Biomedical Engineering
Graduate Programs: ME, MS, and PhD in Biomedical Engineering

Description of the Program

The graduate degree programs in Biomedical Engineering are a joint effort between the College of Engineering and Computing (CEC), the School of Medicine (SOM), and the College of Arts and Sciences (A & S). Graduate degrees in Biomedical Engineering will focus on the quantitative methods characteristic of engineering that are not a primary focus of traditional medical or biological education. CEC is responsible for the primary administration of the program. The curriculum calls for four core lecture courses, two of which are taught primarily by CEC faculty and two primarily by SOM faculty. Engineering, Medicine, and Arts & Sciences also offer course for elective credit within the curriculum. Faculty from all three colleges and schools collaborate in research.

Purpose and Objectives of the Program

The Biomedical Engineering discipline combines elements of biological and life sciences, engineering sciences, design, manufacturing and operation of biomedical processes and devices. The graduate degree programs (MS, ME, and PhD) will:

1. Prepare graduates of the program to meet the growing demands for advanced level research, development, and entrepreneurial positions in the biomedical industry.

2. Respond to the rapidly growing national demand for new biomedical technologies and the supporting industry, and to provide opportunities for economic development and entrepreneurial growth for the State of South Carolina.

3. Meet the goals of the University of South Carolina in its emphasis area of biomedical sciences.

The Master of Engineering (ME) in Biomedical Engineering offers intensive, focused coursework training in the professional practice of biomedical engineering. The program is specifically designed for students who plan to pursue industrial careers, as a graduate degree could enhance their job application, yield a higher starting salary, and enable rapid promotion within many corporate structures. Moreover, the program will provide students who plan to pursue further graduate education a means to distinguish themselves from typical candidates with a BS degree only, and insomuch facilitate admission to leading Biomedical Engineering graduate programs and medical schools nationwide.

The MS degree combines course work and a research-based thesis to serve three student populations. First, traditional biomedical, chemical, and mechanical engineers who wish to obtain advance training in biological areas prior to entering industry will be attracted to the MS. Second, science majors who wish to receive quantitative training will use the MS to enhance their qualifications for industry. Third, the MS will also be ideal for students who wish post-
baccalaureate training before entering medical school. Thus, we expect that the MS will ultimately lead to careers in industry or in medical practice.

The PhD program equips students with training in core and elective biomedical engineering topics coupled with research design and execution to advance students into a more focused area of the biomedical engineering field. As such, this program will prepare graduates to enter a research-based career in academia or industry.

Admission Criteria Specific to the Program

The admission criteria generally conform to those currently required by the University of South Carolina Graduate School. Admissions are based on the quality of the applicant's prior college work, letters of recommendation, GRE scores, and appropriate coursework in preparation for study in the biomedical field. In general, an applicant must have a baccalaureate degree in biomedical, chemical, or mechanical engineering or its equivalent from an accredited college or university. Students with a baccalaureate degree in chemistry, biology, biochemistry, or other related fields and who have completed appropriate coursework during their baccalaureate degree are also eligible. Undergraduate preparation should include two semesters of each of biology, physics, and general chemistry, as well as four semesters of calculus, including differential equations. In addition, undergraduate preparation may include coursework in topics such as material balances, mechanics, dynamics, thermodynamics, transport, kinetics, etc. For otherwise exceptionally qualified students, admission may be granted with the proviso that the student undertakes coursework in areas not fully covered during undergraduate preparation. Typically, however, additional coursework would be required.

For additional information, please contact Dr. Tarek Shazly (BME Graduate Program Director) at shazly@cec.sc.edu or Dr. Mark Uline (BME Program Director) at uline@cec.sc.edu.
Curriculum

The table below lists the required curriculum for the ME, MS, and PhD degree programs. All hours listed are beyond the BS degree. Students may be admitted directly to the PhD program.

<table>
<thead>
<tr>
<th>Program Element</th>
<th>ME</th>
<th>MS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Required BMEN core courses and credits</td>
<td>4 (BMEN 710, 720, 713, 723), 12 credits</td>
<td>4 (BMEN 710, 720, 713, 723), 12 credits</td>
<td>4 (BMEN 710, 720, 713, 723), 12 credits</td>
</tr>
<tr>
<td>No. of Required BMEN 798 seminars and credits</td>
<td></td>
<td>BMEN 795, 798, 898 for 1.0 credit ea., 3 credits total</td>
<td>BMEN 795, 798, 898 for 1.0 credit ea., 3 credits total</td>
</tr>
<tr>
<td>No. of Required BMEN elective courses</td>
<td>2 BMEN courses, 6 credits</td>
<td>2 BMEN courses, 6 credits</td>
<td>3 BMEN courses, 9 credits</td>
</tr>
<tr>
<td>No. of other electives required</td>
<td>12 hours of additional approved electives</td>
<td>1 course, BMEN or from approved list, 3 credits</td>
<td>2 courses, BMEN or from approved list, 6 credits</td>
</tr>
<tr>
<td>SUBTOTAL Lecture and seminar credits</td>
<td>30 credits</td>
<td>24 credits</td>
<td>30 credits</td>
</tr>
<tr>
<td>Required Thesis or Dissertation Prep</td>
<td>None</td>
<td>BMEN 799, 6 credits</td>
<td>BMEN 899, 12 credits</td>
</tr>
<tr>
<td>(designation determined by the primary appointment of the student's major advisor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Research (designation determined by the primary appointment of the student's major advisor)</td>
<td>None</td>
<td>Fulfilled by BMEN 799</td>
<td>BMEN 797, 18 credits</td>
</tr>
<tr>
<td>TOTAL Lecture and research credits</td>
<td>30 credits</td>
<td>30 credits</td>
<td>60 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>ME</th>
<th>MS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission to Candidacy Exam</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Comprehensive Exam</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (written and oral)</td>
</tr>
<tr>
<td>Written thesis or dissertation</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Final oral defense</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Core Course Description

The following are brief catalog course descriptions of the required biomedical engineering core and seminar courses in the graduate curriculum.

- **BMEN 710 — Modeling and Simulation of Biomedical Systems (3 Credits):** Analytical and quantitative techniques applied to engineering problems in biomedical transport, tissue mechanics, cellular and organ physiology, and control of medical devices.

- **BMEN 713 — Human Cell and Molecular Biology for Biomedical Engineers (3 Credits):** Advanced examination of the organization and function of the cell with emphasis on the biophysical and quantitative aspects of cellular function. Emphasis will be on the biomedical engineering applications of regulation of cell division, protein transcription and translation within the cell, cellular energetics, and intracellular networks for cell signaling and cell function.

- **BMEN 720 — Transport Phenomena in Biomedical Systems (3 Credits):** Conservation of momentum, energy, mass, physico-chemical properties of biofluids, blood rheology, circulation models and cardiovascular regulation, solute and oxygen transport in tissues, gas transport in lungs and respiratory gas exchange models, kinetics and compartmental modeling, modeling of artificial organs.

- **BMEN 723 — Anatomy and Physiology for Biomedical Engineers (3 Credits):** An examination of human biological structure and function from an engineering perspective. Engineering principles will be used to analyze anatomical structures and physiological functions at the tissue, organ, and systems levels.

- **BMEN 795 — Biomedical Engineering Literature (1 Credit):** Critical reading and literacy in the biomedical engineering discipline as it relates to students’ research. Graduate Standing in the Biomedical Engineering Program. Written report and oral presentations required.

- **BMEN 798 — Graduate Seminar in Biomedical Engineering (1 Credit):** Graduate seminar on current topics in biomedical engineering. Instruction on critical analysis and communication in the discipline.

- **BMEN 898 — Doctoral Seminar in Biomedical Engineering (1 Credit):** Seminar for doctoral students on current biomedical engineering topics and instruction in professional preparation in the discipline. Graduate Standing in the Biomedical Engineering Program.
<table>
<thead>
<tr>
<th>Name</th>
<th>Research Area</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark J. Uline</td>
<td>Program Director, Biomedical Engineering; Associate Professor, Chemical Engineering, Biomedical Engineering</td>
<td>Biomedical Engineering Chemical Engineering</td>
</tr>
<tr>
<td>Silke Henrich</td>
<td>Undergraduate Director, Biomedical Engineering; Lab Manager/Instructor</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Tarek Shazly</td>
<td>Graduate Director, Biomedical Engineering; Associate Professor, Mechanical Engineering, Biomedical Engineering</td>
<td>Biomedical Engineering Mechanical Engineering</td>
</tr>
<tr>
<td>Mohamad Azhar</td>
<td>Associate Professor</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
<tr>
<td>Seongtae Bae</td>
<td>Assistant Professor</td>
<td>Electrical Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>Abdel-Moez E. Bayoumi</td>
<td>Professor, Mechanical Engineering, Biomedical Engineering; Associate Dean; Director, Center for Predictive Maintenance</td>
<td>Mechanical Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>James Otto Blanchette</td>
<td>Instructor</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Nicholas D. Boltin</td>
<td>Instructor</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Wayne Carver</td>
<td>Professor</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
<tr>
<td>John F. Eberth</td>
<td>Associate Professor</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
<tr>
<td>Daping Fan</td>
<td>Professor</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
<tr>
<td>Edward P. Gatzke</td>
<td>Associate Professor</td>
<td>Chemical Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department/Program</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Richard Lance Goodwin</td>
<td>Professor</td>
<td>School of Medicine, Greenville Biomedical Engineering</td>
</tr>
<tr>
<td>R. Michael Gower</td>
<td>Assistant Professor</td>
<td>Chemical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Esmaiel Jabbari</td>
<td>Professor</td>
<td>Chemical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Ehsan Jabbarzadeh</td>
<td>Professor; CEC Director of Entrepreneurship</td>
<td>Chemical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Susan Lessner</td>
<td>Professor</td>
<td>Cell Biology and Anatomy, Biomedical Engineering</td>
</tr>
<tr>
<td>Chang Liu</td>
<td>Assistant Professor</td>
<td>Chemical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Michael A. Matthews</td>
<td>Associate VP for Research</td>
<td>Senior Associate Dean for Research and Graduate Programs; Professor</td>
</tr>
<tr>
<td>Melissa Ann Moss</td>
<td>Department Chair of Chemical Engineering; Professor</td>
<td>Chemical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Chandrashekhar Patel</td>
<td>Research Associate Professor; Director of the Biomedical Studies Certificate Program;</td>
<td>Cell Biology and Anatomy, Biomedical Engineering</td>
</tr>
<tr>
<td>Jay Potts</td>
<td>Associate Professor</td>
<td>Cell Biology and Anatomy, Biomedical Engineering</td>
</tr>
<tr>
<td>John R. Rose</td>
<td>Professor</td>
<td>Computer Science and Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Frank G. Spinale</td>
<td>Professor</td>
<td>Cell Biology and Anatomy, Biomedical Engineering</td>
</tr>
<tr>
<td>Michael Sutton</td>
<td>Distinguished Professor</td>
<td>Mechanical Engineering, Biomedical Engineering</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nader Taheri-Qazvini</td>
<td>Assistant Professor</td>
<td>Chemical Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>Wenbin Tan</td>
<td>Associate Professor</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
<tr>
<td>Chuanbing Tang</td>
<td>Professor</td>
<td>Chemistry and Biochemistry Biomedical Engineering</td>
</tr>
<tr>
<td>Homayoun Valafar</td>
<td>Professor; Associate Chair of Research; Associate Infrastructure Director (Visualization)</td>
<td>Computer Science and Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>Guiren Wang</td>
<td>Associate Professor</td>
<td>Mechanical Engineering Biomedical Engineering</td>
</tr>
<tr>
<td>James R. Wells</td>
<td>Research Professor; Clinical Assistant Professor of Surgery</td>
<td>Cell Biology and Anatomy Biomedical Engineering</td>
</tr>
</tbody>
</table>

BME Staff

Kimberly Bradshaw
Administrative Coordinator
Biomedical Engineering Program
301 Main Street, Room 1B33
Ph: 803-777-2310
Fax: 803-777-0106
bradshaw@sc.edu

Kachet Des Champs
Administrative Coordinator
Chemical Engineering Department/Biomedical Engineering Program
301 Main Street, Room 2C02
Ph: 803-777-4181
Fax: 803-777-0106
deschamk@cec.sc.edu
FACULTY RESEARCH INTERESTS

Mark J. Uline
Program Director, Biomedical Engineering
Associate Professor, Chemical Engineering, Biomedical Engineering
Dr. Uline is the Program Director of the Biomedical Engineering Program at UofSC. His research group is working toward the fundamental understanding of how the complex interactions at interfaces couple together to give the rich phenomena observed in various chemical and biological systems.

Silke Henrich
Undergraduate Director, Biomedical Engineering
Lab Manager/Instruction
Dr. Henrich is the undergraduate director, lab manager and an instructor in the Biomedical Engineering Program.

Tarek Shazly
Graduate Director, Biomedical Engineering
Associate Professor, Mechanical Engineering, Biomedical Engineering
Dr. Shazly is the Graduate Director of the Biomedical Engineering Program at the University of South Carolina. His research is focused on defining and characterizing relevant tissue properties for clinical applications and rationally designing polymeric biomaterials that leverage local biology to enhance therapeutic gain. His specific interests include physiological mechanical testing of soft matter, mechanical modeling, multiphysics-based computational modeling, tissue-material adhesion and tissue scaffold engineering.

Mohamad Azhar
Associate Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Azhar’s current focus involves using genetically engineered mouse models to investigate the biological function of the transforming growth factor beta (TGFβ) ligands in cardiovascular development and cardiovascular disease, including calcific aortic valve disease, congenital heart disease, and aortic calcification and thoracic aortic aneurysm.

Seongtae Bae
Assistant Professor, Electrical Engineering, Biomedical Engineering
Assistant Professor Bae has focused his research on magnetic nanofluid hyperthermia and its clinical applications, magnetic(ferrite) nanoparticles/nanofluids for nano-theranostics in nanomedicine, magnetically-labeled point-care-of biosensors, in vivo & in-vitro magnetic based biosensors/bioMEMS, extremely low frequency nanomagnetic biomedical devices and medical instrumentation for neural engineering and neuromodulation, and Nanostructure spintronics materials/devices for advanced electronics and energy sustainability.

Abdel-Moez E. Bayoumi
Professor, Mechanical Engineering, Biomedical Engineering;
Associate Dean; Director, Center for Predictive Maintenance
Dr. Bayoumi’s current areas of interest are: (1) study of Condition-Based Maintenance (CBM) on military aircraft, (2) Micro-Electro Mechanical Systems (MEMS) and Mechatronics, and (3) design and applications of efficient energy resources and systems.
James Otto Blanchette
Instructor, Biomedical Engineering
Dr. Blanchette's research interests fall into the areas of: design of cell-instructive materials, delivery of therapeutics and tissue engineering.

Nicholas D. Boltin
Instructor, Biomedical Engineering
Dr. Boltin's focus lies in software design, biomedical informatics, data mining, and machine learning/artificial intelligence.

Wayne Carver
Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Carver's research focuses on understanding how fibroblast behavior and gene expression are regulated in the heart. He uses cell culture and animal models to examine the regulation of fibroblasts in cardiovascular disease.

John F. Eberth
Associate Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Eberth leads the Translational Biomechanics Lab (TBL), which adapts fundamental engineering principles to understand, manipulate, and control the behavior of healthy and diseased cardiovascular tissue.

Daping Fan
Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Fan’s current research interests include the interaction between lipoprotein metabolism and innate immunity in atherogenesis, the tumor microenvironment of breast cancer, and development of natural compounds as anti-inflammatory and anti-cancer therapies.

Edward P. Gatzke
Associate Professor, Chemical Engineering, Biomedical Engineering
Dr. Gatzke's research interests are in the area of process modeling, control, and optimization. Application areas of interest include particulate processing, bio-processes, and large scale systems.

Richard Lance Goodwin
Professor, Biomedical Sciences – School of Medicine Greenville, Biomedical Engineering
Dr. Goodwin’s research lab investigates mechanisms of cardiovascular embryonic development and disease.

R. Michael Gower
Assistant Professor, Chemical Engineering, Biomedical Engineering
Dr. Gower's research focuses on understanding the immune system in order to develop bio-instructive materials that stimulate specific immune responses.

Esmaiel Jabbari
Professor, Chemical Engineering, Biomedical Engineering
Dr. Jabbari's research draws upon chemistry, biology, macromolecular science and exploits biomimetic strategies to engineer cellular constructs for regeneration of skeletal tissues. His research interests include tissue engineering, biomimetic materials, bioinspired nanocomposites, and peptide-mediated drug delivery.
Ehsan Jabbarzadeh
Professor, Chemical Engineering, Biomedical Engineering
Dr. Jabbarzadeh’s lab is interested in the interdisciplinary areas of biomaterials, stem cells and nano/micro-electromechanical systems with applications in tissue engineering and regenerative medicine. His research activities focus on understanding the principles by which microenvironmental signals regulate cellular responses.

Susan Lessner
Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Lessner's research interests center on processes which lead to the destabilization and rupture of atherosclerotic plaques. In humans, plaque rupture leads directly to clinical events such as heart attack and stroke.

Chang Liu
Assistant Professor, Chemical Engineering, Biomedical Engineering
Dr. Liu’s research group is interested in biosensor development and biomarker discovery using nanomaterials, with a focus on their clinical applications on in vitro diagnostics, point-of-care tests, and liquid biopsy for cancer and infectious diseases.

Michael A. Matthews
Associate VP for Research | Senior Associate Dean for Research and Graduate Programs; Professor, Chemical Engineering, Biomedical Engineering
Dr. Matthews is the Senior Associate Dean for Research and Graduate Programs and a professor of chemical and biomedical engineering. He conducts research in the broad field of thermodynamics, and his research interests include supercritical fluids, ionic liquids, green chemical engineering, and carbon dioxide technology for sterilization, disinfection, modification of tissue scaffolds, and deactivation of allergenic proteins and asthma triggers.

Melissa A. Moss
Department Chair of Chemical Engineering
Professor, Chemical Engineering, Biomedical Engineering
Dr. Moss is the Chair of the Department of Chemical Engineering at the University of South Carolina. Her research focuses on understanding the role of amyloid-β protein (Aβ) aggregation in Alzheimer’s disease and inhibiting Aβ aggregation as a therapeutic approach to this widespread and devastating illness.

Chandrashekhar Patel
Research Associate Professor, Cell Biology and Anatomy, Biomedical Engineering
Director of the Biomedical Studies Certificate Program
Dr. Patel's research interests include molecular regulation of vascular endothelial and smooth muscle cells.

Jay D. Potts
Associate Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Pott’s research team is working toward understanding how the early heart and in particular, the AV canal is formed, laying the foundation for future therapeutic measures for congenital cardiac defects.

John R. Rose
Professor, Computer Science and Engineering, Biomedical Engineering
Dr. Rose’s research interests are in the areas of bioinformatics, normative reasoning and planning, DAI and multiagent systems, and computational chemistry.
Frank G. Spinale
Professor, Cell Biology and Anatomy, Biomedical Engineering
Francis G. Spinale, an internationally renowned cardiovascular scientist, has directed a translational research effort in the thematic area of remodeling with a particular focus upon heart failure. His mechanistic, translational, and clinical studies will advance our understanding and treatment for major causes of heart failure in patients.

Michael Sutton
Distinguished Professor, Mechanical Engineering, Biomedical Engineering
Dr. Sutton's research and interests include coherent and incoherent optics applications, experimental mechanics, digital image processing, computer vision, applications of integral methods and experimental mechanics, boundary value problems, plastic fracture mechanics, and finite elements modeling of cracked bodies.

Nader Taheri-Qazvini
Assistant Professor, Chemical Engineering, Biomedical Engineering
Dr. Taheri-Qazvini's research includes bio-nano hybrid and biomimetic materials, charge-driven self-assembly, structure-dynamics relations in polymer networks, hydrogels, soft glassy materials and living cells, microfabrication and 3D bioprinting and tissue engineering, and collective cell migration.

Wenbin Tan
Associate Professor, Cell Biology and Anatomy, Biomedical Engineering
Dr. Tan’s research team mainly focuses on the molecular pathogenesis of congenital vascular malformations. His research is interested in the mechanism how vascular and nervous systems interact with each other during the diseases’ pathogenesis and progression as well as development of new treatments for them.

Chuanbing Tang
Professor, Chemistry and Biochemistry, Biomedical Engineering
Dr. Tang's research combines synthesis of innovative polymeric materials, including both renewable biobased polymers, nanostructured polymers, and metal-containing polymers, which can find applications ranging from novel biodegradable thermoplastics, drug delivery, antimicrobials, nanolithography, etc.

Homayoun Valafar
Professor, Computer Science and Engineering, Biomedical Engineering;
Associate Chair of Research; Associate Infrastructure Director (Visualization)
Dr. Valafar's research activities fall into two broad categories: computational medicine and computational biology.

Guiren Wang
Associate Professor, Mechanical Engineering, Biomedical Engineering
Dr. Wang's research and interests include micro/nanofluidics, lab-on-a-chip, far field optical nanoscopy, super-resolution imaging, cancer detection, fluorescence spectroscopy, tissue engineering, fluid dynamics, turbulence and mixing.

James R. Wells
Research Professor, Cell Biology and Anatomy, Biomedical Engineering;
Clinical Assistant Professor of Surgery
Professor Wells' clinical research focuses on analysis of HPV infection in freshly resected tissue specimens.
List of BMEN Approved Electives
The following is a list of existing courses that may be accepted for graduate elective credit

COEIT Graduate Courses
ECHE 710 Advanced Chemical Engineering Thermodynamics
ECHE 720 Advanced Fluid Flow Analysis
ECHE 721 Advanced Heat Flow Analysis
ECHE 722 Advanced Mass Transfer
ECHE 725 Rheology
ECHE 730 Chemical Reactor Design
ECHE 750 Process Dynamics and Control
ECHE 770 Electrochemical Engineering
ECHE 772 Principles of Polymer Systems
EMCH 717 Advanced Finite Element Methods
EMCH 722 Plasticity
EMCH 741 Viscous and Turbulent Flow
EMCH 751 Advanced Heat Transfer
EMCH 771 Design Properties of Plastics
EMCH 794 Thermodynamics

Arts & Sciences Graduate Courses
CHEM 751 Biosynthesis of Macromolecules
CHEM 752 Regulation and Integration of Metabolism
CHEM 753 Enzymology and Protein Chemistry
CHEM 754 Biomedical Biochemistry I
CHEM 755 Biomedical Biochemistry II
BIOL 714 Advanced Cell Biology
BIOL 736 Advanced Developmental Biology

Computer Science & Engineering
CSCE 555 Algorithms in Bioinformatics
CSCE 561 Numerical Analysis
CSCE 563 Systems Simulation
CSCE 564 Computational Science
CSCE 580 Artificial Intelligence
CSCE 758 Probabilistic System Analysis
CSCE 763 Digital Image Processing
CSCE 768 Pattern Recognition and Classification
CSCE 769 Computational Structural Biology
CSCE 784 Neural Information Processing
CSCE 822 Data Mining and Warehousing

SOM Graduate Courses
ANAT 700 Principles of Electron Microscopy
ANAT 701 Human Embryology and Gross Anatomy
ANAT 720 Special Topics in Microscopic Anatomy
ANAT 740 Biological Microscopic Imaging
BMSC 720 Signal Transduction
BMSC 730 Cardiovascular Science
CBNS 702 Human Microscopic Anatomy
MBIM 710 Advanced Immunobiology
MBIM 720 Comprehensive Microbiology
MBIM 739 Medical Bacteriology
MBIM 740 Virology
PATH 710 Neoplasia
PATH 741 Pathology I
PATH 742 Pathology II
PATH 760 Topics in Pathobiology
PHPH 705 Biomedical Pharmacology
PHPH 735 Cardiovascular Pharmacology
PHPH 740 Neuroscience
PHPH 745 Neurophysiology
PHPH 750 Fundamental Neuroscience I
PHPH 751 Fundamental Neuroscience II
BMSC 700 Biomedical Science Interdisciplinary Laboratory I
BMSC 701 Biomedical Science Interdisciplinary Laboratory II
BMSC 702 Medical Cell Biology I
BMSC 705 Medical Cell Biology II
BMSC 710 Medical Molecular Biology
BMSC 720 Signal Transduction
BMSC 730 Cardiovascular Science