The Mole

- A counting unit
- 6.02 X 10²³(in scientific notation)
- This number is named in honor of Amedeo Avogadro (1776 – 1856)

1 dozen cookies = 12 cookies 100 cookies = 10^2 cookies A million of cookies = 10^6 cookies 1 mole of cookies = 6.02×10^{23} cookies

A Mole of Particles Contain 6.02 x 10²³ particles

- 1 mole C = 6.02×10^{23} C atoms
- 1 mole $H_2O = 6.02 \times 10^{23} H_2O$ molecules
- 1 mole NaCl = 6.02×10^{23} NaCl molecules

(6.02 x 10²³ Na⁺ ions and 6.02 x 10²³ Cl⁻ ions)

1 mole = 6.02 x 10²³ particles A particle could be an atom, a molecule, OR an ion!

Note that the NUMBER is always the same, but the MASS is very different!

Molar Mass

• The Mass of 1 mole (in grams)

Atoms

• Equal to the numerical value of the average atomic mass (get from periodic table)

1 mole of C atoms = 12.0 g

Molecules

• Mass in grams of 1 mole equal numerically to the sum of the atomic masses.

1 mole of $H_2O = ?g$

2 moles H x 1 g + 1 mole O x 16 g = 18 g H_2O

Calculations

Everything must go through Moles!!!

Atoms/Molecules and Grams

Ex: How many atoms of Cu are present in 35.4 g of Cu?

63.5g Cu = 1mol Cu 35.4g Cu = 0.56mol Cu 1mol Cu = $6.02X \ 10^{23}$ mol Cu atoms 0.56 mol Cu = $3.4 \ X \ 10^{23}$ Cu atoms

Test your skills

• How many atoms are in 36 grams of C?