Introduction to Photoshop

Images may be processed for presentation purposes or for subsequent analysis.

Programs such as Photoshop and ImageJ, among others, are used to minimize defects in otherwise correctly obtained images. Images may also have structures enhanced or diminished for analysis.

“Image processing should never add anything to the image. In general, the role of the various processing operations is to remove or reduce one portion of the image contents so that others may be better seen or measured.”

- John Russ
Image Defect Examples

Uneven background illumination

Noise & scratches

Color imbalances

Contrast issues
Photoshop Workspace

- Tool bar
- Tool attributes
- Palettes in reserve
- [Set number of undos in Preferences]
- HISTORY
- LAYERS
- Palette
Tools with black arrowheads in the lower right corner have related but hidden tools.

Click with mouse to change colors.
Palette Parts

- Palette options
- Menu options (drop down box)
- Trash
Frequently Used Photoshop Menu Items

Fill & transform
Color modes & Image adjust; Image size
Median, smooth & sharpen
Rulers & guides
Palettes
Photoshop ‘Image’ Menu

- Items discussed in lecture
Pixels

- Pixel = picture element
- Smallest unit of a digital image

Properties
- Usually square
- Location
- Dimension (if calibrated)
- Color or brightness value

Tile mosaic
Resampling refers to:
 • combining pixels into a larger ‘super-pixel’
 • subdividing a pixel into smaller units
 • **Important!!: Note that the pixel dimensions (nm, μm, etc.) will change**

A related concept is **binning** during image collection to:
 • Increase collection speed
 • Increase signal-to-noise ratio
 • Decrease file size
 [Reduced spatial resolution]

Resolution is set during image collection and cannot be increased by subdividing a pixel into smaller units later.

- BP
Resampling images
Image > Image Size

Resample off

File size

Image pixel dimensions

Image print dimensions

Resample on

Anti-alias filter reduces stair-stepping artifacts
Optical resolution describes the ability of an optical system to distinguish between two closely spaced points. It depends on the alignment of the illumination system, quality of the objective lens and collection system, and the suitability of the specimen and its preparation. It is ultimately limited by diffraction.

Image (pixel) resolution is often considered the pixel count in a recorded digital image. An image with a high pixel count does not necessarily imply a high lateral resolution.
Layers

Layers can be thought of as individual images placed onto a canvas. Each layer is discrete and can be moved and edited independent of the others. This also applies to text and arrows.

- Layers can be rearranged, created, copied, deleted or hidden.
- Layers can interact with other layers by changing their blending options and opacity.
- Layers can be grouped, linked or merged together.
- Layers can be filtered or enhanced independently.
Let's Build a Plate

File > New (define parameters)

View > Rulers (if not visible)

Right click in ruler to change units
Select ‘Move’ tool
- Drag guides from the ruler
- Hover tool to reposition

Drag image onto plate with tool
Edit > Free Transform (CTRL+T)

Hold **Shift** and drag a corner handle to fit image

Press **Enter** or select **Apply** icon when done

(resampled image after transform)
Free Transform

Image properly transformed by holding **Shift** and dragging from corner handle

Image improperly transformed by not holding **Shift** or dragging from a side handle
Hold **CTRL+ALT** and drag out several copies

Add text, arrows, etc.

OOPS! Too late for scale bars
Crop image if desired

* View > Clear Guides

*To flatten layers use:
Layers > Flatten
-Or-
Palette drop-down

Save Image

- Use *.PSD format to preserve layers
- Use *.TIF format to prevent compression artifacts
• Contrast is the difference in brightness or color that makes an object distinctive from other objects and the background in the same field of view.

• The maximum contrast of an image (i.e. the darkest to brightest) is the contrast ratio or dynamic range.

• Contrast is frequently expressed in terms of bit depth. A bit depth of 8 is common and gives us 2^8 or 256 levels of brightness from black to white with 254 shades of intervening gray. Color images such as the RGB mode would have 8 bits per channel or a bit depth of 24 ($2^{24} = 16.8$ million colors). Other common values collected by cameras include 10, 12 and 16 bits per channel.

• When collecting images it is preferred to acquire, as much as possible, the full dynamic range to ensure separation of small variations in brightness.
Modifying Contrast
Contrast & Brightness

Image > Adjustments > Brightness/Contrast

Original

Darker

Brighter

We have decreased the dynamic range; data loss at extremes. Not recommended.
Low contrast - we have decreased the dynamic range
High contrast - we have shifted the pixel values toward the extremes, eventually becoming a binary image.
Again this is not recommended
Dodge & Burn (in the darkroom)

Dodge and Burn are used to change the exposure on localized areas of a print.

Illumination after passing through film

Masks → Print

Burning in → Dodging
Dodge & Burn (cont.)

- Some loss of dynamic range
- Histograms shift toward the extremes
- Not for the faint of heart
Levels

[Contrast enhancement, contrast stretch, histogram stretch ...]

Image > Adjustments > Levels
(CTRL + L)

Original

Histogram just short of utilizing full 8-bit
Levels (cont.)

After leveling
(Compare to original)

Move outer sliders to bracket histogram and perhaps a little more

[Auto functions usually oversaturate, or ‘clip’, the extremes by at least 0.1%]

Resulting histogram utilizing full 8-bit. Notice gaps in histogram – tell tale sign of enhancement
A film’s response to light is shown on the $D - \log_{10} E$ curve, where D is the optical density and E is the exposure.

- **Gamma** is defined as the slope of the linear portion of the curve and is itself a logarithmic function.

- A steep slope allows for greater changes in D from small changes in E resulting in a higher contrast image (greater dynamic range).
Gamma Adjustment in Image Analysis Programs

- Image analysis programs typically show γ as a logarithmic curve.

- Pixel intensities are changed to a new value depending on where it lies relative to the curve.

- Pixel order is retained.

[Note: A curve is sometimes referred to as a transfer function]
Gamma Adjustment in Photoshop

Open Levels (CTRL+L) in the menu

- Gamma is the center slider. The default value is ‘1’
- Pixel order is retained
- Maintains dynamic range if not applied too heavily

After γ applied

- Contrast expansion in part of the histogram, the rest is compressed
- No data loss!!!
- Original image can be restored by applying the inverse (e.g. $\gamma = 2.0$)
Gamma Adjustment in Photoshop (cont.)

- Contrast expanded in dark regions to reveal fine detail
- Contrast compressed in lighter regions
- No information loss!!
Equalization

• Logarithms are not the only functions used to manipulate the contrast of an image.

• Gaussian, exponential and power functions can also be used.

• Equalization attempts to more evenly distribute the brightness values.

• Data clustered in peaks (small brightness variations) will spread out, while ‘valleys’ will compress.
Image Inversion

Because human vision responds approximately logarithmically to brightness, it is often easier to discern details in the brighter areas of the original image when inverted (negative image).

Image > Adjustments > Invert
Levels, including gamma, is the most commonly used and accepted method of contrast enhancement!
Digital Filters

• Digital filtering is a technique for modifying or enhancing an image.

• You can enhance, deemphasize or remove a feature.

• Filters are commonly used for edge detection, removing noise and to blur/sharpen an image.

• It is not uncommon to apply a ‘small’ filter several times (iteration) to reduce artifacts that a single ‘large’ filter might introduce.
A digital filter is a matrix of numbers.

This matrix is referred to as a **kernel**.

The filter is usually square but can be ‘circular’ if zeroes are placed in the corners.

The filter performs math on the original image to produce a new one.

The numbers in the matrix **weight** the variables in the equation.

If the filter uses a math function it is sometimes referred to as a **convolution**. Otherwise it is a **ranking** filter.
Filters (cont.)

- The filter is scanned over each pixel
- The central pixel is compared to its neighbors
- Math is performed using the weights in the matrix
- The central pixel is output to a new image that is constructed
- The next pixel is scanned and compared to its neighbors and so on until the new image is complete
Median (Noise) Filter

- Median filter uses the **median** value of the neighborhood to replace the central pixel.
- Since noise tends to be an outlier value it should eventually be discarded.
- Considered a **ranking** filter.

- Fine detail can be lost.
- Edges are preserved.
- Large regions can take on the same brightness.

Original with salt/pepper noise

{12, 12, 13, 14, 21, 23, 23, 23, 29, 100}
Smoothing Filter

Filter > Blur > Gaussian Blur

• Can reduce random noise
• Can blur and displace edges, and reduce contrast
• Mimics an out-of-focus condition

1 standard deviation
Unsharp Mask Filter (in the darkroom)

Original film negative

Negative of original and slightly out-of-focus film

Sharpened print image
Filter > Sharpen > Unsharp Mask

• Produces an increase in local contrast near points, lines and edges
• Minimizes noise enhancement
• Note artifacts: Graininess, halos and some edge shift

Photoshop recommends:
• Amount 150% to 200%
• Radius 1-2 pixels
Scale Bars

- Open image
- View > Rulers if the rulers are not visible
- Right click on ruler to select ‘pixels’
- Layer > New > Layer
- Calculate length of scale bar in pixels

- Use the ‘Rectangular Marquee Tool’
- Change tool option to ‘Fixed Size’
- Enter scale bar dimensions
- Click on image (make sure new layer is selected)
- Edit > Fill with desired color
- Layer > Flatten Image
Scale Bars (cont.)
- Apply scale bars before resampling images!!
Arrows

- Use the ‘Line’ tool
- Tool options:
 1. **weight** is stem thickness
 2. arrowhead % based on weight
Different color modes:

- RGB mode (millions of colors)
- CMYK mode (four-printed colors)
- Index mode (256 colors)
- Grayscale mode (256 grays)
- Bitmap mode (2 colors)

RGB (Red/Green/Blue) and Grayscale are the most commonly used

CMYK (Cyan/Magenta/Yellow/Black) used by printers

Index color is an older mode used to save file space (8-bit color)

Do not confuse grayscale conversion with desaturation

To confuse matters further, images using pixels are considered **bitmap** (or **raster**) vs. **vector** based images that use scalable Bézier curves (a Powerpoint shape is such a curve)
Color Modes (cont.)

Grayscale

RGB color
Desaturation is usually defined as the average of the red, green and blue components:
\[(\text{red} + \text{green} + \text{blue})/3\]

Grayscale is usually weighted to better fit human vision, and is the preferred method:
\[0.3\% \text{ red} + 0.6\% \text{ green} + 0.1\% \text{ blue}\]
Primary colors: red, green, blue

Complementary colors: magenta, cyan, yellow

- **Hue** = color
- **Saturation** = intensity of the color, or how much gray is mixed in
- **Brightness** = amount of black or white mixed with the color

Brightness is the axis coming out of the plane of the page.
Color Balance

Image > Adjustments > Color balance

Original

- Primary colors opposite complementary colors
- Frequently seen in printer software
- Color artifacts and brightness shifts
Hue and saturation

Image > Adjustments > Hue/Saturation

Hue adjustment (color artifacts)

Desaturation (loss of color information)

Darker (loss of dynamic range)

original
The ‘Curves’ command acts like ‘Levels’ but gives you more flexibility than just black/white point and gamma.

The ‘options’ sub-palette acts like Auto-Levels with a clip at the extremes of the histogram.

Black, neutral gray, and white pickers (you just have to decide what is black/gray/white in the image).
Points can be moved to manually set the white and black points.

Points can be added and moved to make complex curves.
• In this image the red is too predominant
• This should have been corrected at the microscope

• Even with **Curves** the image is difficult to correct
• Empty areas still have a color cast
• Note the uneven background in the upper left
RGB Color Mode

The RGB mode is one of the most commonly used for image collection.

The Bayer filter on CCD cameras rely on red, 2x green and blue.
HSI & Lab Color Modes

Color images present some problems for image processing and analysis. For this reason sometimes a color mode is chosen that has a brightness component.

HSI Color Model (cont.)

- Computer vision model
- Similar models include HSB, HSL & HSV
- Intensity component is White/Black vertical axis
- Hue expressed in degrees

L*a*b* model

- Computationally simpler model
- This mode is in Photoshop
- Lightness component is White/Black vertical axis
- \(a = \) green to red; \(b = \) blue to yellow

Intensity is given by a position on the vertical axis.
L*a*b* Color

This image can be processed without affecting the color component.

When done, the ‘a’ & ‘b’ components can be turned back on and the image converted back to RGB Color.

Only L-component selected

[‘a’ & ‘b’ turned off using icon]
Unsharp Mask on Color Image

Original Applied to L-component of L*a*b* only and color added back Applied to entire RGB image
Note color artifacts
Contrast Enhancement (true or genuine colors)

e.g. Light Microscope

Original
L-channel of L*a*b* color mode only
Each individual color of RGB mode adjusted

For this type of image be careful when treating the colors as independent variables
Contrast Enhancement (color composite or pseudocolor)

e.g. Confocal Microscope

These types of images are independent grayscales that are combined and colored from a look-up-table (LUT)
False Coloring an SEM or TEM Image

- We will use the ‘red acetate’ method to make a selection. Anything that is red will not be selected.

- Open image and convert to RGB

- Draw a selection around an area of interest
Enter ‘Quick Mask Mode’
- Use **Brush** tool to paint around area of interest

- Adjust brush size as required

- Do not worry if you make a mistake
• Use Brush with white foreground to correct any mistakes

• You could also use the Erase tool
• Return to ‘Standard Mode’

• Create a new layer
• Click on ‘Foreground Color’ and choose a color
• Edit > Fill

• Use: Foreground Color
Blending and opacity changed

Layer 0 unlocked (by double clicking) and ‘Levels’ performed on selection.

• Optionally lock the layer to prevent changes
• Deselect the area and do another if you want
• Finish by flattening image and saving as *.tif