## The Mole

- A counting unit
- $6.02 \times 10^{23}$ (in scientific notation)
- This number is named in honor of Amedeo Avogadro (1776-1856)


1 dozen cookies = 12 cookies 100 cookies $=10^{2}$ cookies A million of cookies $=10^{6}$ cookies 1 mole of cookies $=6.02 \times 10^{23}$ cookies

## A Mole of Particles Contain $6.02 \times 10^{23}$ particles

1 mole $\mathrm{C}=6.02 \times 10^{23} \mathrm{C}$ atoms<br>1 mole $\mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules<br>1 mole $\mathrm{NaCl}=6.02 \times 10^{23} \mathrm{NaCl}$ molecules<br>$\left(6.02 \times 10^{23} \mathrm{Na}^{+}\right.$ions and<br>$6.02 \times 10^{23} \mathrm{Cl}^{-}$ions)

1 mole $=6.02 \times 10^{23}$ particles
A particle could be an atom, a molecule, $O R$ an ion!
Note that the NUMBER is always the same, but the MASS is very different!

## Molar Mass

- The Mass of 1 mole (in grams)


## Atoms

- Equal to the numerical value of the average atomic mass (get from periodic table)
1 mole of C atoms $=12.0 \mathrm{~g}$


## Molecules

- Mass in grams of 1 mole equal numerically to the sum of the atomic masses.

1 mole of $\mathrm{H}_{2} \mathrm{O}=$ ? g
2 moles $\mathrm{H} \times 1 \mathrm{~g}+1$ mole $\mathrm{O} \times 16 \mathrm{~g}=18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

## Calculations

## molar mass Avogadro's number <br> Grams $\longleftrightarrow$ Moles $\longleftrightarrow$ particles

## Everything must go through Moles!!!

## Atoms/Molecules and Grams

Ex: How many atoms of Cu are present in 35.4 g of Cu ?
$63.5 \mathrm{~g} \mathrm{Cu}=1 \mathrm{~mol} \mathrm{Cu}$ $35.4 \mathrm{~g} \mathrm{Cu}=0.56 \mathrm{~mol} \mathrm{Cu}$ $1 \mathrm{~mol} \mathrm{Cu}=6.02 \mathrm{X} 10^{23} \mathrm{~mol} \mathrm{Cu}$ atoms $0.56 \mathrm{~mol} \mathrm{Cu}=3.4 \times 10^{23} \mathrm{Cu}$ atoms

## Test your skills

- How many atoms are in 36 grams of C?

