− ψ(x, y) = [K(x, x) +K(u, u)− 2K(x, u)]

+ [K(y, y) +K(u, u)− 2K(y, u)]− [K(x, x) +K(y, y)− 2K(x, y)]

= 2[K(u, u)−K(x, u)−K(y, u) +K(x, y)]

and hence

K̃(x, y) = K(x, y) +
1

|M |

∫
M

[K(u, u)−K(x, u)−K(y, u)]dµ(u)

= K(x, y) +
1

|M |
(

Tr(K)−K1(x)−K1(y)
)
.

The remaining is a consequence of Proposition 7. ut

Remark 9 Observe that if K(x, y), ψ(x, y), and K̃(x, y) are as in Proposition 8, then

∃z ∈M, K̃(z, z) = 0 ⇐⇒ K̃(x, y) ≡ 0 ⇐⇒ ψ(x, y) ≡ 0 ⇐⇒ K(x, y) ≡ const .

Indeed, clearly we have only to show the implication ψ(x, y) ≡ 0 =⇒ K(x, y) ≡ const. However,

ψ(x, y) ≡ 0 =⇒ K(x, x) +K(y, y) = 2K(x, y) ≤ 2
√
K(x, x)

√
K(y, y),

implying (
√
K(x, x)−

√
K(y, y))2 ≤ 0, which leads to K(x, x) ≡ const . and

K(x, y) =
1

2
(K(x, x) +K(y, y)) = const .

Remark 10 Assume that we are in the geometrical setting described in §3.1, associated to an operator
A. Just as in §4.1, suppose K(x, y) is a P.D. kernel such that the associate operator K commutes with
A. From (41) we have A1 = 0.

Moreover, it is easy to see that

A1M = 0 and dim Ker(A) = 1. (41)

Indeed, the Markov property (8) yields A1M = 0. To show that dim Ker(A) = 1, assume that Af = 0,
f ∈ D(A). Then Γ (f, f) = 0. Assume that f 6= constant. Then f(x) 6= f(y) for some x, y ∈ M , x 6= y.
For Γ (f, f) = 0 we have Γ (af, af) = 0 for each a > 0. Then by (3) ρ(x, y) ≥ a|f(x) − f(f)|, ∀a > 0,
implying ρ(x, y) = ∞, which is a contradiction because M is connected (see [14]). Therefore, Af = 0
implies f = const. and hence dim Ker(A) = 1.

Hence

AK1 = KA1 = 0.

However, as dim Ker(A) = 1, necessarily K1 = C1. Therefore, K = K̃ + const.
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5.3 Back to Brownian motion

Assume again that M = [0, 1] and K(x, y) := x ∧ y = 1
2 (x+ y − |x− y|). We will adhere to the notation

introduced in §5.2.
The associated to K(x, y) N.D. kernel ψ(x, y) = ΨK(x, y) (see (38)) take the form

ψ(x, y) = K(x, x) +K(y, y)− 2K(x, y)

and the induced P.D. kernel Ku(x, y) becomes

Ku(x, y) =
1

2
[ψ(x, u) + ψ(y, u)− ψ(x, y)]

= K(x, y)−K(x, u)−K(y, u) +K(u, u)

=
1

2
[|x− u|+ |y − u| − |x− y|], u ∈ [0, 1].

Thus we arrive at the following P.D. kernel

K̃(x, y) :=

∫ 1

0

Ku(x, y)du =
1

4
[x2 + (1− x)2 + y2 + (1− y)2 − 2|x− y|].

Denoting by K̃ the operator with kernel K̃(x, y), we have

K̃1(x) =
1

2

(∫ 1

0

∫ 1

0

|y − u|dudy +

∫ 1

0

|x− u|du−
∫ 1

0

|x− y|dy
)

=
1

2

∫ 1

0

∫ 1

0

|y − u|dudy =
1

6
.

Further, using that
∫ 1

0
cos kπy dy = 0 for k ∈ N we get

K̃(cos kπ•)(x) =
1

2

∫ 1

0

∫ 1

0

|y − u| cos kπy dudy − 1

2

∫ 1

0

|x− y| cos kπy dy

Integrating by parts we obtain∫ 1

0

|x− y| cos kπy dy = |x− y| sin kπy
πk

∣∣∣1
y=0
−
∫ 1

0

(
− 1[0,x](y) + 1[x,1](y)

) sin kπy

πk
dy

=
1

πk

(∫ x

0

sin kπy dy −
∫ 1

x

sin kπy dy
)

= −2 cos kπx

(πk)2
+

1 + (−1)k

(πk)2
.

By the same token∫ 1

0

∫ 1

0

|y − u| cos kπy dudy =

∫ 1

0

(
− 2 cos kπu

(πk)2
+

1 + (−1)k

(πk)2

)
du =

1 + (−1)k

(πk)2
.

Putting the above together we infer

K̃(cos kπ•)(x) =
cos kπx

(πk)2
, ∀k ∈ N, and K̃1 = 1/6.

Observe also that the functions {1} ∪ (
√

2 cos kπx)k∈N form an orthonormal basis for L2(0, 1).

Let H2(0, 1) be the space of the functions f ∈ L2(0, 1) that are two times weakly differentiable and
f ′, f ′′ ∈ L2(0, 1). Consider the operator

Af := −f ′′, D(A) := {f ∈ H2([0, 1]) : f ′(0) = f ′(1) = 0}.

Clearly, ∫ 1

0

(Af)gdx =

∫ 1

0

f ′g′dx =

∫ 1

0

fAgdx
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and hence A is positive and symmetric. In fact, A generates a Dirichlet space, and also

cos kπx ∈ D(A) and A(cos kπ•)(x) = (πk)2 cos kπx, k ≥ 1.

Let H1[0, 1] :=
{
f ∈ L2(0, 1) :

∫ 1

0
|f ′(u)|2du <∞

}
. This defines a Dirichlet form:

A,D(A) =
{
f ∈ H1(0, 1) :

∣∣∣ ∫ 1

0

f ′(x)φ′(x)dx
∣∣∣ ≤ c‖φ‖2, ∀φ ∈ H1(0, 1)

}
.

Thus ∫ 1

0

f ′(x)φ′(x)dx =

∫ 1

0

Af(x)φ(x)dx

and the distance is defined by

ρ(x, y) = sup
φ∈H1:|φ′|≤1

φ(x)− φ(y) = |x− y|.

The Poincaré inequality is well known to be true in this case. So we are now in the setting presented
above. K(x, •) is uniformly Lip 1. Therefore, Zx the centered Gaussian process associated to K is almost
surely Lipα, α < 1

2 .
The process Yx(ω) = Zx(ω)−Z0(ω) has the same regularity, and 1

2 (|x|+ |y|−|x−y|) is the associated
kernel. This is the Brownian motion, with the above regularity.

5.4 Brownian motion and fractional Brownian motion, through analysis on the circle

The Laplacian on the torus (for instance on R/2Z) is a typical example of an operator generating a
Dirichlet space with all properties that are required for defining a regularity structure. If we represent
R/2Z by the arc length parametrisation we have a Dirichlet space associated to:

Af := −f ′′, D(A) :=
{
f ∈ C2 ]− 1, 1[∩C1[−1, 1] : f(−1) = f(1), f ′(−1) = f ′(1)

}
,∫ 1

−1

Af(x)g(x)dx =

∫ 1

−1

f ′(x)g′(x)dx,

and the distance is defined by

ρ(x, y) = inf
{
f(x)− f(y) : |f ′| ≤ 1, f(−1) = f(1), f ′(−1) = f ′(1)

}
= |x− y| ∧ (2− |x− y|).

Clearly, the eigenfunctions of A are (cos kπx)k∈N0 and (sin kπx)k∈N.

5.4.1 Brownian motion on the circle

Using the Fourier series expansion, we have,

|x| = 1

2
− 4

π2

∑
n∈N

cos(2n+ 1)πx

(2n+ 1)2
, x ∈ [−1, 1].

Hence,

ρ(x, y) = |x− y| ∧ (2− |x− y|) =
1

2
− 4

π2

∑
n∈N

cos(2n+ 1)π(x− y)

(2n+ 1)2
,

implying

K(x, y) :=
1

2
− |x− y| ∧ (2− |x− y|) =

4

π2

∑
n∈N

cos(2n+ 1)π(x− y)

(2n+ 1)2

=
4

π

∑
n∈N

cos(2n+ 1)πx cos(2n+ 1)πy

(2n+ 1)2
+

4

π

∑
n∈N

sin(2n+ 1)πx sin(2n+ 1)πy

(2n+ 1)2
.
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From this it follows that the kernel K(x, y) is P.D. and

ψK(x, y) = K(x, x) +K(y, y)− 2K(x, y) = |x− y| ∧ (2− |x− y|) = ρ(x, y).

Therefore, the Gaussian process Zx(ω)x∈[−1,1] associated to K(x, y) is a Brownian field with respect to

ρ. Its regularity is Lipα, α < 1
2 with respect to the metric ρ. We can now restrict to [0, 1], ρ(x, y) = |x−y|

∀x, y ∈ [0, 1]. Thus, considering Wx := Zx − Z0, restricted to x ∈ [0, 1], we get the classical Brownian
motion with

W0 := 0, E(Wx −Wy)2 = 2|x− y|
and we again obtain its regularity as a byproduct.

5.4.2 Fractional Brownian motion on the circle and on [0, 1]

Let 0 < α < 1. The Fourier series expansion of |x|α on [−1, 1] takes the form

|x|α =
1

α+ 1
+ 2

∑
k≥1

cos kπx

∫ 1

0

uα cos kπudu.

Integrating by parts we get∫ 1

0

uα cos kπu du = − α

kπ

∫ 1

0

uα−1 sin kπu du = − α

(πk)α+1

∫ kπ

0

uα−1 sinu du.

Hence,
1

α+ 1
− |x|α = 2α

∑
k≥1

γk
cos kπx

(πk)α+1
,

where

γk =

∫ kπ

0

uα−1 sinu du =

k−1∑
j=0

∫ (j+1)π

jπ

1

u1−α sinu du =

k−1∑
j=0

(−1)j
∫ (j+1)π

jπ

1

u1−α | sinu|du

=

k−1∑
j=0

(−1)j
∫ π

0

sinu

(u+ jπ)1−α du =:

k−1∑
j=0

(−1)jaj .

Here a0 > a1 > · · · ≥ 0 and limj→∞ aj = 0. Hence, γ := limj→∞ γj exists and 0 < γ < πα+1/(α + 1).
Therefore,

Kα(x, y) =
1

α+ 1
− (|x− y| ∧ (2− |x− y|)α = 2α

∑
k≥1

γk
cos kπ(x− y)

(πk)α+1

= 2α
∑
k≥1

γk
cos kπx cos kπy + sin kπx sin kπy

(πk)α+1

is a P.D. kernel compatible with the Dirichlet structure defined by the Laplacian on the circle R/2Z.
Moreover, as 0 < α < 1

|Kα(x, y)−Kα(x, y′)| ≤ |ρ(x, y)α − ρ(x, y′)α| ≤ ρ(y, y′)α.

Consequently, the associated Gaussian process (Zx(ω))x∈[−1,1] with covariance function Kα(x, y) is Lipβ
for β < α

2 on [−1, 1]. If we restrict this process to x ∈ [0, 1] as ρ(x, y) = |x − y|, ∀x, y ∈ [0, 1], we get a
Gaussian process on [0, 1] with covariance 1

α+1 − |x− y|
α, and such that

E(Zx − Zy)2 = |x− y|α.

Hence, the process (Zx − Z0)x∈[0,1] has covariance |x|α + |y|α − |x − y|α and regularity Lipβ, β < α
2 .

This is the standard fractional Brownian function.

Remark 11 If α > 1, then as above γk =
∑

0≤j≤k−1(−1)j
∫ π

0
(u + jπ)α−1 sinudu and hence γk > 0 if k

is even and γk < 0 if k is odd. From this one can deduce that ρ(x, y)α is not a definite negative function
on the circle.
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6 Positive and negative definite functions on compact homogeneous spaces

Here we present some basic facts about positive and negative definite kernels in the general setting of
compact two point homogeneous spaces. Then, in the next section, we utilize these results and our main
Theorem 1 to establish the Besov regularity of Gaussian processes indexed by the sphere.

6.1 Group acting on a space

Let (M,µ) be a compact space equipped with a positive Radon measure µ. Assume that there exists
a group G acting transitively on (M,µ), that is, there exists a map (g, x) ∈ G ×M 7→ g · x ∈ M such
that

1. h · (g · x) = (hg) · x, ∀g, h ∈ G,

2. ∃e ∈ G s.t. e · x = x, ∀x ∈M (e is the neutral element in G),

3. ∀x, y ∈M , ∃g ∈ G s.t. g · x = y (transitivity),

4.
∫
M

(γ(g)f)(x)dµ(x) =
∫
M
f(g−1 · x)dµ(x) =

∫
M
f(x)dµ(x) ∀g ∈ G , ∀f ∈ L1,

where (γ(g)f)(x) := f(g−1 · x). Hence, (γ(g))g∈G is a group of isometry of L1.

Definition 4 A continuous real-valued kernel K(x, y) on M ×M is said to be G-invariant if

K(g · x, g · y) = K(x, y), ∀g ∈ G, ∀x, y ∈M.

If K is the operator on L2 with kernel K(x, y), then K is called G−invariant if γ(g)K = Kγ(g), ∀g ∈ G,
that is, ∫

M

K(g−1 · x, y)f(y)dµ(y) =

∫
M

K(x, y)f(g−1 · y)dµ(y), ∀f ∈ L2.

Remark 12 (a) Assume that K(x, y) is a continuous G-invariant kernel, then

(i) K(x, x) = K(g · x, g · x) and hence K(x, x) ≡ |M |−1 Tr(K), and

(ii) ∫
M

K(x, y)dµ(y) =

∫
M

K(x, g · y)dµ(y) =

∫
M

K(g−1 · x, y)dµ(y), ∀g ∈ G,

and hence 1 := 1M is an eigenfunction of K, that is,
∫
M
K(x, y)1(y)dµ(y) = C1(x).

(b) Suppose K(x, y) is a continuous positive G-invariant kernel, then

ψK(x, y) := K(x, x) +K(y, y)− 2K(x, y) = 2(C −K(x, y)) = 2(|M |−1 Tr(K)−K(x, y)),

clearly ψ(x, y) is G-invariant and by (40), K̃(x, y) = K(x, y) + |M |−1(Tr(K)− 2C ′).

(c) Suppose ψ(x, y) is a G−invariant N.D. kernel and consider the associated P.D. kernel K̃, defined
as in (39). Then K̃(x, y) is G-invariant, and

x 7→ 1

|M |

∫
M

ψ(x, u)dµ(u) ≡ C0 and K̃(x, y) = C0 −
1

2
ψ(x, y).

Thus, in this framework there is one-to-one correspondence up to a constant between invariant P.D. and
N.D. kernels.
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6.2 Composition of operators

Let K(x, y) and H(x, y) be two continuous kernels on M×M as above, and let K and H be the associate
operators. The operator K ◦H is also a kernel operator with kernel K ◦H(x, y):

K ◦H(x, y) =

∫
M

K(x, u)H(u, y)dµ(u).

Observe that:

1. If K(x, y) = K(y, x), H(x, y) = H(y, x) then

K ◦H(x, y) =

∫
M

K(x, u)H(u, y)dµ(u) =

∫
M

H(y, u)K(u, x)dµ(u) = H ◦K(y, x).

2. If K(x, y) and H(x, y) are G−invariant, then so is K ◦H. Indeed,

K ◦H(g · x, g · y) =

∫
M

K(g · x, u)H(u, g · y)dµ(u) =

∫
M

K(g · x, g · u)H(g · u, g · y)dµ(u)

=

∫
M

K(x, u)H(u, y)dµ(u) = K ◦H(x, y).

6.3 Group action and metric

Assume that we are in the setting of a Dirichlet space defined through a non-negative self-adjoint operator
on L2(M,µ) just as in §3.1. Suppose now that,

γ(g)A = Aγ(g), ∀g ∈ G

or equivalently

γ(g)Pt = Ptγ(g), ∀t > 0, ∀g ∈ G,

i.e. ∀t > 0, pt(x, y) is G−invariant. Clearly Γ (f1, f2) is also G-invariant: Γ (f1, f2) = Γ (γ(g)f1, γ(g)f2)
and the associate metric ρ(x, y) is G-invariant:

ρ(g · x, g · y) = ρ(x, y), ∀g ∈ G.

Definition 5 In the current framework, (M,µ,A, ρ,G) is said to be a two point homogeneous space if

∀x, y, x′, y′ ∈M s.t. ρ(x, y) = ρ(x′, y′), ∃g ∈ G s.t. g · x = x′, g · y = y′.

In particular, ∀(x, y) ∈M ×M, ∃g ∈ G s.t. g · x = y, g · y = x.

Theorem 5 Let (M,µ,A, ρ,G) be a compact two point homogeneous space. Then we have:

1. Any G-invariant continuous kernel K(x, y) is symmetric.
2. If K(x, y) and H(x, y) are two G-invariant continuous kernels, then K ◦H = H ◦K.

In particular, if K(x, y) is a G-invariant continuous kernel, then KA = AK.
3. Any G-invariant real-valued continuous kernel K(x, y) depends only on the distance ρ(x, y), that is,

there exist a continuous function k : R 7→ R, such that

K(x, y) = k(ρ(x, y)), ∀x, y ∈M.

This theorem is a straightforward consequence of the observations from §6.2 and the definition of two
point homogeneous spaces.

Let now M be a compact Riemannian manifold and assume that A := −∆M is the Laplacian on M ,
ρ is the Riemannian metric, and µ is the Riemannian measure. Also, assume that there exists a compact
Lie group G of isometry on M such that (M,µ,−∆M , ρ,G) is a compact two point homogeneous space.
For the link with Gaussian processes see: [6], [20].
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Let 0 ≤ λ1 < λ2 < · · · be the spectrum of −∆M . Then the eigenspaces Hλk := Ker(∆M + λk Id) are
finite dimensional and

L2(M,µ) =
⊕
k≥1

Hλk .

Let PHλk (x, y) be the kernel of the orthogonal projector onto Hλk . Then if K(x, y) is a G-invariant
positive definite kernel we have the following decomposition of K(x, y), which follows from Bochner-
Godement theorem ([17], [22]):

K(x, y) =
∑
k≥0

νkPHλk (x, y), νk ≥ 0.

7 Brownian motion on the sphere

In this section we apply our main result (Theorem 1) to a Gaussian process parametrized by the unit
sphere Sd in Rd+1. This is a Riemannian manifold and a compact two point homogeneous space. More
explicitly,

G = SO(d+ 1), H = SO(d), G/H = Sd.

The geodesic distance ρ on Sd is given by

ρ(ξ, η) = arccos〈ξ, η〉,

where 〈ξ, η〉 is the inner product of ξ, η ∈ Rd+1. Clearly,

∀ξ, η ∈ Sd, ∀g ∈ G, ρ(g · ξ, g · η) = ρ(ξ, η), and ∀ξ, η ∈ Sd, ∃g ∈ G s.t. g · ξ = η.

Thus G acts isometrically and transitively on Sd. Furthermore,

∀ξ, η, ξ′, η′ ∈ Sd s.t. ρ(ξ, η) = ρ(ξ′, η′), there exists g ∈ G s.t. g · ξ = ξ′ and g · η = η′.

Therefore, Sd is a compact two point homogeneous space.
Let −∆Sd be the (positive) Laplace-Beltrami operator on Sd. As is well known the eigenspaces of

−∆Sd are the spaces of spherical harmonics, defined by

Hλk := Ker(∆Sd + λkId), λk := k(k + d− 1) = k(k + 2ν), k ≥ 0 ν :=
d− 1

2
.

One has L2(Sd) =
⊕

k≥0Hλk and the kernel of the orthogonal projector PHλk onto Hλk is given by

PHλk (ξ, η) = Ldk(〈ξ, η〉), Ldk(x) := |Sd|−1
(

1 +
k

ν

)
Cνk (x).

Here Cνk (x), k ≥ 0, are the Gegenbauer polynomials defined on [−1, 1] by the generating function

1

(1− 2xr + r2)ν
=
∑
k≥0

rkCνk (x).

Therefore,

−∆Sdf =
∑
k≥0

k(k + 2ν)PHλk f

and the invariant continuous positive definite functions on Sd are of the form

K(ξ, η) =
∑
k

νkL
d
k(〈ξ, η〉) =

∑
k

νkL
d
k(cos ρ(ξ, η)),

where ∑
k

νkL
d
k(1) =

∑
k

νkL
d
k(〈ξ, ξ〉) <∞.
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Note that

Lνk(1)|Sd| =
∫
Sd
Lνk(〈ξ, ξ〉)dµ(ξ) = dim(Hλk(Sd)) =

(
k + d

d

)
−
(
k − 2 + d

d

)
∼ kd−1.

Let

W ν
k (x) :=

Lνk(x)

Lνk(1)
=
Cνk (x)

Cνk (1)
. Clearly, W ν

k (1) = sup
x∈[−1,1]

|W ν
k (x)| = 1.

Then (see [8])

lim
ν 7→0

Cνk (x)

Cνk (1)
= Tk(x) (= W 0

k (x) by convention),

lim
ν 7→∞

Cνk (x)

Cνk (1)
= xk (= W∞k (x) by convention).

Here Tk is the Chebyshev polynomial of first kind (Tk(cos θ) = cos kθ). The invariant continuous positive
definite functions on Sd are of the form

Kν(ξ, η) =
∑
k≥0

aνkW
ν
k (〈ξ, η〉) =

∑
k≥0

aνkW
ν
k (cos ρ(ξ, η)), aνk ≥ 0,

∑
k

aνk <∞.

Clearly, ∑
k

aνkW
ν
k (cos ρ(ξ, η)) =

∑
k

aνk
Lνk(1)

Lνk(cos ρ(ξ, η)), Lνk(1) ∼ kd−1. (42)

Therefore,

νk = |Sd| aνk
dim(Hλk)

= O
( aνk
kd−1

)
.

The following Schoenberg-Bingham result (see e.g. [8]) plays a key role here: If f is a continuous
function defined on [−1, 1], then f(〈ξ, η〉) is a positive definite function on Sd and invariant with respect
to SO(d+ 1) for all d ∈ N if and only if

f(x) =
∑
n≥0

anx
n, where an ≥ 0 and

∑
n≥0

an = f(1) <∞.

Therefore, for such a function f

f(x) =
∑
k≥0

aνkW
ν
k (x), aνk ≥ 0, and

∑
k≥0

aνk =
∑
k≥0

ak = f(1),

and hence

f(〈ξ, η〉) =
∑
k≥0

aνkW
ν
k (〈ξ, η〉) =

∑
k≥0

aνk
Lνk(1)

Lνk(〈ξ, η〉) = f(cos ρ(ξ, η)).

7.1 Fractional Brownian process on the sphere

Theorem 6 For any 0 < α ≤ 1 the function

ψ(ξ, η) = ρ(ξ, η)α, ξ, η ∈ Sd,

is negative definite, and the associated Gaussian process has almost everywhere regularity Bγ∞,1, γ < α
2 .
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Proof. Consider first the case when α = 1 (Brownian process). We will show that for some constant C > 0
the function C − ρ(ξ, η) is an invariant positive definite function. To this end, by Schoenberg-Bingham
result we have to prove that there exists a function

f(x) =
∑

anx
n, with an ≥ 0,

∑
n≥0

an <∞,

such that f(〈ξ, η〉) = f(cos ρ(ξ, η)) = C − ρ(ξ, η). Luckily the function π
2 − arccosx does the job. Indeed,

it is easy to see that

f(x) :=
π

2
− arccosx = arcsinx =

∑
j≥0

( 1
2 )j(

1
2 )j

j!( 3
2 )j

x2j+1 and
∑
j≥0

( 1
2 )j(

1
2 )j

j!( 3
2 )j

=
π

2
(Gauss).

Here we use the standard notation (a)j := a(a+ 1) · · · (a+ j − 1) = Γ (a+ j)/Γ (a). Therefore,

f(〈ξ, η〉) =
π

2
− arccos〈ξ, η〉 =

π

2
− ρ(ξ, η).

Clearly, |f(〈ξ, η〉)− f(〈ξ, η′〉)| ≤ ρ(η, η′) and by Theorem 1 the associated Gaussian process (Zdξ (ω))ξ∈Sd

is almost surely in Bs∞,1(Sd) (hence in Lip s) for 0 < s < 1
2 . Furthermore,

E(Zdξ − Zdη )2 = 2f(1)− 2f(〈ξ, η〉) = 2ρ(ξ, η).

Consider now the general case: 0 < α ≤ 1 (Fractional Brownian process). From above it follows that
ψ(ξ, η) := ρ(ξ, η) is an invariant negative definite kernel. Then the general theory of negative definite
kernels yields that for any 0 < α ≤ 1 the kernel ψα(ξ, η) = ρ(ξ, η)α is invariant and negative definite.
Therefore, for a sufficiently large constant C > 0,

K(ξ, η) = C − 1

2
ρ(ξ, η)α

is an invariant positive definite kernel. On the other hand,

|K(ξ, η)−K(ξ, η′)| = 1

2
|ρ(ξ, η)α − ρ(ξ, η′)α| ≤ 1

2
ρ(η′, η))α.

By Theorem 1 it follows that the associated Gaussian process (Zdξ (ω))ξ∈Sd is almost surely in Bγ∞,1,
γ < α

2 , and hence in Lip s, s < α
2 , and the proof is complete. ut

Remark 13 From the definition of the process, we have

E(Zαξ − Zαη )2 = ρ(ξ, η)α.

This directly connects to the regularity proofs of such a process using generalization of Kolmogorov-
Csensov inequalities. See for instance [3] and [25].

7.2 Regularity of Gaussian processes on the sphere: General result

Theorem 7 Let

f(x) =
∑
n≥0

An
n!
xn, where An ≥ 0, and

An
n!

= O
( 1

n1+α

)
, α > 0.

Then

K(ξ, η) := f(cos〈ξ, η〉), ξ, η ∈ Sd, d ≥ 1,

is an invariant positive definite function, and the associated Gaussian process (Zdξ (ω))ξ∈Sd is almost

surely in Bγ∞,1 for γ < α.
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Proof. By Corollary 1, it suffices to show that f(x) can be represented in the following form (see (42)):

f(x) =
∑
j

BjW
ν
j (x), 0 ≤ Bj = O

( 1

j1+2α

)
, implying νj = O

( 1

jd+2α

)
= O(

√
λj)

2α+d.

By lemma 1 in [8] and the obvious identity Γ (x+ n) = (x)nΓ (x) we obtain the representation

xn =
n!

2n

∑
0≤2k≤n

n− 2k + ν

k!(ν)n−k+1

(2ν)n−2k

(n− 2k)!
W ν
n−2k(x).

Substituting this in the definition of f(x) we obtain

f(x) =
∑
n≥0

An
n!
xn =

∑
n≥0

An
2n

∑
0≤2k≤n

n− 2k + ν

k!(ν)n−k+1

(2ν)n−2k

(n− 2k)!
W ν
n−2k(x) (j = n− 2k)

=
∑
j≥0

(j + ν)(2ν)j
j!

W ν
j (x)

∑
n−2k=j

An
2nk!(ν)n−k+1

=
∑
j≥0

(j + ν)(2ν)j
j!

W ν
j (x)

1

2j

∑
k≥0

Aj+2k

22kk!(ν)j+k+1
=:
∑
j≥0

BjW
ν
j (x),

where

Bj :=
(j + ν)(2ν)j

j!2j

∑
k≥0

Aj+2k

22kk!(ν)j+k+1

=
(j + ν)(2ν)j
j!2j(ν)j+1

∑
k≥0

Aj+2k

22kk!(ν + j + 1)k

=
(2ν)j

2jj!(ν)j

∑
k≥0

Aj+2k

22kk!(ν + j + 1)k
.

However, for n > α we have

c1(α)

n1+α
≤ Γ (n− α)

n!
≤ c2(α)

n1+α
and hence

An
n!

= O
( 1

n1+α

)
⇐⇒ An = O(Γ (n− α)).

We use this to obtain for j > α (with c = c(α))∑
k≥0

Aj+2k

22kk!(ν + j + 1)k
≤ c

∑
k≥0

Γ (j + 2k − α)

22kk!(ν + j + 1)k

= cΓ (j − α)
∑
k≥0

Γ (j + 2k − α)

Γ (j − α)

1

22kk!(ν + j + 1)k

= cΓ (j − α)
∑
k≥0

(j − α)2k

22k

1

k!(ν + j + 1)k

= cΓ (j − α)
∑
k≥0

(j − α
2

)
k

(j − α+ 1

2

)
k

1

k!(ν + j + 1)k
,

where we used the Legendre duplication formula (see e.g. [4]):

(b)2k

22k
=
Γ (b+ 2k)

22kΓ (b)
=
( b

2

)
k

(b+ 1

2

)
k
.

By the Gaussian identity (see e.g. [4, Theorem 2.2.2])∑
k≥0

(j − α
2

)
k

(j − α+ 1

2

)
k

1

k!(ν + j + 1)k
=
Γ (ν + j + 1)Γ (ν + j + 1− j−α

2 −
j−α+1

2 )

Γ (ν + j + 1− j−α
2 )Γ (ν + j + 1− j−α+1

2 )

=
Γ (ν + j + 1)Γ (ν + 1

2 + α)

Γ (ν + j
2 + 1 + α

2 )Γ (ν + j
2 + 1

2 + α
2 )
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and hence

Bj ≤ c
(2ν)j
j!2j(ν)j

Γ (j − α)Γ (ν + j + 1)Γ (ν + 1
2 + α)

Γ (ν + j
2 + 1 + α

2 )Γ (ν + j
2 + 1

2 + α
2 )
.

Applying again the Legendre duplication formula, we get

Γ
(1

2

)
Γ (2ν + j + 1 + α) = Γ

(
ν +

j

2
+ 1 +

α

2

)
Γ
(
ν +

j

2
+

1

2
+
α

2

)
22ν+j+α.

We use this above to obtain for j ≥ 2α

Bj ≤ c
(2ν)j
j!(ν)j

Γ (j − α)Γ (ν + j + 1)Γ (ν + 1
2 + α)

Γ ( 1
2 )Γ (2ν + j + 1 + α)2−2ν−α

= c
Γ (2ν + j)Γ (ν)

Γ (j + 1)Γ (2ν)Γ (ν + j)

Γ (j − α)Γ (ν + j + 1)Γ (ν + 1
2 + α)

Γ ( 1
2 )Γ (2ν + j + 1 + α)2−2ν−α

= c2α+1(j + ν)
Γ (ν + 1

2 + α)

Γ (ν + 1
2 )

Γ (j − α)

Γ (j − α+ 1 + α)

Γ (2ν + j)

Γ (2ν + j + 1 + α)

≤ c(j + ν)
1

(j − α)1+α

1

(2ν + j)1+α
≤ c

j1+2α
.

Here we used once again the the Legendre duplication formula. It is easy to show that Bj ≤ c(α), if
j < 2α. Therefore, Bj = O

(
1

j1+2α

)
and this completes the proof. ut

Corollary 4 Let a > 0, b > 0, c > a+ b, α = c− a− b, and let

Fa,b;c(x) :=
∑
n

(a)n(b)n
(c)n

xn

n!
.

Then Fa,b;c(〈ξ, η〉) is an invariant positive definite function on the sphere Sd and the associated Gaussian
process has regularity Bγ∞,1, γ < α, almost everywhere.
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