Skip to Content

College of Engineering and Computing

Our Labs and Groups

Explore our active research labs, groups, centers. Our faculty are leading research in tissue engineering, biomaterials development, computational modeling, biomolecular engineering, biomechanical engineering and more.

Applied Biomechanics and Mechanobiology Lab

Through theoretical and mathematical modeling, extensive experimental verification, and eventual clinical translation, the Applied Biomechanics and Mechanobiology Lab’s (ABML) focus is on adapting fundamental engineering principles to understand, manipulate, and control the behavior of healthy and diseased cardiovascular tissues while bridging length scales across the mammalian spectrum.

Area: Vascular theranostics; Growth & remodeling; Aortic aneurysm/calcification
Director: Eberth, John F

Biosensing and Biomarker Research Laboratory

The mission of the Biosensing and Biomarker Research Laboratory is to focus on advancing the state of knowledge of nanotechnology and biomolecular engineering to develop the next generation of biosensing approaches for basic biochemical studies and medicine. Current research interests include in vitro diagnostics for infectious diseases, next-generation protein sequencing, and nanoscale mapping of biomolecular interactions.

Area: Biosensors; Biomarkers; Nanotechnology; Personalized Diagnostics; Sequencing
Director: Liu, Chang

Laboratories for Soft Matter Engineering-Biohybrid Materials

Research in Taheri-Qazvini’s group in the Laboratories for Soft Matter Engineering (LSME) focuses on the rational design, synthesis, and structure-property relation of soft materials for healthcare and biomedical applications. Specifically, our lab is interested in harnessing charge-driven self-assembly between biomacromolecules and two-dimensional nanomaterials for designing hybrid soft materials. This covers a broad class of systems in several fields, with problems including biofabrication, biosensing, environmental remediation, and cellular motions.

Area: Soft matter design; Organic-inorganic hybrid biomaterials; Bioprinting
Director: Taheri-Qazvini, Nader

Laboratory for Novel Processing of Biomaterials and Biomolecules

In our lab we focus on low-temperature processes for disinfection and sterilization of biomedical materials and devices, and on decellularization of naturally-derived tissue engineering scaffolds. These processes are enabled by utilizing compressed liquid or supercritical carbon dioxide as the main solvent. Research in this lab requires understanding fundamentals including phase equilibrium thermodynamics, cell microbiology, biochemistry and structureal mechanics of tissues. We collaborate with the UofSC School of Medicine on these projects.

Area: Sterilization; Decellularization; Cleaning; Chemical modification of biomaterials
Director: Matthews, Michael A.

Microfluidics and Bioimaging Laboratory

The Microfluidics and Bioimaging Lab at the University of South Carolina pursues fundamental and applied research in multidisciplinary fields, including micro/nanofluidics, electrokinetics, lab-on-a-chip, far field optical nanoscopy, super-resolution imaging, cancer detection, fluorescence spectroscopy, fluid dynamics, turbulence and mixing.

Area: Micro/nanofluidics; Electrokinetics; Lab-on-a-chip; Far field optical nanoscopy and super-resolution imaging; Cancer detection; Fluorescence spectroscopy; Fluid dynamics; Turbulence and mixing
Director: Wang, Guiren

Protein Aggregation and Neuroinflammation Laboratory

Research interests of the Protein Aggregation and Neuroinflammation Laboratory emphasize the role of amyloid-β aggregation in Alzheimer’s disease On-going research projects focus on investigating how Aβ aggregates elicit inflammation in neuronal and vascular cells, designing therapeutics that may attenuate this inflammation, and utilizing cell response to detect physiological concentrations of aggregates.

Area: Disease detection; Amyloid; Alzheimer’s disease; Drug development; Neurodegeneration; Neuroinflammation; Protein aggregation
Director: Moss, Melissa

TGFβSignalopathy Lab

Area: Transforming growth factor beta ligands; Heart valve disease; Aortic calcification; Aortic aneurysm; Congenital heart disease
Director: Azhar, Mohamad

Uline Research Group

The Uline Research Group works to understand how complex interactions at interfaces couple to create phenomena observed in chemical and biological systems. We currently focus on molecular modeling of biological interfaces, specifically phase transitions and binding in lipid bilayers and surfactant-driven nematic ordering transitions in liquid-crystal thin films. Other interests include bubble and droplet nucleation theory, molecular dynamics simulations in the isothermal-isobaric ensemble, and effects of multivalent ions on the charge regulation in tethered polyelectrolytes.

Area: Biophysics; Soft matter; Biomaterials; Statistical mechanics; Thermodynamics; Nucleation
Director: Uline, Mark


Challenge the conventional. Create the exceptional. No Limits.

©