Graduate student problem competition

Ост 9-Ост 15, 2023

All graduate students are eligible to participate.
To submit your solution, e-mail it to bazaliy@mailbox.sc.edu

Chain on a pulley with friction

A chain consists of $n=10$ small blocks. It is wrapped a quarter of a circle around a motionless, fixed cylinder. Every block $i(i=1,2, \ldots, n-1, n)$ has a friction coefficient $\mu=0.2$ with the cylinder surface. Every block is connected to its neighbors by strings. The strings do not touch the cylinder. The first $(i=1)$ and last $(i=n)$ blocks are connected to strings that are tangent to the cylinder. External forces F_{1} and F_{n} are applied to these strings. There is no gravity.

Initially, applied forces are equal, $F_{1}=F_{n}=F=10 \mathrm{~N}$. The system is in equilibrium, forward and backward tension forces acting on each block balance each other, and no friction forces develop where the blocks touch the cylinder.

The force F_{n} is then gradually increased to $1.2 F$, while F_{1} remains equal to F. Find the tensions of each of $n-1$ strings connecting the blocks.

Figure 1: Chain wrapped around a cylinder. Top view.

